Machine Learning: Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University Freiburg AG Maschinelles Lernen

Neural Networks

- > The human brain has approximately 10^{11} neurons
- Switching time 0.001s (computer $\approx 10^{-10}s$)
- > Connections per neuron: $10^4 10^5$
- > 0.1s for face recognition
- \blacktriangleright I.e. at most 100 computation steps
- > parallelism
- additionally: robustness, distributedness
- ML aspects: use biology as an inspiration for artificial neural models and algorithms; do not try to explain biology: technically imitate and exploit capabilities

Biological Neurons

- Dentrites input information to the cell
- Neuron fires (has action potential) if a certain threshold for the voltage is exceeded
- Output of information by axon
- The axon is connected to dentrites of other cells via synapses
- Learning corresponds to adaptation of the efficiency of synapse, of the synaptical weight

Historical ups and downs

Perceptrons: adaptive neurons

- perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants of a former, more simple model (McCulloch/Pitts neurons, 1942):
 - inputs are weighted
 - weights are real numbers (positive and negative)
 - no special inhibitory inputs

Perceptrons: adaptive neurons

- perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants of a former, more simple model (McCulloch/Pitts neurons, 1942):
 - inputs are weighted
 - weights are real numbers (positive and negative)
 - no special inhibitory inputs
- ► a percpetron with *n* inputs is described by a weight vector $\vec{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ and a threshold $\theta \in \mathbb{R}$. It calculates the following function:

$$(x_1, \dots, x_n)^T \mapsto y = \begin{cases} 1 & \text{if } x_1 w_1 + x_2 w_2 + \dots + x_n w_n \ge \theta \\ 0 & \text{if } x_1 w_1 + x_2 w_2 + \dots + x_n w_n < \theta \end{cases}$$

For convenience: replacing the threshold by an additional weight (bias weight) $w_0 = -\theta$. A perceptron with weight vector \vec{w} and bias weight w_0 performs the following calculation:

$$(x_1, \dots, x_n)^T \mapsto y = f_{step}(w_0 + \sum_{i=1}^n (w_i x_i)) = f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

with

$$f_{step}(z) = \begin{cases} 1 & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$

For convenience: replacing the threshold by an additional weight (bias weight) $w_0 = -\theta$. A perceptron with weight vector \vec{w} and bias weight w_0 performs the following calculation:

$$(x_1, \dots, x_n)^T \mapsto y = f_{step}(w_0 + \sum_{i=1}^n (w_i x_i)) = f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

with

$$f_{step}(z) = \begin{cases} 1 & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$

geometric interpretation of a perceptron:

• input patterns (x_1, \ldots, x_n) are points in *n*-dimensional space

- input patterns (x_1, \ldots, x_n) are points in *n*-dimensional space
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle = 0$ are on a hyperplane defined by w_0 and \vec{w}

- input patterns (x_1, \ldots, x_n) are points in *n*-dimensional space
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle = 0$ are on a hyperplane defined by w_0 and \vec{w}
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle > 0$ are above the hyperplane

- input patterns (x_1, \ldots, x_n) are points in *n*-dimensional space
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle = 0$ are on a hyperplane defined by w_0 and \vec{w}
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle > 0$ are above the hyperplane
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle < 0$ are below the hyperplane

- input patterns (x_1, \ldots, x_n) are points in *n*-dimensional space
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle = 0$ are on a hyperplane defined by w_0 and \vec{w}
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle > 0$ are above the hyperplane
- points with $w_0 + \langle \vec{w}, \vec{x} \rangle < 0$ are below the hyperplane
- perceptrons partition the input space into two halfspaces along a hyperplane

Perceptron learning problem

perceptrons can automatically adapt to example data Learning: Classification

Perceptron learning problem

- perceptrons can automatically adapt to example data Learning: Classification
- perceptron learning problem: given:
 - a set of input patterns $\mathcal{P}\subseteq\mathbb{R}^n$, called the set of positive examples
 - another set of input patterns $\mathcal{N} \subseteq \mathbb{R}^n$, called the set of negative examples

task:

- generate a perceptron that yields 1 for all patterns from ${\cal P}$ and 0 for all patterns from ${\cal N}$

Perceptron learning problem

- perceptrons can automatically adapt to example data Learning: Classification
- perceptron learning problem: given:
 - a set of input patterns $\mathcal{P}\subseteq\mathbb{R}^n$, called the set of positive examples
 - another set of input patterns $\mathcal{N}\subseteq\mathbb{R}^n$, called the set of negative examples

task:

- generate a perceptron that yields 1 for all patterns from ${\cal P}$ and 0 for all patterns from ${\cal N}$
- obviously, there are cases in which the learning task is unsolvable, e.g. $\mathcal{P} \cap \mathcal{N} \neq \emptyset$

Lemma (strict separability):

Whenever exist a perceptron that classifies all training patterns accurately, there is also a perceptron that classifies all training patterns accurately and no training pattern is located on the decision boundary, i.e. $\vec{w_0} + \langle \vec{w}, \vec{x} \rangle \neq 0$ for all training patterns.

