### Problem Solving by Case-Based Reasoning PART 1

Machine Learning Sommersemester 2009 13.05.2009

Thomas Gabel Machine Learning Lab



### Agenda

1. Introduction to CBR

PART 1

- 2. Knowledge and Case Representation
- 3. Similarity
- 4. Similarity-Based Retrieval

5. Solution Adaptation

PART 2

- 6. Learning in Case-Based Reasoning
- 7. Applications
- 8. References



### 1. INTRODUCTION What is Case-Based Reasoning?

### Case-Based Reasoning is ...

- an approach to model the way humans think
- · an approach to build intelligent systems

### Central Ideas:

- store experiences made → as cases
- · solving a new problem do the following
  - recall similar experiences (made in the past) from memory
  - reuse that experience in the context of the new situation (reuse it partially, completely or modified)
  - new experience obtained this way is stored to memory again



### Classification of CBR

- sub-discipline of Artificial Intelligence
- belongs to Machine Learning methods
  - learning process is based on analogy (not on deduction or induction)
  - best classified as supervised learning
- · one of the few commercially/industrially really successful AI methods
  - customer support, help-desk systems: diagnosis and therapy of customer's problems, medial diagnosis
  - product recommendation and configuration: e-commerce
  - textual CBR: text classification, judicial applications (in particular in the countries where common law (not civil law) is applied [like USA, UK, India, Australia, many others1)
- applicability also in ill-structured and bad understood application domains

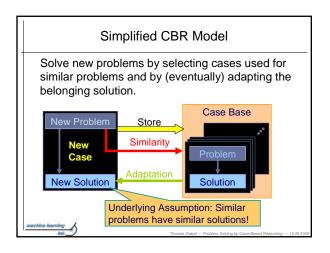
### Case-Based Reasoning and Cases

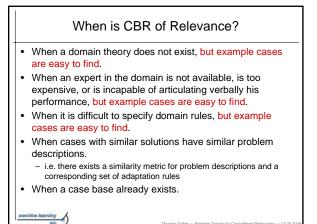
- "Case-Based Reasoning is [...] reasoning by remembering."
- "A case-based reasoner solves new problems by adapting solutions that were used to solve old problems."
- "Case-Based Reasoning is a recent approach to problem solving and learning [...]"
- "Case-Based Reasoning is both [...] the ways people use cases to solve problems and the ways we can make machines use them." Kolodner, 1993

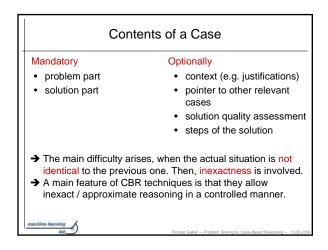
### What is a Case?

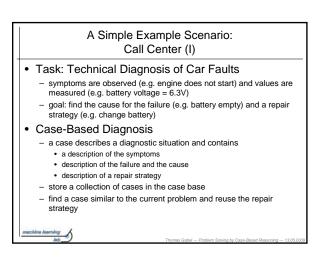
- Cognitive Science View:
- Cases are abstractions of events, that are limited in space and time; they represent episodic knowledge.
- - Technical View:
    A case is a desciption of a problem situation (that actually occurred) together with certain experiences that could be obtained during processing and solving the problem.

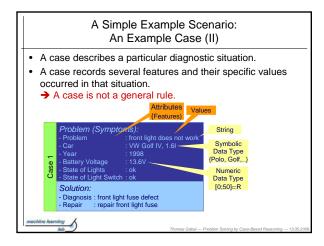


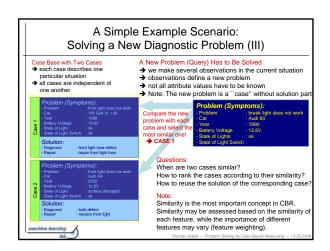


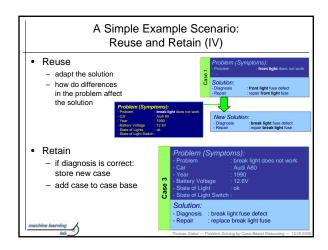


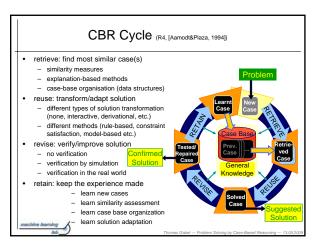












### Advantages of CBR (I)

- Avoidance of High Knowledge Acquisition Effort
  - case knowledge is usually easily acquirable
  - not much general knowledge required
- · Simpler Maintenance of the Knowledge in the System
  - maintenance by adding/removing cases from the case base
  - cases are independent of one another and easily interpretable (even for non-experts)
- Facilitation of Intelligent Retrieval (compared to data-base systems)
  - DBMS often give too few/many results

