Machine Learning:Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University FreiburgAG Maschinelles Lernen

Neural Networks

- \blacktriangleright The human brain has approximately 10^{11} neurons
- \blacktriangleright Switching time $0.001s$ (computer $\approx 10^{-10}s$)
- \blacktriangleright Connections per neuron: $10^4 - 10^5$
- \blacktriangleright $0.1s$ for face recognition
- \blacktriangleright I.e. at most 100 computation steps
- \blacktriangleright parallelism
- \blacktriangleright additionally: robustness, distributedness
- \blacktriangleright ML aspects: use biology as an inspiration for artificial neural models and algorithms; do not try to explain biology: technically imitate and exploit capabilities

Biological Neurons

- \blacktriangleright Dentrites input information to the cell
- \blacktriangleright Neuron fires (has action potential) if ^a certain threshold for the voltage is exceeded
- \blacktriangleright Output of information by axon
- \blacktriangleright The axon is connected to dentrites of other cells via synapses
- \blacktriangleright Learning corresponds to adaptation of the efficiency of synapse, of the synaptical weight

Historical ups and downs

Perceptrons: adaptive neurons

- \blacktriangleright perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants of ^a former, more simple model (McCulloch/Pitts neurons, 1942):
	- inputs are weighted
	- weights are real numbers (positive and negative)
	- no special inhibitory inputs

Perceptrons: adaptive neurons

- \blacktriangleright perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants of ^a former, more simple model (McCulloch/Pitts neurons, 1942):
	- inputs are weighted
	- weights are real numbers (positive and negative)
	- no special inhibitory inputs
- \blacktriangleright A a percpetron with n inputs is described by a weight vector
 $\vec{r} = \vec{r} \cdot \vec{n}$ $\vec{w} = (w_1, \ldots, w_n)^T$ following function: $\mathbb{R}^n \in \mathbb{R}^n$ and a threshold $\theta \in \mathbb{R}.$ It calculates the

$$
(x_1, ..., x_n)^T \mapsto y = \begin{cases} 1 & \text{if } x_1w_1 + x_2w_2 + ... + x_nw_n \ge \theta \\ 0 & \text{if } x_1w_1 + x_2w_2 + ... + x_nw_n < \theta \end{cases}
$$

 \blacktriangleright **For convenience: replacing the threshold by an additional weight (bias weight)**
 α the second proportion with weight use the set and his second that we are not weak $w_0=-$ the following calculation: $\theta.$ A perceptron with weight vector \vec{w} and bias weight w_0 performs

$$
(x_1,\ldots,x_n)^T \mapsto y = f_{step}(w_0 + \sum_{i=1}^n (w_i x_i)) = f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)
$$

with

$$
f_{step}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

 \blacktriangleright **For convenience: replacing the threshold by an additional weight (bias weight)**
 α the second proportion with weight use the set and his second that we are not weak $w_0=-$ the following calculation: $\theta.$ A perceptron with weight vector \vec{w} and bias weight w_0 performs

$$
(x_1,\ldots,x_n)^T \mapsto y = f_{step}(w_0 + \sum_{i=1}^n (w_i x_i)) = f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)
$$

with

$$
f_{step}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

geometric interpretation of ^aperceptron:

• $\bullet \;\;$ input patterns (x_1,\ldots,x_n) are points in n -dimensional space

- • $\bullet \;\;$ input patterns (x_1,\ldots,x_n) are points in n -dimensional space
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle =0$ are on a hyperplane defined by w_0 $_0$ and \vec{w}

- • $\bullet \;\;$ input patterns (x_1,\ldots,x_n) are points in n -dimensional space
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle =0$ are on a hyperplane defined by w_0 $_0$ and \vec{w}
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle>0$ are above the hyperplane

- $\bullet \,\,$ input patterns (x_1,\ldots,x_n) are points in n -dimensional space
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle =0$ are on a hyperplane defined by w_0 $_0$ and \vec{w}
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle>0$ are above the hyperplane
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle < 0$ are below the hyperplane