Machine Learning: Perceptrons - p.9/24

Lemma (strict separability):

Whenever exist a perceptron that classifies all training patterns accurately, there is also a perceptron that classifies all training patterns accurately and no training pattern is located on the decision boundary, i.e. $\vec{w_0} + \langle \vec{w}, \vec{x} \rangle \neq 0$ for all training patterns.

Proof:

Let (\vec{w}, w_0) be a perceptron that classifies all patterns accurately. Hence,

$$\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \geq 0 & \text{ for all } \vec{x} \in \mathcal{P} \\ < 0 & \text{ for all } \vec{x} \in \mathcal{N} \end{cases}$$

Lemma (strict separability):

Whenever exist a perceptron that classifies all training patterns accurately, there is also a perceptron that classifies all training patterns accurately and no training pattern is located on the decision boundary, i.e. $\vec{w_0} + \langle \vec{w}, \vec{x} \rangle \neq 0$ for all training patterns.

Proof:

Let (\vec{w}, w_0) be a perceptron that classifies all patterns accurately. Hence,

$$\begin{split} \langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \geq 0 & \text{for all } \vec{x} \in \mathcal{P} \\ < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases} \\ \text{Define } \varepsilon &= \min\{-(\langle \vec{w}, \vec{x} \rangle + w_0) | \vec{x} \in \mathcal{N}\}. \text{ Then:} \\ \langle \vec{w}, \vec{x} \rangle + w_0 + \frac{\varepsilon}{2} \begin{cases} \geq \frac{\varepsilon}{2} > 0 & \text{for all } \vec{x} \in \mathcal{P} \\ \leq -\frac{\varepsilon}{2} < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases} \end{split}$$

Lemma (strict separability):

Whenever exist a perceptron that classifies all training patterns accurately, there is also a perceptron that classifies all training patterns accurately and no training pattern is located on the decision boundary, i.e. $\vec{w_0} + \langle \vec{w}, \vec{x} \rangle \neq 0$ for all training patterns.

Proof:

Let (\vec{w}, w_0) be a perceptron that classifies all patterns accurately. Hence,

$$\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases} \geq 0 & \text{for all } \vec{x} \in \mathcal{P} \\ < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases} \\ \text{Define } \varepsilon = \min\{-(\langle \vec{w}, \vec{x} \rangle + w_0) | \vec{x} \in \mathcal{N}\}. \text{ Then:} \\ \langle \vec{w}, \vec{x} \rangle + w_0 + \frac{\varepsilon}{2} \begin{cases} \geq \frac{\varepsilon}{2} > 0 & \text{for all } \vec{x} \in \mathcal{P} \\ \leq -\frac{\varepsilon}{2} < 0 & \text{for all } \vec{x} \in \mathcal{N} \end{cases} \\ \text{Thus, the perceptron } (\vec{w}, w_0 + \frac{\varepsilon}{2}) \text{ proves the lemma.} \end{cases}$$

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error?

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- ► how can we change \vec{w} and w_0 to avoid this error? – we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? – we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? – we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- ► assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: increasing w_0

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? – we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

- ► assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

- ► assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

- > assume, the perceptron makes an error on a pattern $\vec{x} \in \mathcal{P}$: $\langle \vec{w}, \vec{x} \rangle + w_0 < 0$
- how can we change \vec{w} and w_0 to avoid this error? we need to increase $\langle \vec{w}, \vec{x} \rangle + w_0$
 - increase w_0
 - if $x_i > 0$, increase w_i
 - if $x_i < 0$ ('negative influence'), decrease w_i
- > perceptron learning algorithm: add \vec{x} to \vec{w} , add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric intepretation: modifying \vec{w}

Require: positive training patterns \mathcal{P} and a negative training examples \mathcal{N} **Ensure:** if exists, a perceptron is learned that classifies all patterns accurately