nechline hearnlary

Auth

Thomas Gabel --- Problem Solving by Case-Based Re

### Advantages of CBR (II)

- High Quality of Solutions for Poorly Understood Domains
  - case-based systems can be made to retain only ``good" experience in memory
  - if only little adaptation is necessary for reuse, this will not impair the solution's quality too much
- High User Acceptance
  - provided solution corresponds to actual experience
  - → may increase trust in the solution
  - selected case and solution adaptation can be explicitly presented to the user
  - problems of rule-based / neural network-based systems
    - black boxes
    - inference process is not traceable or hidden
  - provided solutions are difficult to explain

machine learning

Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 13.05.2009

### Typical Application Fields (I) CBR System Analytical Tasks Synthetic Tasks Classification Diagnosis Prediction Decision Support Evaluation Remarks concerning synthetic tasks: - main focus is on composing a complex solution from simpler components Tocus is often on solution adaptation - configuration: e-commerce scenario → product configuration (e.g. personal computers) - design: reuse of construction plans in civil engineering - planning: production planning

### Typical Application Fields (II) Remarks concerning analytical tasks: - main focus is on analysing a given situation - classification (assign objects to a class K.∈{K.,...,K.₀}) → e.g. recognition of sponges - diagnosis (classification + verification + therapy) → e.g. fault diagnosis in Airbus engines - evaluation/regression (like classification, but assignment of real-valued assessments): → e.g. credit risk assessment - decision support (search for specific information relevant for decision-making) → e.g. web-based product catalogues, like online travel agencies - prediction (like classification + time dependency) → e.g. prediction of the probability of failure of a machine's part

### CBR for Classification

- A classifier for a set M is a mapping f:M→I (where I is a finite index set).
  - → A case-based classifier is given by a case base, a similarity measure and the principle of the nearest neighbour.
- Definition: Given a case base CB, a similarity measure sim and an object (problem)  $q \in M$ , we call  $c=(p,s) \in CB$  the *Nearest Neighbour* to q, if: for all  $(p',s') \in CB$  it holds  $sim(q,p) \ge sim(q,p')$ .
- NN-Classification: Each new object (query)  $q\!\in\!M$  is assigned the class s∈I of q's nearest neighbour in CB.
- Note: The classifier defined by the pair (CB,sim) is not unique, if there is more than one nearest neighbour.
- Extension to kNN-Classification: The k most similar neighbours of q are considered. Typically, a majority voting is applied to determine the class of the query q.

### k-Nearest Neighbor Classification

Demonstration video on the k-NN classifier



(c) Antal van den Bosch, Tilburg University

### 2. KNOWLEDGE AND CASE REPRESENTATION What forms of knowledge are parts of a CBR How can cases be represented?

### Knowledge Container Model [Richter, 1989] "In order to solve problems, one needs knowledge." Knowledge of a CBR System vocabulary: knowledge representation - retrieval: similarity assessment (measures) - solution transformation: rules Knowledge Management as the environment may change, Case maintenance of the containers Knowledge contents over the lifetime of the CBR system is crucial to guarantee its continued usability

### Case Contents

### Problem / Situation Information

- must cover all the information that is necessary to decide if this case is applicable for a new situation
  - target of the problem
  - constraints
  - characteristics
- → new situation = query

### steps that were tried, but

### Solution Evaluation

accurately

→ solution itself

→ justifications

→ feedback from the real world

→ contains all the information

that is describes a solution

to the problem sufficiently

→ How good was the solution for the problem?

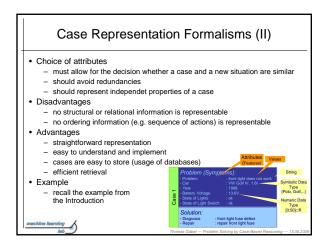
→ possible alternative solutions

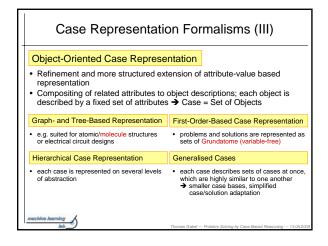
### Case Representation Formalisms (I)

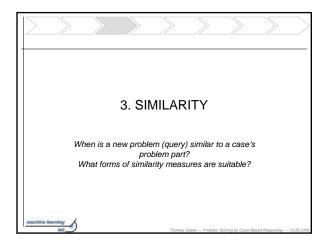
### Attribute-Value Based Case Representation

