Machine Learning:Probability Theory

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University FreiburgAG Maschinelles Lernen

probabilistic statements subsume different effects due to:

 \blacktriangleright ▶ convenience: declaring all conditions, exceptions, assumptions would be too complicated.

Example: "I will be in lecture if I go to bed early enough the day before and I

do not become ill and my car does not have ^a breakdown and ..."

or simply: I will be in lecture with probability of $0.87\,$

probabilistic statements subsume different effects due to:

 \blacktriangleright ▶ convenience: declaring all conditions, exceptions, assumptions would be too complicated.

Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have ^a breakdown and ..."or simply: I will be in lecture with probability of $0.87\,$

 \blacktriangleright lack of information: relevant information is missing for ^a precise statement. Example: weather forcasting

probabilistic statements subsume different effects due to:

 \blacktriangleright ▶ convenience: declaring all conditions, exceptions, assumptions would be too complicated.

Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have ^a breakdown and ..."or simply: I will be in lecture with probability of $0.87\,$

- \blacktriangleright lack of information: relevant information is missing for ^a precise statement. Example: weather forcasting
- \blacktriangleright intrinsic randomness: non-deterministic processes. Example: appearance of photons in ^a physical process

 \blacktriangleright intuitively, probabilities give the expected relative frequency of an event

(cont.)

- \blacktriangleright intuitively, probabilities give the expected relative frequency of an event
- \blacktriangleright mathematically, probabilities are defined by axioms (Kolmogorov axioms). We assume a set of possible outcomes $\Omega.$ An event A is a subset of Ω
	- $\bullet\;$ the probability of an event $A,$ $P(A)$ is a welldefined non-negative number: $P(A) \geq 0$
	- the certain event Ω has probability $1: P(\Omega) = 1$
	- $\bullet \,\,$ for two disjoint events A and $B\colon P(A\cup B)=P(A)+P(B)$

 \overline{P} is called probability distribution

(cont.)

- \blacktriangleright intuitively, probabilities give the expected relative frequency of an event
- \blacktriangleright mathematically, probabilities are defined by axioms (Kolmogorov axioms). We assume a set of possible outcomes $\Omega.$ An event A is a subset of Ω
	- $\bullet\;$ the probability of an event $A,$ $P(A)$ is a welldefined non-negative number: $P(A) \geq 0$
	- the certain event Ω has probability $1: P(\Omega) = 1$
	- $\bullet \,\,$ for two disjoint events A and $B\colon P(A\cup B)=P(A)+P(B)$

 \overline{P} is called probability distribution

 \blacktriangleright important conclusions (can be derived from the above axioms): $P(\emptyset) = 0$ $P(\neg A) = 1 - P(A)$ if $A \subseteq B$ follows $P(A) \leq P(B)$
 $P(A \cup B) = P(A) + P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(cont.)

 \blacktriangleright example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ 6

(cont.)

► example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ probabilities of events, e.g.: 6 $P(\{1\})=\frac{1}{6}$ $P({1, 2}) = P({1}) + P({2}) = \frac{1}{3}$ 6 $P({1, 2} \cup {2, 3}) = \frac{1}{2}$ 32

(cont.)

 \blacktriangleright example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ probabilities of events, e.g.: $P({1}) = \frac{1}{6}$ $P({1, 2}) = P({1}) + P({2}) = \frac{1}{3}$ $P(\{1,2\} \cup \{2,3\}) = \frac{1}{2}$ Probability distribution (manipulated dice): $P(1) = P(2) = P(3) = 0.13, P(4) = P(5) = 0.17, P(6) = 0.27$

▶ typically, the actual probability distribution is not known in advance, it has to be estimated

to pairs of events A, B , the joint probability expresses the probability of both $D(A, B)$ events occuring at same time: $P(A,B)$ example:

 $P($ "Bayern München is losing", "Werder Bremen is winning" $)=0.3$

to pairs of events A, B , the joint probability expresses the probability of both $D(A, B)$ events occuring at same time: $P(A, B)$ example:

 $P($ "Bayern München is losing", "Werder Bremen is winning" $)=0.3$

 \blacktriangleright Definition: for two events the conditional probability of $A|B$ is defined as the probability of event A if we consider only cases in which event B occurs. In
' formulas:

$$
P(A|B) = \frac{P(A,B)}{P(B)}, P(B) \neq 0
$$

to pairs of events A, B , the joint probability expresses the probability of both $D(A, B)$ events occuring at same time: $P(A, B)$ example:

 $P($ "Bayern München is losing", "Werder Bremen is winning" $)=0.3$

 \blacktriangleright Definition: for two events the conditional probability of $A|B$ is defined as the probability of event A if we consider only cases in which event B occurs. In
' formulas:

$$
P(A|B) = \frac{P(A,B)}{P(B)}, P(B) \neq 0
$$

 \blacktriangleright with the above, we also have

$$
P(A, B) = P(A|B)P(B) = P(B|A)P(A)
$$

▶ example: $P("caries"|"toothaches") = 0.8$ $P("toothaches"|"caries") = 0.3$

(cont.)

 ^a contigency table makes clear the relationship between joint probabilities and conditional probabilities:

B	$\neg B$		
A	$P(A, B)$	$P(A, \neg B)$	$P(A)$
$\neg A$	$P(\neg A, B)$	$P(\neg A, \neg B)$	$P(\neg A)$
$P(B)$	$P(\neg B)$	joint prob.	

with
$$
P(A) = P(A, B) + P(A, \neg B)
$$
,
\n $P(\neg A) = P(\neg A, B) + P(\neg A, \neg B)$,
\n $P(B) = P(A, B) + P(\neg A, B)$,
\n $P(\neg B) = P(A, \neg B) + P(\neg A, \neg B)$

 \blacktriangleright

 \blacktriangleright

conditional probability ⁼ joint probability / marginal probability

Example \rightarrow blackboard (cars: colors and drivers)

Marginalisation

► Let $B_1,...B_n$ disjoint events with $\cup_i B_i = \Omega$. Then $P(A) = \sum_i P(A,B_i)$

This process is called marginalisation.

Productrule and chainrule

▶ from definition of conditional probability:

$$
P(A, B) = P(A|B)P(B) = P(B|A)P(A)
$$

Productrule and chainrule

▶ from definition of conditional probability:

$$
P(A, B) = P(A|B)P(B) = P(B|A)P(A)
$$

▶ repeated application: chainrule:

$$
P(A_1, ..., A_n) = P(A_n, ..., A_1)
$$

= $P(A_n | A_{n-1}, ..., A_1) P(A_{n-1}, ..., A_1)$
= $P(A_n | A_{n-1}, ..., A_1) P(A_{n-1} | A_{n-2}, ..., A_1) P(A_{n-2}, ..., A_1)$
= ...
= $\prod_{i=1}^n P(A_i | A_1, ..., A_{i-1})$

Conditional Probabilities

\blacktriangleright conditionals:

Example: if someone is taking ^a shower, he gets wet (by causality) $P(\H{``\mathsf{wet}''}|``\mathsf{taking}~\mathsf{a}~\mathsf{shower}")=1$ while:

 $P(\H{}"$ taking a shower $"|"$ wet $")=0.4$

because ^a person also gets wet if it is raining

Conditional Probabilities

\blacktriangleright conditionals:

Example: if someone is taking ^a shower, he gets wet (by causality) $P(\H{``\mathsf{wet}''}|``\mathsf{taking}~\mathsf{a}~\mathsf{shower}")=1$ while:

```
P(\H{}"taking a shower"|"wet")=0.4
```
because ^a person also gets wet if it is raining

```
\blacktriangleright causality and conditionals:
```
causality typically causes conditional probabilities close to 1:

 $P(\H{``\mathsf{wet}''}|``$ taking a shower" $) = 1$, e.g.

 $P(\mbox{``score a goal''}|\mbox{``shoot strong''}) = 0.92$ ('vague causality': if you shoot strong, you very likely score ^a goal').