- 1: initialize weight vector \vec{w} and bias weight w_0 arbitrarily
- 2: while exist misclassified pattern $\vec{x} \in \mathcal{P} \cup \mathcal{N}$ do
- 3: if $\vec{x} \in \mathcal{P}$ then
- 4: $\vec{w} \leftarrow \vec{w} + \vec{x}$
- 5: $w_0 \leftarrow w_0 + 1$
- 6: **else**
- 7: $\vec{w} \leftarrow \vec{w} \vec{x}$
- 8: $w_0 \leftarrow w_0 1$
- 9: **end if**
- 10: end while
- 11: return \vec{w} and w_0

Perceptron learning algorithm: example

$$\mathcal{N} = \{(1,0)^T, (1,1)^T\}, \mathcal{P} = \{(0,1)^T\}$$

 \rightarrow exercise

Perceptron learning algorithm: convergence

Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptron given by (\vec{w}, w_0) classifies all patterns accurately.

Perceptron learning algorithm: convergence

Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptron given by (\vec{w}, w_0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

Perceptron learning algorithm: convergence

Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptron given by (\vec{w}, w_0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

Theorem (termination of perceptron learning):

Whenever exists a perceptron that classifies all training patterns correctly, the perceptron learning algorithm terminates.

Perceptron learning algorithm: convergence

Lemma (correctness of perceptron learning):

Whenever the perceptron learning algorithm terminates, the perceptron given by (\vec{w}, w_0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

Theorem (termination of perceptron learning):

Whenever exists a perceptron that classifies all training patterns correctly, the perceptron learning algorithm terminates.

Proof:

for simplification we will add the bias weight to the weight vector, i.e. $\vec{w} = (w_0, w_1, \dots, w_n)^T$, and 1 to all patterns, i.e. $\vec{x} = (1, x_1, \dots, x_n)^T$. We will denote with $\vec{w}^{(t)}$ the weight vector in the *t*-th iteration of perceptron learning and with $\vec{x}^{(t)}$ the pattern used in the *t*-th iteration.

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$$
$$= \langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle$$
$$\geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta$$

with $\delta := \min\left(\left\{\left\langle \vec{w}^*, \vec{x} \right\rangle | \vec{x} \in \mathcal{P}\right\} \cup \left\{-\left\langle \vec{w}^*, \vec{x} \right\rangle | \vec{x} \in \mathcal{N}\right\}\right)$

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$\langle \vec{w^*}, \vec{w^{(t+1)}} \rangle = \langle \vec{w^*}, \vec{w^{(t)}} \pm \vec{x^{(t)}} \rangle$$
$$= \langle \vec{w^*}, \vec{w^{(t)}} \rangle \pm \langle \vec{w^*}, \vec{x^{(t)}} \rangle$$
$$\geq \langle \vec{w^*}, \vec{w^{(t)}} \rangle + \delta$$

with $\delta := \min\left(\left\{\langle \vec{w}^*, \vec{x} \rangle | \vec{x} \in \mathcal{P}\right\} \cup \left\{-\langle \vec{w}^*, \vec{x} \rangle | \vec{x} \in \mathcal{N}\right\}\right)$ $\delta > 0$ since \vec{w}^* strictly classifies all patterns

Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$$
$$= \langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle$$
$$\geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta$$

with $\delta := \min \left(\left\{ \langle \vec{w^*}, \vec{x} \rangle | \vec{x} \in \mathcal{P} \right\} \cup \left\{ - \langle \vec{w^*}, \vec{x} \rangle | \vec{x} \in \mathcal{N} \right\} \right)$ $\delta > 0$ since $\vec{w^*}$ strictly classifies all patterns Hence,

$$\left\langle \vec{w}^*, \vec{w}^{(t+1)} \right\rangle \ge \left\langle \vec{w}^*, \vec{w}^{(0)} \right\rangle + (t+1)\delta$$

$$||\vec{w}^{(t+1)}||^{2} = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle$$

= $\langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$
= $||\vec{w}^{(t)}||^{2} \pm 2 \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle + ||\vec{x}^{(t)}||^{2}$
 $\leq ||\vec{w}^{(t)}||^{2} + \varepsilon$

with $\varepsilon := \max\{||\vec{x}||^2 | \vec{x} \in \mathcal{P} \cup \mathcal{N}\}$

$$||\vec{w}^{(t+1)}||^{2} = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle$$

