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Bayesian Learning

[Read Ch. 6]
[Suggested exercises: 6.1, 6.2, 6.6]

• Bayes Theorem

• MAP, ML hypotheses

• MAP learners

• Minimum description length principle

• Bayes optimal classifier

• Naive Bayes learner

• Example: Learning over text data
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Two Roles for Bayesian Methods

Provides practical learning algorithms

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor
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Remark on Conditional Probabilities and Priors

• P ((d1, . . . , dm)|h): probability that a hypothesis h generated a certain
classification for a fixed input data set (x1, . . . ,xm)

• P ((x1, . . . ,xm)|µ, σ2) probability that input data set was generated by a
Gaussian distribution with specific parameter values µ, σ

• = Likelihood of these values
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Remark on Conditional Probabilities and Priors

• P ((d1, . . . , dm)|h): probability that a hypothesis h generated a certain
classification for a fixed input data set (x1, . . . ,xm)

• P ((x1, . . . ,xm)|µ, σ2) probability that input data set was generated by a
Gaussian distribution with specific parameter values µ, σ

• = Likelihood of these values

• For a hypothesis h (e.g., a decision tree) P (h) should be seen as prior
knowledge about hypothesis:

• For instance: smaller trees are more probable than more complex trees

• Or: uniform distribution, if no prior knowledge

• → subjective probability≈ probability as belief
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Bayes Theorem

• In the following: fixed training set x1, . . . ,xm

• Classifications D = (d1, . . . , dm)

• This allows to determine the most probable hypothesis given the data using
Bayes theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability of hypothesis h

• P (D) = prior probability of D

• P (h|D) = probability of h given D

• P (D|h) = probability of D given h
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)

= arg max
h∈H

P (D|h)P (h)
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)

= arg max
h∈H

P (D|h)P (h)

If assume P (hi) = P (hj) then can further simplify, and choose the Maximum
likelihood (ML) hypothesis

hML = arg max
hi∈H

P (D|hi)
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Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test
returns a correct positive result in only 98% of the cases in which the
disease is actually present, and a correct negative result in only 97% of
the cases in which the disease is not present. Furthermore, .008 of the
entire population have this cancer.

P (cancer) = P (¬cancer) =

P (+|cancer) = P (−|cancer) =

P (+|¬cancer) = P (−|¬cancer) =
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Basic Formulas for Probabilities

• Product Rule: probability P (A∧B) of a conjunction of two events A and B:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if events A1, . . . , An are mutually exclusive
with

∑n

i=1 P (Ai) = 1, then

P (B) =

n
∑

i=1

P (B|Ai)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest posterior probability

hMAP = argmax
h∈H

P (h|D)
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Relation to Concept Learning

Consider our usual concept learning task

• instance space X, hypothesis space H, training examples D

• consider the FindS learning algorithm (outputs most specific hypothesis
from the version space V SH,D)

What would Bayes rule produce as the MAP hypothesis?
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Relation to Concept Learning

Assume fixed set of instances 〈x1, . . . , xm〉
Assume D is the set of classifications D = 〈c(x1), . . . , c(xm)〉 = 〈d1, . . . , dm〉
Choose P (D|h):
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Relation to Concept Learning

Assume fixed set of instances 〈x1, . . . , xm〉
Assume D is the set of classifications D = 〈c(x1), . . . , c(xm)〉
Choose P (D|h)

• P (D|h) = 1 if h consistent with D

• P (D|h) = 0 otherwise

Choose P (h) to be uniform distribution

• P (h) = 1
|H| for all h in H

Then,

P (h|D) =











1
|V SH,D| if h is consistent with D

0 otherwise
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Evolution of Posterior Probabilities

hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h )(

a( ) b( ) c( )
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Characterizing Learning Algorithms by Equivalent MAP

Learners

Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D
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Characterizing Learning Algorithms by Equivalent MAP

Learners
Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D

Does FindS output a MAP hypothesis??
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value:
di = f(xi) + ei and
ei is random variable (noise) drawn independently for each xi according to
some Gaussian distribution with mean=0
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value:
di = f(xi) + ei and
ei is random variable (noise) drawn independently for each xi according to
some Gaussian distribution with mean=0

Then, the maximum likelihood hypothesis hML is the one that minimizes the
sum of squared errors:

hML = arg min
h∈H

m
∑

i=1

(di − h(xi))
2
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Learning A Real Valued Function (cont’d)

Proof:

hML = argmax
h∈H

p(D|h)

= argmax
h∈H

m
∏

i=1

p(di|h)

= argmax
h∈H

m
∏

i=1

1√
2πσ2

e−
1
2(

di−h(xi)
σ )2

Maximize logarithm of this instead...

hML = argmaxh∈H ln(
∏m

i=1
1√

2πσ2
e−

1
2(

di−h(xi)
σ )2)
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hML = argmax
h∈H

ln(

m
∏

i=1

1√
2πσ2

e−
1
2(

di−h(xi)
σ )2)

= argmax
h∈H

m
∑

i=1

ln
1√

2πσ2
− 1

2

(

di − h(xi)

σ

)2

= argmax
h∈H

m
∑

i=1

−1

2

(

di − h(xi)

σ

)2

= argmax
h∈H

m
∑

i=1

− (di − h(xi))
2

= argmin
h∈H

m
∑

i=1

(di − h(xi))
2
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Learning to Predict Probabilities

• Training examples 〈xi, di〉, where di is 1 or 0

• Want to train neural network to output a probability given xi (not only a 0
or 1)

• example: predicting probability that (insert your favourite soccer team here)
wins.
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Learning to Predict Probabilities

• Training examples 〈xi, di〉, where di is 1 or 0

• Want to train neural network to output a probability given xi (not only a 0
or 1)

• example: predicting probability that (insert your favourite soccer team here)
wins.