Offers the possibility to express vagueness in reasoning.

you cannot conclude causality from large conditional probabilities:

 $P($ "being rich" $|$ "owning an airplane" $)\approx1$

but: owning an airplane is not the reason for being rich

Bayes rule

▶ from the definition of conditional distributions:

$$
P(A|B)P(B) = P(A,B) = P(B|A)P(A)
$$

Hence:

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

is known as <mark>Bayes rule</mark>.

Bayes rule

 \blacktriangleright from the definition of conditional distributions:

$$
P(A|B)P(B) = P(A,B) = P(B|A)P(A)
$$

Hence:

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

is known as <mark>Bayes rule</mark>.

 \blacktriangleright example:

 $P("taking a shower"|"wet")=P("wet"|"taking a shower")\frac{P("taking a shower")}{P("wet")}$

$$
P(\mathsf{reason}|\mathsf{observation}) = P(\mathsf{observation}|\mathsf{reason})\frac{P(\mathsf{reason})}{P(\mathsf{observation})}
$$

Bayes rule (cont)

- \blacktriangleright often this is useful in diagnosis situations, since $P($ observation reason) might be easily determined.
- \blacktriangleright often delivers suprising results

▶ if patient has meningitis, then very often a stiff neck is observed

- if patient has meningitis, then very often a stiff neck is observed
 $D(G|M)$ $P(S|M)=0.8$ (can be easily determined by counting)
- \blacktriangleright observation: 'I have ^a stiff neck! Do ^I have meningitis?' (is it reasonable to be afraid?)

- if patient has meningitis, then very often a stiff neck is observed
 $D(G|M)$ $P(S|M)=0.8$ (can be easily determined by counting)
- \blacktriangleright observation: 'I have ^a stiff neck! Do ^I have meningitis?' (is it reasonable to be afraid?) $P(M|S) = ?$
- we need to now: $P(M) = 0.0001$ (one of 10000 people has meningitis) and $P(S) = 0.1$ (one out of 10 people has a stiff neck).

- if patient has meningitis, then very often a stiff neck is observed
 $D(G|M)$ $P(S|M)=0.8$ (can be easily determined by counting)
- \blacktriangleright observation: 'I have ^a stiff neck! Do ^I have meningitis?' (is it reasonable to be afraid?) $P(M|S) = ?$
- we need to now: $P(M) = 0.0001$ (one of 10000 people has meningitis) and $P(S) = 0.1$ (one out of 10 people has a stiff neck).

 \blacktriangleright then:

$$
P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
$$

 \blacktriangleright Keep cool. Not very likely

Independence

 \blacktriangleright two events A and B are called independent, if

$$
P(A, B) = P(A) \cdot P(B)
$$

- \blacktriangleright independence means: we cannot make conclusions about A if we know B and vice versa. Follows: $P(A|B) = P(A)$, $P(B|A) = P(B)$
- \blacktriangleright example of independent events: roll-outs of two dices
- \blacktriangleright example of dependent events: $A =$ car is blue', $B =$ 'driver is male' \rightarrow contingency table at blackboard

Random variables

- \blacktriangleright random variables describe the outcome of ^a random experiment in terms of ^a (real) number
- \blacktriangleright ^a random experiment is ^a experiment that can (in principle) be repeated several times under the same conditions

Random variables

- \blacktriangleright random variables describe the outcome of ^a random experiment in terms of ^a (real) number
- \blacktriangleright ^a random experiment is ^a experiment that can (in principle) be repeated several times under the same conditions
- \blacktriangleright discrete and continuous random variables

Random variables

- \blacktriangleright random variables describe the outcome of ^a random experiment in terms of ^a (real) number
- \blacktriangleright ^a random experiment is ^a experiment that can (in principle) be repeated several times under the same conditions
- \blacktriangleright discrete and continuous random variables
- \blacktriangleright probability distributions for discrete random variables can be represented in tables:

Example: random variable X (rolling a dice):

 \blacktriangleright probability distributions for continuous random variables need another form of representation

▶ problem: infinitely many outcomes

 \blacktriangleright problem: infinitely many outcomes

 \blacktriangleright ▶ considering intervals instead of single real numbers: $P(a < X \leq b)$

