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Overview of Today’s Lecture: Generalisation in MLPs

1. Motivation

2. Training and Validation

3. Regularisation Techniques

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 2



Motivation

Neural networks are very powerful function approximators:

Any boolean function can be realized by a MLP with one hidden layer. Any
bounded continuous function can be approximated with arbitrary precision by a
MLP with one hidden layer. Cybenko (1989)

Therefore, they incorporate the danger of overfitting.

• At first glance, the size of the network matters: the larger the number of
hidden neurons, the more powerful the representation capacity.

• Tradeoff: being able to reasonably learn (avoid underfitting), but not just
memorize training data (overfitting)

• Unfortuntately, there is no analytical way to determine the right network
size out of the training data.

• couple of techniques are applied, most of which can also be applied to other
learning methods. These are discussed in the following.
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Examples of Overfitting/ Underfitting

• overfitting/ underfitting in regression (blackboard)

• overfitting/ underfitting in classification (blackboard)
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Overfitting/ Underfitting: Training/ Test error behaviour

• example of overfitting:
validation error increases while training error decreases

• example of successful learning:
validation error and training error monotonically decrease

• example of underfitting:
validation and training error remain large
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Training and validation

• learning algorithms try to find a hypothesis that fits the training data in the
best way

• we would like to find a hypothesis that works well for all data sets that can
be derived from the true function f∗

• assume that the input patterns ~x are taken from some probability
distribution P

• the best hypothesis f should minimize the expected error (generalization
error):

E
[1

2

(

f(~x) − f∗(~x)
)2

]

(here: E means the expectation value over all possible ~x)

• Note: we cannot calculate the expected error since we don’t know P and f∗
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Training and validation

• if we are given a set of examples {(~x(1), d(1)), . . . , (~x(p), d(p))} with ~x(i) ∼ P
and d(i) = f∗(~x(i)), we can approximate the expected error by the mean
error (training error):

1

p

p
∑

i=1

(1

2

(

f(~x(i)) − d(i)
)2

)

• whether or not this approximation is good is discussed in the
Computational Learning Theory

• if the approximation is good, a hypothesis learned on the training set will
also perform well on other data sets

• if the approximation is bad, a hypothesis learned on the training set will
perform poorly on other data sets
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Training and validation

(cont.)

• Validation is the process to check the performance of a learned function on
independent validation/test data.

• simple approach for validation:

– before training, split the available data set into two disjoint subsets:
training set and validation set

– apply training only on the training set
– apply testing the learned functions on the validation set

• disadvantage: only a subset of available patterns is used for training, only a
subset of available patterns is used for testing

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 8



Cross-validation

• k-fold cross validation:

Require: D, 2 ≤ k ≤ p

1: split D into k disjoint subsets of equal size: D1, . . . ,Dk

2: for i = 1 to k do
3: (re-) initialize neural network
4: train neural network on set D1 ∪ · · · ∪ Di−1 ∪ Di+1 ∪ · · · ∪ Dk

5: calculate average test error ei on Di

6: end for
7: return 1

k

∑k

i=1 ei

• advantage: model is learned on k−1
k

p data points and evaluated on all data
points

• disadvantage: model has to be learned k times

• k-fold cross validation with k = p yields the leave-one-out error
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Cross-validation

• example: D = {z1, . . . , z17}, 3-fold crossvalidation

• split training set randomly:

D1 = {z1, z2, z8, z13, z14, z15}

D2 = {z4, z5, z10, z11, z12, z17}

D3 = {z3, z6, z7, z9, z16}

• train MLP three times:

1. use D2 ∪ D3 for training, D1 for validation: average validation error e1

2. use D1 ∪ D3 for training, D2 for validation: average validation error e2

3. use D1 ∪ D2 for training, D3 for validation: average validation error e3

• calculate average validation error: e = e1·|D1|+e2·|D2|+e3·|D3|
|D| = 6e1+6e2+5e3

17
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Regularization techniques

• regularization techniques: approaches to improve generalization
implementing some preference rules

• four basic principles:

– smaller networks should be prefered (cf. Ockham’s razor)
the hypothesis set H of smaller networks is smaller than the hypothesis
set of large networks

– smaller weights should be prefered
neurons with logistic activation function and small weights are almost
linear, networks of linear neurons can be replaced by a single neuron

– better description of the task
better input features may simplify the learning task, e.g. make a
nonlinear problem linear

– ensemble techniques
combine several MLPs after learning
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Regularization techniques - Overview

techniques to
reduce network
size:

• weight pruning

• topology
optimization

• weight sharing

• cascade
correlation

techniques to
prefer small
weights:

• small initial
weights

• early stopping

• weight decay

• Bayesian
learning

techniques for better
task description:

• provide more
training data

• filter training data

• use more/less/other
input features

ensemble
techniques:

• bagging

• boosting
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Regularization techniques - weight initialisation

• small initial weights

initialize all weights with small values. Since initial steplength in learning
algorithms is small, the network has larger chance to converge to a local
minimum that is characterized by small weights

Per se not very powerful technique, useful especially when combined with
early stopping.
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Regularization techniques - Early stopping

early stopping

• stop learning when the error on the validation
set has reached its minimum

• heuristic often used, needs perpetual
observation of the validation error, typically
combined with small initial weights

• often, training is already stopped after a few
iterations (10-30 iterations)
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Regularization techniques - Weight decay

• weight decay

explicit preference of small weights. Modify the error term that is minimized
during learning:

E(~w;D;λ) := E(~w;D) +
1

2
λ||~w||2

λ ≥ 0 controls the importance of the preference: for λ = 0 we get
unregularized learning. Typical values for λ range between 0 and 10

very powerful technique, often used

disadvantage: λ must be adjusted manually

– λ is too small ⇒ overfitting
– λ is too large ⇒ underfitting

fits very smoothly into the gradient descent framework
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Regularization techniques - Pruning

• weight pruning

after training a MLP check which connections do not contribute much to
the result. Remove these connections and retrain the MLP.

several approaches:

– remove connections with the smallest weights (absolute value)
– optimal brain damage (OBD) ((LeCun, Denker, Solla 1990)), optimal brain

surgeon (OBS) ((Hassibi, Storck 1992)): remove weights depending on second

order information ∂2E
(∂wij)2

. Background: remove weights whose removal

has the smallest influence on the network output
– evolutionary approaches

approaches are sometimes used, but not as standard
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Pruning example: Monk’s problem (Thrun, 1992)

• boolean function, depending on few attributes

• unit-obs never deleted useful units, 100 % correct classification

Original MLP:

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9

Bias

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Unit 10 Unit 11 Unit 12 Unit 13 Unit 14 Unit 15 Unit 16 Unit 17

Unit 20Unit 19Unit 18

Unit 21

Pruned MLP using Unit-OBS + OBS (Stahlberger and Riedmiller, 1996):

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9

Bias

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Unit 10 Unit 11 Unit 12 Unit 13 Unit 14 Unit 15 Unit 16 Unit 17

Unit 20Unit 19Unit 18

Unit 21
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Pruning example: Thyroid

• three class classification problem

• originally 21 inputs

algorithm # weights topology speedup cpu-time perf. test

no pruning 316 21-10-3 - - 98.4%
OBS 28 8-7-3 1.0 511 min. 98.5%

Unit-OBS 41 7-2-3 7.8 76 min. 98.4%
Unit-OBS + OBS 24 7-2-3 - 137 min. 98.5%

Table 1: The thyroid benchmark
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Regularization techniques - Topology optimization

• topology optimization

vary the network size and structure, check the validation error, use
automated search engines (e.g. evolutionary algorithm)

• System based on learning + evolution: ENZO (Weisbrod, Braun, 1992)
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Regularization techniques - weight sharing

• weight sharing

neurons of several subnetworks use the same weights ⇒ reduction in the
number of parameters and model complexity.

Useful to generate masks e.g. to detect objects in pictures etc. (see
example on next slides)

• Multi-Task learning

combine learning the primary task with learning related tasks within the
same neural network.

.

.

. target of related tasks

target of primary task

typical examples: timeseries prediction
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Regularization techniques

• cascade correlation ((Fahlmann 1990))

start with a small MLP and successively add neurons. Similar to
Tower-algorithm. Weights of additional neurons are trained to maximize the
covariance with current error on training set and then fixed

– constructive method.
– danger to overfit.
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Regularization techniques - more data

• provide more data

data analysts’ fundamental slogan:

there’s no data like more
data!

try to get more data; if not possible directly, think about related sources of
similar data

although trivial, one of the most important techniques to improve ML
models
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Regularization techniques - filter training data

(cont.)

• training data often contain a subset of data that help much learning the
task and a subset that does not contribute much. Filtering means, reducing
the training set to the really important patterns that help adjusting the
classification boundary/regression curve.

• techniques: oversampling, subsampling, outlier rejection, jitering

• appropriate technique must be chosen problem-specific.