- $\bullet \,\,$ input patterns (x_1,\ldots,x_n) are points in n -dimensional space
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle =0$ are on a hyperplane defined by w_0 $_0$ and \vec{w}
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle>0$ are above the hyperplane
- $\bullet~$ points with $w_{0}+\langle \vec{w},\vec{x}\rangle < 0$ are below the hyperplane
- • perceptrons partition the input space into two halfspaces along ^ahyperplane

Perceptron learning problem

 \blacktriangleright ► perceptrons can automatically adapt to example data \Rightarrow Supervised
Learning: Classification Learning: Classification

Perceptron learning problem

- \blacktriangleright ► perceptrons can automatically adapt to example data \Rightarrow Supervised
Learning: Classification Learning: Classification
- \blacktriangleright perceptron learning problem: given:
	- $\bullet\,$ a set of input patterns $\mathcal{P} \subseteq \mathbb{R}^n$, called the set of positive examples
	- another set of input patterns $\bullet \ \,$ another set of input patterns $\mathcal{N} \subseteq \mathbb{R}^n$, called the set of negative examples

task:

• generate a perceptron that yields 1 for all patterns from $\mathcal P$ and 0 for all patterns from $\cal N$

Perceptron learning problem

- \blacktriangleright ► perceptrons can automatically adapt to example data \Rightarrow Supervised
Learning: Classification Learning: Classification
- \blacktriangleright perceptron learning problem: given:
	- $\bullet\,$ a set of input patterns $\mathcal{P} \subseteq \mathbb{R}^n$, called the set of positive examples
	- another set of input patterns $\bullet \ \,$ another set of input patterns $\mathcal{N} \subseteq \mathbb{R}^n$, called the set of negative examples

task:

- generate a perceptron that yields 1 for all patterns from $\mathcal P$ and 0 for all patterns from $\cal N$
- b obviously, there are cases in which the learning task is unsolvable, e.g.
 $D \cap M \cap M$ \blacktriangleright $\mathcal{P} \cap \mathcal{N} \neq \emptyset$

\blacktriangleright Lemma (strict separability):

Whenever exist ^a perceptron that classifies all training patterns accurately, there is also ^a perceptron that classifies all training patterns accurately andno training pattern is located on the decision boundary, i.e.

 $\vec{w_0}+\langle \vec{w},\vec{x}\rangle \neq 0$ for all training patterns.

\blacktriangleright Lemma (strict separability):

Whenever exist ^a perceptron that classifies all training patterns accurately, there is also ^a perceptron that classifies all training patterns accurately andno training pattern is located on the decision boundary, i.e. $\vec{w_0}+\langle \vec{w},\vec{x}\rangle \neq 0$ for all training patterns.

Proof:

Let $(\vec w,w_0)$ be a perceptron that classifies all patterns accurately. Hence,

$$
\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \ge 0 & \text{for all } \vec{x} \in \mathcal{P} \\ < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases}
$$

\blacktriangleright Lemma (strict separability):

Whenever exist ^a perceptron that classifies all training patterns accurately, there is also ^a perceptron that classifies all training patterns accurately andno training pattern is located on the decision boundary, i.e. $\vec{w_0}+\langle \vec{w},\vec{x}\rangle \neq 0$ for all training patterns.

Proof:

Let $(\vec w,w_0)$ be a perceptron that classifies all patterns accurately. Hence,

$$
\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \ge 0 & \text{for all } \vec{x} \in \mathcal{P} \\ < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases}
$$
\n
$$
\text{Define } \varepsilon = \min \{ -(\langle \vec{w}, \vec{x} \rangle + w_0) | \vec{x} \in \mathcal{N} \}. \text{ Then:}
$$
\n
$$
\langle \vec{w}, \vec{x} \rangle + w_0 + \frac{\varepsilon}{2} \begin{cases} \ge \frac{\varepsilon}{2} > 0 & \text{for all } \vec{x} \in \mathcal{P} \\ \le -\frac{\varepsilon}{2} < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases}
$$

\blacktriangleright Lemma (strict separability):

Whenever exist ^a perceptron that classifies all training patterns accurately, there is also ^a perceptron that classifies all training patterns accurately andno training pattern is located on the decision boundary, i.e. $\vec{w_0}+\langle \vec{w},\vec{x}\rangle \neq 0$ for all training patterns.