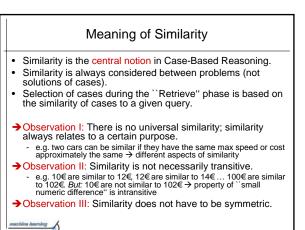
- · Case (problem and solution) is represented by pairs of attributed and belonging values.
- e.g.: price = 9.95€
- Set of attributes  $\{A_1, ..., A_n\}$  is (in general) fixed for all cases.
- To each attribute A<sub>i</sub> there is an associated domain D<sub>i</sub> and for each attribute's value it holds a<sub>i</sub>∈D<sub>i</sub>, e.g.
  - numerical attributes (Integer or Real or subsets of those)
  - symbolic attributes (finite domains, D<sub>i</sub>={d<sub>1</sub>,...,d<sub>m</sub>}
  - textual attributes (strings)
- - Choice of attributes and corresponding domains to represent cases represents general knowledge: vocabulary knowledge.
    Choice of domains is mainly influenced by the requirements for similarity
  - computation and solution adaptation



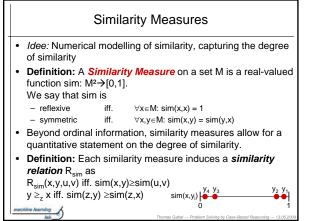




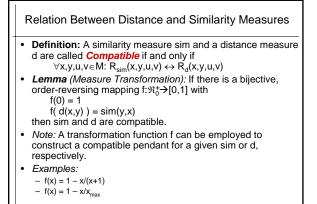


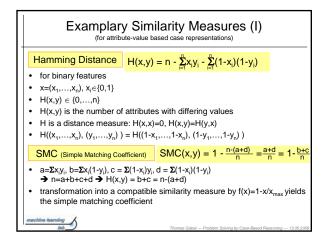


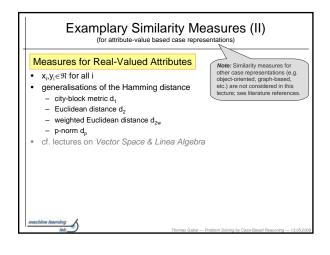
## Similarity and Utility • Purpose of Similarity: Selection of solutions that can be easily transferred / adapted to the problem at hand. • Similarity = Utility for Solving a (new) Problem • Note: • Utility is an a-posteriori criterion: In general, the utilitiy (of a case) can be estimated after having solved the problem. • Similarity concerning problem situations is an a-priori criterion: Similarity must be estimated before solving the problem. • Goal: Similarity must approximate utility as accurately as possible.

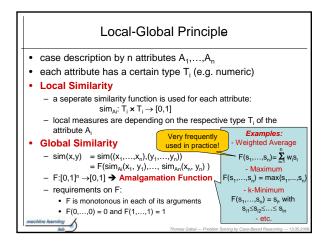


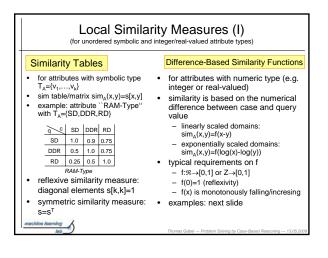
### Distance Measures • Definition: A Distance Measure on a set M is a real-valued function d: $M^2 \rightarrow \Re_0^+$ We say that sim is reflexive iff. $\forall x \in M: d(x,x) = 0$ - symmetric iff. $\forall x,y \in M: d(x,y) = d(y,x)$ Definition: A distance measure d on a set M is a Metric and (M,d) a **Metric Space** if ∀x,y∈M: $d(x,y) = 0 \implies x = y$ ∀x,y,z∈M: $d(x,y)\,+\,d(y,z)\geq d(x,z)$ Definition: Each distance induces a similarity relation R<sub>d</sub> as $\forall x,y,u,v \in M$ : $R_d(x,y,u,v)$ iff. $d(x,y) \le d(u,v)$ $y \ge_z x$ iff. $d(z,x) \le d(z,y)$ $\forall x,y,z \in M$ :