- \blacktriangleright problem: infinitely many outcomes
- \blacktriangleright ▶ considering intervals instead of single real numbers: $P(a < X \leq b)$
- \blacktriangleright cumulative distribution functions (cdf): A function $F : \mathbb{R} \to [0, 1]$ is called cumulative distribution function of a
random variable X if for all $c \in \mathbb{R}$ bold: random variable X if for all $c\in\mathbb{R}$ hold:

$$
P(X \le c) = F(c)
$$

- \blacktriangleright ▶ Knowing F , we can calculate $P(a < X \leq b)$ for all intervals from a to b
- F is monotonically increasing, $\lim_{x\to -\infty} F(x) = 0$, $\lim_{x\to \infty} F(x)$ \blacktriangleright $x \rightarrow -\infty$ $F(x) = 0$, $\lim_{x \rightarrow \infty} F(x) = 1$

- \blacktriangleright problem: infinitely many outcomes
- \blacktriangleright ▶ considering intervals instead of single real numbers: $P(a < X \leq b)$
- \blacktriangleright cumulative distribution functions (cdf): A function $F : \mathbb{R} \to [0, 1]$ is called cumulative distribution function of a
random variable X if for all $c \in \mathbb{R}$ bold: random variable X if for all $c\in\mathbb{R}$ hold:

$$
P(X \le c) = F(c)
$$

- \blacktriangleright ▶ Knowing F , we can calculate $P(a < X \leq b)$ for all intervals from a to b
- F is monotonically increasing, $\lim_{x\to -\infty} F(x) = 0$, $\lim_{x\to \infty} F(x)$ \blacktriangleright $x \rightarrow -\infty$ $F(x) = 0$, $\lim_{x \rightarrow \infty} F(x) = 1$
- if exists, the derivative of F is called a probability density function (pdf). It \blacktriangleright yields large values in the areas of large probability and small values in theareas with small probability. But: the value of ^a pdf cannot be interpreted as^a probability!

Continuous random variables(cont.)

 \blacktriangleright Example: a continuous random variable that can take any value between a
and b and descend therefore any value are mother and (uniform distribution) and b and does not prefer any value over another one (uniform distribution):

Gaussian distribution

 \blacktriangleright the Gaussian /Normal distribution is ^a very important probability distribution. Its pdf is:

$$
pdf(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}
$$

 $\mu\in\mathbb{R}$ and σ The cdf exists but cannot be expressed in ^a simple form2 $^2 > 0$ are parameters of the distribution. μ controls the position of the distribution, σ^2 the sprea $^{\rm 2}$ the spread of the distribution

 \blacktriangleright determining the probability distribution of ^a random variable (estimation)

- \blacktriangleright determining the probability distribution of ^a random variable (estimation)
- \blacktriangleright collecting outcome of repeated random experiments (data sample)
- \blacktriangleright adapt ^a generic probability distribution to the data. example:
	- $\bullet\,$ Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p (=probability of outcome '1')
	- $\bullet~$ Gaussian distribution with parameters μ and σ 2
	- • $\bullet\;$ uniform distribution with parameters a and b

- \blacktriangleright determining the probability distribution of ^a random variable (estimation)
- \blacktriangleright collecting outcome of repeated random experiments (data sample)
- \blacktriangleright adapt ^a generic probability distribution to the data. example:
	- $\bullet\,$ Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p (=probability of outcome '1')
	- $\bullet~$ Gaussian distribution with parameters μ and σ 2
	- $\bullet \;$ uniform distribution with parameters a and b
- \blacktriangleright maximum-likelihood approach:

```
\it maximize~P(}data sample|distribution)parameters
```
(cont.)

- \blacktriangleright maximum likelihood with Bernoulli-distribution:
- \blacktriangleright assume: coin toss with ^a twisted coin. How likely is it to observe head?

(cont.)

 \blacktriangleright maximum likelihood with Bernoulli-distribution:

...

- \blacktriangleright assume: coin toss with ^a twisted coin. How likely is it to observe head?
- \blacktriangleright repeat several experiments, to get ^a sample of observations, e.g.: 'head', 'head', 'number', 'head', 'number', 'head', 'head', 'head', 'number', 'number',

You observe k times 'head' and n times 'number'

(cont.)