Proof:

Let $(\vec w,w_0)$ be a perceptron that classifies all patterns accurately. Hence,

$$
\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \ge 0 & \text{for all } \vec{x} \in \mathcal{P} \\ & < 0 \quad \text{for all } \vec{x} \in \mathcal{N} \end{cases}
$$
\nDefine $\varepsilon = \min\{-(\langle \vec{w}, \vec{x} \rangle + w_0) | \vec{x} \in \mathcal{N}\}$. Then:

\n
$$
\langle \vec{w}, \vec{x} \rangle + w_0 + \frac{\varepsilon}{2} \begin{cases} \ge \frac{\varepsilon}{2} > 0 & \text{for all } \vec{x} \in \mathcal{P} \\ \le -\frac{\varepsilon}{2} < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases}
$$
\nThus, the perceptron $(\vec{w}, w_0 + \frac{\varepsilon}{2})$ proves the lemma.

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- b how can we change \vec{w} and w_0 to \blacktriangleright avoid this error?

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- ▶ how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

- \blacktriangleright assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle u\vec{v},\vec{x}\rangle+w_0<0$
- \blacktriangleright b how can we change \vec{w} and w_0 to avoid this error? – we need toincrease $\langle \vec{w},\vec{x}\rangle+w_0$
	- $\bullet\,$ increase w_0
	- $\bullet\,$ if $x_i>0$, increase w_i
	- if $x_i < 0$ ('negative influence'), decrease w_i
- \blacktriangleright perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

Require: positive training patterns $\mathcal P$ and a negative training examples $\mathcal N$ **Ensure:** if exists, ^a perceptron is learned that classifies all patterns accurately

- 1: initialize weight vector \vec{w} and bias weight w_0 arbitrarily
- 2: **while** exist misclassified pattern $\vec{x} \in \mathcal{P} \cup \mathcal{N}$ **do**
? if ਕ ⊂ 刀 ther
- 3: **if** $\vec{x} \in \mathcal{P}$ then
- 4: $\vec{w} \leftarrow \vec{w} + \vec{x}$
5: $w_0 \leftarrow w_0 +$
- 5: $w_0 \leftarrow w_0$ $_0 + 1$
- **else** 6°
- 7: $\vec{w} \leftarrow \vec{w}$
8: $\vec{w} \leftarrow \vec{w}$ $-\vec{x}$
- 8: $w_0 \leftarrow w_0-1$
- וו וז \dot{Q} . **end if**
- 10: **end while**
- 11: **return** \vec{w} and w_0

$$
\mathcal{N} = \{(1,0)^T, (1,1)^T\}, \mathcal{P} = \{(0,1)^T\}
$$

 \rightarrow exercise

▶ Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptrongiven by $(\vec w,w_0)$ classifies all patterns accurately.

▶ Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptrongiven by $(\vec w,w_0)$ classifies all patterns accurately.

Proof: follows immediately from algorithm.

▶ Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptrongiven by $(\vec w,w_0)$ classifies all patterns accurately.

Proof: follows immediately from algorithm.

\blacktriangleright Theorem (termination of perceptron learning):

Whenever exists ^a perceptron that classifies all training patterns correctly, the perceptron learning algorithm terminates.

▶ Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptrongiven by $(\vec w,w_0)$ classifies all patterns accurately.

Proof: follows immediately from algorithm.

\blacktriangleright Theorem (termination of perceptron learning):

Whenever exists ^a perceptron that classifies all training patterns correctly, the perceptron learning algorithm terminates.

Proof:

for simplification we will add the bias weight to the weight vector, i.e. $\vec{w} = (w_0, w_1, \dots, w_n)^T$, and 1 to all patterns, i.e. $\vec{x} = (1, x_1, \dots, x_n)^T$ We will denote with $\vec{w}^{(t)}$ the weight vector in the t -th iteration of perceptron .learning and with $\vec{x}^{(t)}$ the pattern used in the t -th iteration.