= $\langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle$
= $||\vec{w}^{(t)}||^{2} \pm 2 \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle + ||\vec{x}^{(t)}||^{2}$
 $\leq ||\vec{w}^{(t)}||^{2} + \varepsilon$

with $\varepsilon := \max\{||\vec{x}||^2 | \vec{x} \in \mathcal{P} \cup \mathcal{N}\}$ Hence,

$$||\vec{w}^{(t+1)}||^2 \le ||\vec{w}^{(0)}||^2 + (t+1)\varepsilon$$

$$\cos \measuredangle(\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\left\langle \vec{w}^*, \vec{w}^{(t+1)} \right\rangle}{||\vec{w}^*|| \cdot ||\vec{w}^{(t+1)}||}$$

$$\cos \measuredangle (\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle}{||\vec{w}^*|| \cdot ||\vec{w}^{(t+1)}||}$$
$$\geq \frac{\langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t+1)\delta}{||\vec{w}^*|| \cdot \sqrt{||\vec{w}^{(0)}||^2 + (t+1)\varepsilon}}$$

$$\cos \measuredangle (\vec{w^*}, \vec{w^{(t+1)}}) = \frac{\left\langle \vec{w^*}, \vec{w^{(t+1)}} \right\rangle}{||\vec{w^*}|| \cdot ||\vec{w^{(t+1)}}||}$$
$$\geq \frac{\left\langle \vec{w^*}, \vec{w^{(0)}} \right\rangle + (t+1)\delta}{||\vec{w^*}|| \cdot \sqrt{||\vec{w^{(0)}}||^2 + (t+1)\varepsilon}} \xrightarrow[t \to \infty]{} \infty$$

Since $\cos \measuredangle(\vec{w}^*, \vec{w}^{(t+1)}) \le 1$, t must be bounded above.

Perceptron learning algorithm: convergence

Lemma (worst case running time):

If the given problem is solvable, perceptron learning terminates after at most $(n+1)^2 2^{(n+1)\log(n+1)}$ iterations.

Exponential running time is a problem of the perceptron learning algorithm. There are algorithms that solve the problem with complexity $O(n^{\frac{7}{2}})$

Lemma:

If a weight vector occurs twice during perceptron learning, the given task is not solvable. (Remark: here, we mean with weight vector the extended variant containing also w_0)

Proof: next slide

Lemma:

If a weight vector occurs twice during perceptron learning, the given task is not solvable. (Remark: here, we mean with weight vector the extended variant containing also w_0)

Proof: next slide

Lemma:

Starting the perceptron learning algorithm with weight vector $\vec{0}$ on an unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, *Perceptrons*

Proof:

Assume $\vec{w}^{(t+k)} = \vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+k)}$ have been applied. Without loss of generality, assume $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+q)} \in \mathcal{P}$ and $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence:

 $\vec{w}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)})$ $\Rightarrow \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}$

Proof:

Assume $\vec{w}^{(t+k)} = \vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+k)}$ have been applied. Without loss of generality, assume $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+q)} \in \mathcal{P}$ and $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence: $\vec{w}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{r}^{(t+1)} + \ldots + \vec{r}^{(t+q)} - (\vec{r}^{(t+q+1)}) + \vec{r}^{(t+q)}$

$$\vec{x}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)})$$

$$\Rightarrow \quad \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}$$

Assume, a solution \vec{w}^* exists. Then:

$$\left\langle \vec{w}^*, \vec{x}^{(t+i)} \right\rangle \begin{cases} \geq 0 & \text{if } i \in \{1, \dots, q\} \\ < 0 & \text{if } i \in \{q+1, \dots, k\} \end{cases}$$

Proof:

Assume $\vec{w}^{(t+k)} = \vec{w}^{(t)}$. Meanwhile, the patterns $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+k)}$ have been applied. Without loss of generality, assume $\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+q)} \in \mathcal{P}$ and $\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N}$. Hence: $\vec{w}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)})$

$$\Rightarrow \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)}$$

Assume, a solution \vec{w}^* exists. Then:

$$\left\langle \vec{w}^*, \vec{x}^{(t+i)} \right\rangle \begin{cases} \geq 0 & \text{if } i \in \{1, \dots, q\} \\ < 0 & \text{if } i \in \{q+1, \dots, k\} \end{cases}$$

Hence,

$$\left\langle \vec{w}^*, \vec{x}^{(t+1)} + \dots + \vec{x}^{(t+q)} \right\rangle \ge 0$$

$$\left\langle \vec{w}^*, \vec{x}^{(t+q+1)} + \dots + \vec{x}^{(t+k)} \right\rangle < 0$$
 contradiction!