In this case we can show that

hML = argmax
h∈H

m
∑

i=1

di lnh(xi) + (1− di) ln(1− h(xi))

In other words: use the modified errorfunction, it will do the job. Fits nicely to
Multi-layer perceptrons:

Weight update rule for a sigmoid unit:

wjk ← wjk + ∆wjk
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where

∆wjk = η

m
∑

i=1

(di − h(xi)) xijk
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Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that minimizes

hMDL = argmin
h∈H

LC1(h) + LC2(D|h)

where LC(x) is the description length of x under encoding C
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Example: H = decision trees, D = training data labels

• LC1(h) is # bits to describe tree h

• LC2(D|h) is # bits to describe D given h

– Note LC2(D|h) = 0 if examples classified perfectly by h. Need only
describe exceptions

• Hence hMDL trades off tree size for training errors
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Minimum Description Length Principle

hMAP = arg max
h∈H

P (D|h)P (h)

= arg max
h∈H

log2 P (D|h) + log2 P (h)

= arg min
h∈H
− log2 P (D|h)− log2 P (h) (1)

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.
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Minimum Description Length Principle

hMAP = arg max
h∈H

P (D|h)P (h)

= arg max
h∈H

log2 P (D|h) + log2 P (h)

= arg min
h∈H
− log2 P (D|h)− log2 P (h) (1)

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.

So interpret (1):

• − log2 P (h) is length of h under optimal code

• − log2 P (D|h) is length of D given h under optimal code
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Minimum Description Length Principle

hMAP = arg max
h∈H

P (D|h)P (h)

= arg max
h∈H

log2 P (D|h) + log2 P (h)

= arg min
h∈H
− log2 P (D|h)− log2 P (h) (1)

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.

So interpret (1):

• − log2 P (h) is length of h under optimal code

• − log2 P (D|h) is length of D given h under optimal code

→ prefer the hypothesis that minimizes

length(h) + length(misclassifications)
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Most Probable Classification of New Instances

So far we’ve sought the most probable hypothesis given the data D (i.e.,
hMAP )

Given new instance x, what is its most probable classification?

• hMAP (x) is not the most probable classification!

Consider:

• Three possible hypotheses:

P (h1|D) = .4, P (h2|D) = .3, P (h3|D) = .3

• Given new instance x,

h1(x) = +, h2(x) = −, h3(x) = −

• What’s most probable classification of x?
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Bayes Optimal Classifier

Bayes optimal classification:

arg max
vj∈V

∑

hi∈H

P (vj|hi)P (hi|D)
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Bayes Optimal Classifier

Bayes optimal classification:

arg max
vj∈V

∑

hi∈H

P (vj|hi)P (hi|D)

Example:

P (h1|D) = .4, P (−|h1) = 0, P (+|h1) = 1

P (h2|D) = .3, P (−|h2) = 1, P (+|h2) = 0

P (h3|D) = .3, P (−|h3) = 1, P (+|h3) = 0
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Bayes Optimal Classifier

Bayes optimal classification:

arg max
vj∈V

∑

hi∈H

P (vj|hi)P (hi|D)

Example:

P (h1|D) = .4, P (−|h1) = 0, P (+|h1) = 1

P (h2|D) = .3, P (−|h2) = 1, P (+|h2) = 0

P (h3|D) = .3, P (−|h3) = 1, P (+|h3) = 0

therefore

∑

hi∈H

P (+|hi)P (hi|D) = .4

∑

hi∈H

P (−|hi)P (hi|D) = .6
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and

arg max
vj∈V

∑

hi∈H

P (vj|hi)P (hi|D) = ′−′
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many
hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P (h|D)

2. Use this to classify new instance
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many
hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P (h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H

according to priors on H. Then (Haussler et al, 1994):

E[errorGibbs] ≤ 2E[errorBayesOptimal]
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many
hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P (h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H

according to priors on H. Then (Haussler et al, 1994):

E[errorGibbs] ≤ 2E[errorBayesOptimal]

Suppose correct, uniform prior distribution over H, then

• Pick any hypothesis from VS, with uniform probability

• Its expected error no worse than twice Bayes optimal
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Naive Bayes Classifier

Along with decision trees, neural networks, nearest nbr, one of the most
practical learning methods.