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$
\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle
$$

$$
= \langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle
$$

$$
\geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta
$$

with $\delta := \min \left(\left\{ \left\langle \vec{w}^*, \vec{x} \right\rangle | \vec{x} \in \mathcal{P} \right\} \cup \left\{ - \left\langle \vec{w}^*, \vec{x} \right\rangle | \vec{x} \in \mathcal{N} \right\} \right)$

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$
\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle
$$

= $\langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle$
 $\geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta$

with $\delta := \min\left(\left\{ \langle \vec{w}^*,\vec{x} \rangle \left| \vec{x} \in \mathcal{P} \right.\right\} \cup \left\{ -\left\langle \vec{w}^*,\vec{x} \right\rangle \left| \vec{x} \in \mathcal{N} \right.\right\} \right)$ $\delta>0$ since \vec{w}^* strictly classifies all patterns

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$
\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle
$$

$$
= \langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle
$$

$$
\geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta
$$

with $\delta := \min\left(\left\{ \langle \vec{w}^*,\vec{x} \rangle \left| \vec{x} \in \mathcal{P} \right.\right\} \cup \left\{ -\left\langle \vec{w}^*,\vec{x} \right\rangle \left| \vec{x} \in \mathcal{N} \right.\right\} \right)$ $\delta>0$ since \vec{w}^* strictly classifies all patterns Hence,

$$
\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle \ge \langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t+1)\delta
$$

$$
||\vec{w}^{(t+1)}||^2 = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle
$$

= $\langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$
= $||\vec{w}^{(t)}||^2 \pm 2 \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle + ||\vec{x}^{(t)}||^2$
 $\leq ||\vec{w}^{(t)}||^2 + \varepsilon$

with $\varepsilon := \max\{||\vec{x}||^2$ $2|\vec{x} \in \mathcal{P} \cup \mathcal{N}\}\rangle$

$$
||\vec{w}^{(t+1)}||^2 = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle
$$

= $\langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$
= $||\vec{w}^{(t)}||^2 \pm 2 \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle + ||\vec{x}^{(t)}||^2$
 $\leq ||\vec{w}^{(t)}||^2 + \varepsilon$

with $\varepsilon := \max\{||\vec{x}||^2$ Hence, $2|\vec{x} \in \mathcal{P} \cup \mathcal{N}\}\rangle$

$$
||\vec{w}^{(t+1)}||^2 \le ||\vec{w}^{(0)}||^2 + (t+1)\varepsilon
$$

$$
\cos \angle(\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle}{||\vec{w}^*|| \cdot ||\vec{w}^{(t+1)}||}
$$

$$
\cos \measuredangle(\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle}{||\vec{w}^*|| \cdot ||\vec{w}^{(t+1)}||}
$$

$$
\geq \frac{\langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t+1)\delta}{||\vec{w}^*|| \cdot \sqrt{||\vec{w}^{(0)}||^2 + (t+1)\varepsilon}}
$$

$$
\cos \angle (\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle}{||\vec{w}^*|| \cdot ||\vec{w}^{(t+1)}||}
$$

$$
\geq \frac{\langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t+1)\delta}{||\vec{w}^*|| \cdot \sqrt{||\vec{w}^{(0)}||^2 + (t+1)\epsilon}} \longrightarrow \infty
$$

Since $\cos\measuredangle(\vec w^*,\vec w^{(t+1)})\le 1$, t must be bounded above.

¥

\blacktriangleright Lemma (worst case running time):

If the given problem is solvable, perceptron learning terminates after at most $(n+1)^2$ $22^{(n+1)\log(n+1)}$ iterations.