• frequent problem: unbalanced data in classification
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Regularization techniques - input features

• use more/less/other input features

• removing features may reduce overfitting. Helps to avoid that MLP
concentrates on pseudo relationships

• adding features may improve generalization if it is related to desired output

• performing non-linear transformations on the features may also be
appropriate

• there are techniques for semi-automated feature selection and dimensionality
reduction (principle component analysis, independent component analysis,
mutual information)

• appropriate techniques must be chosen problem-specific.
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Regularization techniques - Committees

• committee/ensemble approaches:

• if you ask an expert, expert may
fail

• ask a committee of experts: the
majority has a better chance to
be right. premise: experts are
experienced and diverse.
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Committees -Bagging (Breimann, 1996)

• building a committee:

• train several MLPs on bootstrap samples of the training data

• data is drawn randomly with replacements ⇒ some patterns may occur
twice or more, others don’t occur at all

• average the ouput of all the MLPs

• single members of the committee might produce a higher test-set error;
however in general the diversity of the committee compensates for this effect
and therefore the committee error improves over the error of the individuals
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learned hypothesis

committee

averaging

bootstrap samples

training

training

training
training data

samplingwith replacement

samplingwith replacement

sampling

with replacement
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Committees - Boosting (Freund & Schapire, 1995)

• ensemble technique like bagging, but MLPs are not trained independently

– second MLP is learned on the training data that are not well learned by
the first MLP

– third MLP is learned on the training data that are not well learned by the
first and second MLP

– ...

• step by step, we get better commitees on the training set

• boosting is successfully used in practice

• good generalisation capabilities on low-noise data

• overfitting might occur on noisy data
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Recipe for learning

given a real world problem:

• decide on the principle modeling (classification, regression, unsupervised
approach)

• collect data

• generate and select features

• create training patterns

• train MLP

• change regularization parameters (weight decay), net topology and repeat
training

• eventually change features, create training patterns again and repeat
training

• test MLP on new data (test data) and report results
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Example: digit recognition
• refers to work of Yann LeCun et. al. (1995)

• background:
US postal service is interested in automated
recognition of zip codes, they provided a large
database of digits observed with a digital
camera from letterns and postcards. The
images are labeled manually. Each image
consists of a 20 × 20 pixel array with black
and white pixels.

• task: multi-class classification (10 classes)

• preprocessing: finding correct clipping of
image, rescaling number to equal size,
centering digits within 20 × 20 clipping,
deslanting digits

• input coding: 400 binary features

• output coding: 1-of-10 vector
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Example: digit recognition

(cont.)

• baseline approach: learning a linear model (no hidden neurons)

400 · 10 + 10 = 4010 weights, 60 000 training patterns

8.4% misclassified test patterns out of 10 000 test patterns

• second approach: MLP with one hidden layer, 400-300-10 topology

300 · (400 + 1) + 10 · (300 + 1) = 123 310 weights

• best result: 1.6% misclassified test patterns

learned with gradient descent.

Yann LeCun et al. (1995):

It remains somewhat of a mystery that networks with such a large
number of free parameters manage to achieve reasonably low error
rates on the test set, even though comparing their size to the number
of training samples makes them appear grossly over-parameterized.
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Example: digit recognition

(cont.)

• third approach: weight sharing
large MLP, 4 hidden layers,
several subnetworks share their
weights ⇒ reduces number of free
parameters

• LeNet1: 3000 free parameters,
test error: 1.7%

• LeNet4: 17 000 free parameters,
test error: 1.1%

• LeNet5: 60 000 free parameters,
test error: 0.9%

share
weights

inp
ut

 la
ye

r fir
st 

hid
de

n 
lay

er

se
co

nd
 h

idd
en

 la
ye

r

share
weights

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 32



Example: digit recognition

• fourth approach: boosting

• using principle approach of LeNet4, use boosting algorithm to improve
results

• test error of boosted LeNet4: 0.7%
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Example: digit recognition

• boosted LeNet4 gave the overall best results in 1995, even compared to
other machine learning approaches

• in 2002, DeCoste and Schölkopf could improve the performance using a
support vector machine (SVM): test error: 0.56%

• human performance: approx. 0.2%

• training time (on Sun Sparc 10):

– linear model: half a day
– LeNet1: 3 days
– LeNet4: 14 days
– boosted LeNet4: 35 days

• do you like to compete?
here are the data: http://yann.lecun.com/exdb/mnist/
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Summary

• important insight: you cannot learn without inductive bias (preference rule,
incomplete hypothesis sets)

• regularization techniques: realizations of preference rule

• most important ideas for regularization:

– prefer small weights
– prefer small networks
– improve task description
– ask several networks, not only one (ensembles)
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