When to use

• Moderate or large training set available

• Attributes that describe instances are conditionally independent given
classification

Successful applications:

• Diagnosis

• Classifying text documents
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Naive Bayes Classifier

Assume target function f : X → V , where each instance x described by
attributes 〈a1, a2 . . . an〉. Most probable value of f(x) is:

vMAP = argmax
vj∈V

P (vj|a1, a2 . . . an)

vMAP = argmax
vj∈V

P (a1, a2 . . . an|vj)P (vj)

P (a1, a2 . . . an)

= argmax
vj∈V

P (a1, a2 . . . an|vj)P (vj)
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Naive Bayes assumption:

P (a1, a2 . . . an|vj) =
∏

i

P (ai|vj)

which gives

Naive Bayes classifier: vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj)
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Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj)← estimate P (vj)
For each attribute value ai of each attribute a

P̂ (ai|vj)← estimate P (ai|vj)

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
∏

ai∈x

P̂ (ai|vj)
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Naive Bayes: Example

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Naive Bayes: Example

Consider PlayTennis again, and new instance

〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉
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Naive Bayes: Example

Consider PlayTennis again, and new instance

〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

Want to compute:

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj)
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Naive Bayes: Example

Consider PlayTennis again, and new instance

〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

Want to compute:

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj)

P (y) P (sun|y) P (cool|y) P (high|y) P (strong|y) = .005

P (n) P (sun|n) P (cool|n) P (high|n) P (strong|n) = .021

→ vNB = n
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Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (a1, a2 . . . an|vj) =
∏

i

P (ai|vj)

• ...but it works surprisingly well anyway. Note don’t need estimated
posteriors P̂ (vj|x) to be correct; need only that

argmax
vj∈V

P̂ (vj)
∏

i

P̂ (ai|vj) = argmax
vj∈V

P (vj)P (a1 . . . , an|vj)

• see [Domingos & Pazzani, 1996] for analysis
• Naive Bayes posteriors often unrealistically close to 1 or 0

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 33



Naive Bayes: Subtleties

2. what if none of the training instances with target value vj have attribute
value ai? Then

P̂ (ai|vj) = 0, and...

P̂ (vj)
∏

i

P̂ (ai|vj) = 0

Typical solution is Bayesian estimate for P̂ (ai|vj)

P̂ (ai|vj)←
nc + mp

n + m

where

• n is number of training examples for which v = vj,

• nc number of examples for which v = vj and a = ai

• p is prior estimate for P̂ (ai|vj)

• m is weight given to prior (i.e. number of “virtual” examples)
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Learning to Classify Text

Why?

• Learn which news articles are of interest

• Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents??

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 35



Learning to Classify Text

Target concept Interesting? : Document→ {+,−}

1. Represent each document by vector of words

• one attribute per word position in document

2. Learning: Use training examples to estimate

• P (+)
• P (−)
• P (doc|+)
• P (doc|−)

Naive Bayes conditional independence assumption

P (doc|vj) =

length(doc)
∏

i=1

P (ai = wk|vj)

where P (ai = wk|vj) is probability that word in position i is wk, given vj

one more assumption: P (ai = wk|vj) = P (am = wk|vj),∀i,m

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 36



Learn naive Bayes text(Examples, V )

1. collect all words and other tokens that occur in Examples

• V ocabulary ← all distinct words and other tokens in Examples

2. calculate the required P (vj) and P (wk|vj) probability terms

• For each target value vj in V do

– docsj ← subset of Examples for which the target value is vj

– P (vj)← |docsj|
|Examples|

– Textj ← a single document created by concatenating all members of
docsj

– n← total number of words in Textj (counting duplicate words multiple
times)

– for each word wk in V ocabulary

∗ nk ← number of times word wk occurs in Textj
∗ P (wk|vj)← nk+1

n+|V ocabulary|
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Classify naive Bayes text(Doc)

• positions← all word positions in Doc that contain tokens found in
V ocabulary

• Return vNB, where

vNB = argmax
vj∈V

P (vj)
∏

i∈positions

P (ai|vj)

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 38



Twenty NewsGroups

Given 1000 training documents from each group

Learn to classify new documents according to which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey

alt.atheism sci.space
soc.religion.christian sci.crypt

talk.religion.misc sci.electronics
talk.politics.mideast sci.med

talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy

Random guessing: 5%
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Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!ogicse!uwm.edu

From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinion)...

Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most

obvious candidate for pleasant surprise is Alex

Zhitnik. He came highly touted as a defensive

defenseman, but he’s clearly much more than that.

Great skater and hard shot (though wish he were

more accurate). In fact, he pretty much allowed

the Kings to trade away that huge defensive

liability Paul Coffey. Kelly Hrudey is only the

biggest disappointment if you thought he was any

good to begin with. But, at best, he’s only a

mediocre goaltender. A better choice would be

Tomas Sandstrom, though not through any fault of

his own, but because some thugs in Toronto decided
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Learning Curve for 20 Newsgroups
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Summary

• Probability theory offers a powerful framework to design and analyse
learning methods

• probabilistic analysis offers insight in learning algorithms

• even if not directly manipulating probabilities, algorithms might be seen
fruitfully in a probabilistic perspective
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