 \blacktriangleright Exponential running time is ^a problem of the perceptron learning algorithm. There are algorithms that solve the problem with complexity $O(n\,$ 7 2 $\frac{1}{2}$

\blacktriangleright Lemma:

If ^a weight vector occurs twice during perceptron learning, the given task isnot solvable. (Remark: here, we mean with weight vector the extendedvariant containing also w_0)

Proof: next slide

\blacktriangleright Lemma:

If ^a weight vector occurs twice during perceptron learning, the given task isnot solvable. (Remark: here, we mean with weight vector the extendedvariant containing also w_0)

Proof: next slide

\blacktriangleright Lemma:

Starting the perceptron learning algorithm with weight vector $\vec{0}$ on an unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, *Perceptrons*

Proof:

Assume $\vec{w}^{(t+k)} =$ applied. Without loss of generality, assume $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+q)}\in\mathcal{P}$ and $\vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+k)}$ have been $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence:

$$
\vec{w}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)})
$$

$$
\Rightarrow \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}
$$

Proof:

Assume $\vec{w}^{(t+k)} =$ applied. Without loss of generality, assume $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+q)}\in\mathcal{P}$ and $\vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+k)}$ have been $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence: $\vec{w}^{(t)}$ $=$ $=\vec{w}^{(t+k)} =$ $= \vec{w}^{(t)} + \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)})$)

$$
\Rightarrow \quad \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}
$$

Assume, a solution \vec{w}^* exists. Then:

$$
\langle \vec{w}^*, \vec{x}^{(t+i)} \rangle \begin{cases} \geq 0 & \text{if } i \in \{1, \dots, q\} \\ < 0 & \text{if } i \in \{q+1, \dots, k\} \end{cases}
$$

Proof:

Assume $\vec{w}^{(t+k)} =$ applied. Without loss of generality, assume $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+q)}\in\mathcal{P}$ and $\vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)},\ldots,\vec{x}^{(t+k)}$ have been $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence: $\vec{w}^{(t)}$ $=$ $=\vec{w}^{(t+k)} =$ $= \vec{w}^{(t)} + \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)})$)

$$
\Rightarrow \quad \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}
$$

Assume, a solution \vec{w}^* exists. Then:

$$
\langle \vec{w}^*, \vec{x}^{(t+i)} \rangle \begin{cases} \geq 0 & \text{if } i \in \{1, \dots, q\} \\ < 0 & \text{if } i \in \{q+1, \dots, k\} \end{cases}
$$

Hence,

$$
\langle \vec{w}^*, \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} \rangle \ge 0
$$

$$
\langle \vec{w}^*, \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)} \rangle < 0
$$
 contradiction!

Perceptron learning algorithm: **Pocket algorithm**

- ▶ how can we determine a "good" perceptron if the given task cannot be solved perfectly?
- ▶ "good" in the sense of: perceptron makes minimal number of errors

Perceptron learning algorithm: **Pocket algorithm**

- ▶ how can we determine a "good" perceptron if the given task cannot be solved perfectly?
- ▶ "good" in the sense of: perceptron makes minimal number of errors

Perceptron learning algorithm: Pocket algorithm

- \blacktriangleright how can we determine ^a "good" perceptron if the given task cannot be solved perfectly?
- ▶ "good" in the sense of: perceptron makes minimal number of errors
- \blacktriangleright Perceptron learning: the number of errors does not decreasemonotonically during learning
- \blacktriangleright Idea: memorise the best weight vector that has occured so far!
	- ⇒ Pocket algorithm

- ▶ perceptrons can only learn linearly separable problems.
- \blacktriangleright famous counterexample:
 \blacktriangleright $X \cap D(x, y)$ $XOR(x_1,x_2)\text{:}$ $P = \{(0, 1)\}$ $\{(0,1)^T$ $\mathcal{N}=\{(0,0)^T,(1,1)\}$ $^T,(1, 0)^T$ $^{T}\},$ $\{(0,0)^T$ $^T,(1, 1)^T$ T }
- \blacktriangleright perceptrons can only learn linearly separable problems.
- \blacktriangleright famous counterexample:
 \blacktriangleright $X \cap D(x, y)$ $XOR(x_1,x_2)\text{:}$ $P = \{(0, 1)\}$ $\{(0,1)^T$ $\mathcal{N}=\{(0,0)^T,(1,1)\}$ $^T,(1, 0)^T$ $^{T}\},$ $\{(0,0)^T$ $^T,(1, 1)^T$ T }
- \blacktriangleright networks with several perceptrons are computationally more powerful (cf. McCullough/Pitts neurons)
- \blacktriangleright let's try to find ^a network with two perceptrons that can solve the XORproblem:
	- first step: find ^a perceptron that