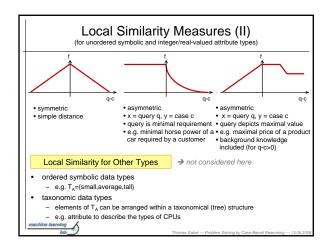


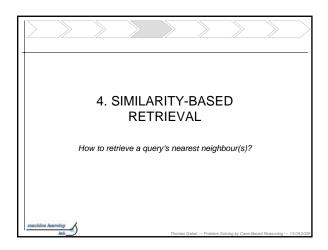




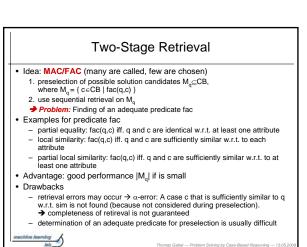


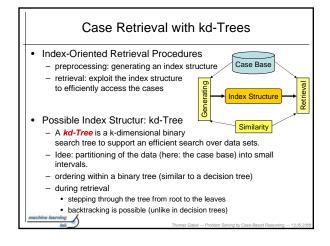


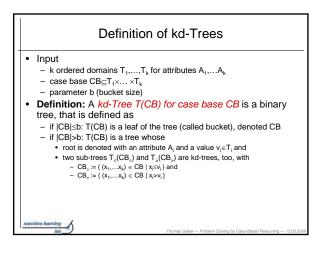




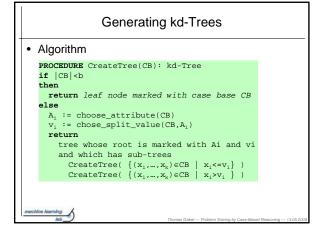
### Sequential Retrieval Retrieval Task Sequential Retrieval iterates over all c∈CB and case base CB={c<sub>1</sub>,...,c<sub>n</sub>} calculates sim(c,q) · similarity measure sim - returns the most similar / m most • query (new problem) q similar cases to q - complexity: O(n) - Output 1. most similar case c-- Advantages · easy to implement 2. m most similar cases $\{c_{i_1}, \dots, c_{i_m}\}$ no index structures to maintain · usability of arbitrary similarity 3. all cases $\{c_{i_1}, \dots, c_{i_l}\}$ which have at least a similarity of $sim_{min}$ to q measures Drawbacks - Main Problem: Efficiency · problematic for large case bases - Question: How can the case base · effort independent of query be organised in such a way to · effort independent of m support an efficient retrieval?



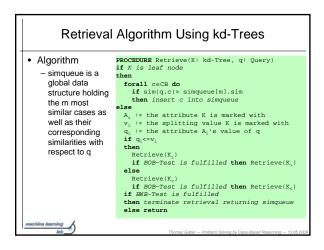




# Properties of kd-Trees • kd-tree partitions the case base - root represents the entire case base - a leaf (bucket) represents a subset of the case base that does not have to be further partitioned - at each inner node the case base is partitioned, being divided on the basis of some specific value of an attribute • Example: A2 CB={A,B,C,D,E,F,G,H,I} A3 CB={A,B,C,D,E,F,G,H,I} A4 CDB={A,B,C,D,E,F,G,H,I} A5 CB={A,B,C,D,E,F,G,H,I} A6 CDB={A,B,C,D,E,F,G,H,I} A7 CB={A,B,C,D,E,F,G,H,I} A8 CB={A,B,C



## Attribute Selection and Splitting Values • various methods usable for attribute selection - entropy-based - inter-quartile distance → choose the attribute with the biggest inter-quartile distance iqd • determination of splitting values - median splitting: choose median as splitting value - maximum splitting: search for the ``largest gap'' - chosen splitting value



```
BOB- and BWB-Tests
BOB-Test:
                                                       in general: n-dimensional hyperball
                                                                    overlapping
 Can there be - in the neighbouring
sub-tree – any more similar cases
(to query q) than the m most similar
                                                40
 cases already found?
                                                     0
                                                                         80
BWB-Test:
Is it guaranteed that there is no
                                                      m most similar case found so far
case in a neighbouring sub-tree which is more similar to the query
                                                40
 q than the m-most similar case
                                                                  0
0
80
... → A<sub>1</sub>
 found so far?
                                                                 border of a node
```

```
    Restriction
    Retrieval using kd-trees guarantees finding the m nearest neighbours, if the similarity measure used fulfills the following condition:
    Compatibility with ordering and monotony:
    ∀x₁,...,xn and x¹, x₁' if x ≤ x¹, ≤ x₁' (x₁,...,xn), (x₁,...,x¹,...,xn))
    ≥ sim((x₁,...,xn), (x₁,...,x¹,...,xn))

• Advantages
    = efficient retrieval
    = effort depends on the number m of most similar cases to find
    = incremental extension of the kd-tree is possible

• Drawbacks
    = higher costs for building up the index structure (kd-tree)
    = restrictions implied by kd-trees
    • usability for ordered domains only
    • unknown attribute values are difficult to handle
    • only for monotonous similarity measures that are compatible with the
```