Perceptron learning algorithm: Pocket algorithm

- how can we determine a "good" perceptron if the given task cannot be solved perfectly?
- "good" in the sense of: perceptron makes minimal number of errors

Perceptron learning algorithm: Pocket algorithm

- how can we determine a "good" perceptron if the given task cannot be solved perfectly?
- "good" in the sense of: perceptron makes minimal number of errors

Perceptron learning algorithm: Pocket algorithm

- how can we determine a "good" perceptron if the given task cannot be solved perfectly?
- "good" in the sense of: perceptron makes minimal number of errors
- Perceptron learning: the number of errors does not decrease monotonically during learning
- Idea: memorise the best weight vector that has occured so far!
 - \Rightarrow Pocket algorithm

- perceptrons can only learn linearly separable problems.
- ► famous counterexample: $XOR(x_1, x_2)$: $\mathcal{P} = \{(0, 1)^T, (1, 0)^T\},$ $\mathcal{N} = \{(0, 0)^T, (1, 1)^T\}$

- perceptrons can only learn linearly separable problems.
- Famous counterexample: $XOR(x_1, x_2)$: $\mathcal{P} = \{(0, 1)^T, (1, 0)^T\},\$ $\mathcal{N} = \{(0, 0)^T, (1, 1)^T\}$
- networks with several perceptrons are computationally more powerful (cf. McCullough/Pitts neurons)
- let's try to find a network with two perceptrons that can solve the XOR problem:
 - first step: find a perceptron that

classifies three patterns accurately, e.g. $w_0 = -0.5$, $w_1 = w_2 = 1$ classifies $(0,0)^T, (0,1)^T, (1,0)^T$ but fails on $(1,1)^T$

- perceptrons can only learn linearly separable problems.
- Famous counterexample: $XOR(x_1, x_2)$: $\mathcal{P} = \{(0, 1)^T, (1, 0)^T\},\$ $\mathcal{N} = \{(0, 0)^T, (1, 1)^T\}$
- networks with several perceptrons are computationally more powerful (cf. McCullough/Pitts neurons)
- let's try to find a network with two perceptrons that can solve the XOR problem:
 - first step: find a perceptron that

classifies three patterns accurately, e.g. $w_0 = -0.5$, $w_1 = w_2 = 1$ classifies $(0,0)^T, (0,1)^T, (1,0)^T$ but fails on $(1,1)^T$

• second step: find a perceptron that uses the output of the first perceptron as additional input. Hence, training patterns are: $\mathcal{N} = \{(0,0,0), (1,1,1)\},\$ $\mathcal{P} = \{(0,1,1), (1,0,1)\}.$ perceptron learning yields: $v_0 = -1, v_1 = v_2 = -1,$ $v_3 = 2$

(cont.)

XOR-network:

(cont.)

XOR-network:

Geometric interpretation:

(cont.)

XOR-network:

Geometric interpretation:

partitioning of first perceptron

(cont.)

XOR-network:

Geometric interpretation:

partitioning of second perceptron, assuming first perceptron yields 0

(cont.)

XOR-network:

Geometric interpretation:

partitioning of second perceptron, assuming first perceptron yields 1

(cont.)

XOR-network:

Geometric interpretation:

combining both

Historical remarks

- Rosenblatt perceptron (1958):
 - retinal input (array of pixels)
 - preprocessing level, calculation of features
 - adaptive linear classifier
 - inspired by human vision

Historical remarks

Rosenblatt perceptron (1958):

- retinal input (array of pixels)
- preprocessing level, calculation of features
- adaptive linear classifier
- inspired by human vision

- if features are complex enough, everything can be classified
- if features are restricted (only parts of the retinal pixels available to features), some interesting tasks cannot be learned (Minsky/Papert, 1969)

Historical remarks

Rosenblatt perceptron (1958):

- retinal input (array of pixels)
- preprocessing level, calculation of features
- adaptive linear classifier
- inspired by human vision

- if features are complex enough, everything can be classified
- if features are restricted (only parts of the retinal pixels available to features), some interesting tasks cannot be learned (Minsky/Papert, 1969)
- important idea: create features instead of learning from raw data

Summary

- Perceptrons are simple neurons with limited representation capabilites: linear seperable functions only
- simple but provably working learning algorithm
- networks of perceptrons can overcome limitations
- working in feature space may help to overcome limited representation capability