classifies three patternsaccurately, e.g. $w_0=-\,$ $w_1=w_2=1$ classific $0.5,$ $(0, 0)^T$ $\sigma_2 = 1$ classifies $^T,(0,1)^T$ $^{T},(1,0)^{T}$ but fails on $(1,1)^T$

- \blacktriangleright perceptrons can only learn linearly separable problems.
- \blacktriangleright famous counterexample:
 \blacktriangleright $X \cap D(x, y)$ $XOR(x_1,x_2)\text{:}$ $P = \{(0, 1)\}$ $\{(0,1)^T$ $\mathcal{N}=\{(0,0)^T,(1,1)\}$ $^T,(1, 0)^T$ $^{T}\},$ $\{(0,0)^T$ $^T,(1, 1)^T$ T }
- \blacktriangleright networks with several perceptrons are computationally more powerful (cf. McCullough/Pitts neurons)
- \blacktriangleright let's try to find ^a network with two perceptrons that can solve the XORproblem:
	- first step: find ^a perceptron that

classifies three patternsaccurately, e.g. $w_0=-\,$ $w_1=w_2=1$ classific $0.5,$ $(0, 0)^T$ $\sigma_2 = 1$ classifies $^T,(0,1)^T$ $^{T},(1,0)^{T}$ but fails on $(1,1)^T$

• second step: find a perceptron that uses the output of the first perceptron as additional input. Hence, training patterns are: $\mathcal{N}=$ $\{(0,0,0),(1,1,1)\},$ $\mathcal{P} = \{(0, 1, 1), (1, 0, 1)\}$ perceptron learning yields: $\{(0,1,1), (1,0,1)\}.$ $v_0=$ $v_3 =$ $1,$ $v_1=v_2=-$ 1, $_3 = 2$

(cont.)

XOR-network:

(cont.)

Geometric interpretation:

(cont.)

XOR-network:

Geometric interpretation:

partitioning of first perceptron

(cont.)

XOR-network:

Geometric interpretation:

partitioning of second perceptron, assumingfirst perceptron yields 0

(cont.)

XOR-network:

Geometric interpretation:

partitioning of second perceptron, assumingfirst perceptron yields ¹

(cont.)

XOR-network:

Geometric interpretation:

combining both

Historical remarks

- \blacktriangleright Rosenblatt perceptron (1958):
	- retinal input (array of pixels)
	- preprocessing level, calculation of features
	- adaptive linear classifier
	- **•** inspired by human vision

Historical remarks

\blacktriangleright Rosenblatt perceptron (1958):

- retinal input (array of pixels)
- preprocessing level, calculation of features
- adaptive linear classifier
- •inspired by human vision

- if features are complex enough, everything can be classified
- • if features are restricted (only parts of the retinal pixelsavailable to features), someinteresting tasks cannot belearned (Minsky/Papert, 1969)

Historical remarks

\blacktriangleright Rosenblatt perceptron (1958):

- retinal input (array of pixels)
- preprocessing level, calculation of features
- adaptive linear classifier
- •inspired by human vision

- if features are complex enough, everything can be classified
- • if features are restricted (only parts of the retinal pixelsavailable to features), someinteresting tasks cannot belearned (Minsky/Papert, 1969)
- \blacktriangleright important idea: create features instead of learning from raw data

Summary

- \blacktriangleright Perceptrons are simple neurons with limited representation capabilites: linear seperable functions only
- \blacktriangleright simple but provably working learning algorithm
- \blacktriangleright networks of perceptrons can overcome limitations
- \blacktriangleright working in feature space may help to overcome limited representation capability