 \blacktriangleright maximum likelihood with Bernoulli-distribution:

...

- \blacktriangleright assume: coin toss with ^a twisted coin. How likely is it to observe head?
- \blacktriangleright repeat several experiments, to get ^a sample of observations, e.g.: 'head', 'head', 'number', 'head', 'number', 'head', 'head', 'head', 'number', 'number',

You observe k times 'head' and n times 'number' Probabilisitic model: 'head' occurs with (unknown) probability p , 'number' with probability $1-p$

 \blacktriangleright maximize the likelihood, e.g. for the above sample:

$$
\underset{p}{maximize} \ p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot \dots = p^{k} (1-p)^{n}
$$

(cont.)

$$
\underset{p}{minimize} - \log(p^k(1-p)^n) = -k \log p - n \log(1-p)
$$

$$
\underset{p}{minimize} - \log(p^{k}(1-p)^{n}) = -k \log p - n \log(1-p)
$$

calculating partial derivatives w.r.t p and zeroing: $p=\frac{k}{k+1}$ The relative frequency of observations is used as estimator for p $k{+}n$

(cont.)

- \blacktriangleright maximum likelihood with Gaussian distribution:
- \blacktriangleright **Dec** given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- \blacktriangleright \blacktriangleright task: determine optimal values for μ and σ 2

(cont.)

- \blacktriangleright maximum likelihood with Gaussian distribution:
- \blacktriangleright **Dec** given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- \blacktriangleright **task:** determine optimal values for μ and σ assume independence of the observed data: 2

 $P(\mathsf{data}\ \mathsf{sample}|\mathsf{distribution}) = P(x^{(1)}|\mathsf{distribution})\cdots\cdot P(x^{(p)}$ $\ket{\mathsf{distribution}}$

replacing probability by density:

$$
P(\text{data sample}| \text{distribution}) \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(1)}-\mu)^2}{\sigma^2} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(p)}-\mu)^2}{\sigma^2}}
$$

(cont.)

- \blacktriangleright maximum likelihood with Gaussian distribution:
- \blacktriangleright **Dec** given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- \blacktriangleright **task:** determine optimal values for μ and σ assume independence of the observed data: 2

 $P(\mathsf{data}\ \mathsf{sample}|\mathsf{distribution}) = P(x^{(1)}|\mathsf{distribution})\cdots\cdot P(x^{(p)}$ $\ket{\mathsf{distribution}}$

replacing probability by density:

$$
P(\text{data sample}| \text{distribution}) \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(1)}-\mu)^2}{\sigma^2}} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(p)}-\mu)^2}{\sigma^2}}
$$

performing \log transformation:

$$
\sum_{i=1}^{p} \left(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \right)
$$

(cont.)

 \blacktriangleright minimizing negative log likelihood instead of maximizing log likelihood:

$$
\mathit{minimize}_{\mu, \sigma^2} \; -\sum_{i=1}^p \big(\log \frac{1}{\sqrt{2\pi\sigma^2}}-\frac{1}{2}\frac{(x^{(i)}-\mu)^2}{\sigma^2}\big)
$$

(cont.)

 \blacktriangleright minimizing negative log likelihood instead of maximizing log likelihood:

$$
minimize = \sum_{\mu,\sigma^2}^{p} \left(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \right)
$$

 \blacktriangleright transforming into:

minimize
$$
\frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \left(\frac{1}{2} \sum_{i=1}^p (x^{(i)} - \mu)^2\right)
$$

(cont.)

 \blacktriangleright minimizing negative log likelihood instead of maximizing log likelihood:

$$
minimize = \sum_{\mu,\sigma^2}^{p} \left(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \right)
$$

 \blacktriangleright transforming into:

$$
minimize_{\mu,\sigma^2} \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \underbrace{\left(\frac{1}{2} \sum_{i=1}^p (x^{(i)} - \mu)^2\right)}_{\text{sq. error term}}
$$

(cont.)

 \blacktriangleright minimizing negative log likelihood instead of maximizing log likelihood:

$$
minimize = \sum_{\mu,\sigma^2}^{p} \left(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \right)
$$

 \blacktriangleright transforming into:

$$
minimize_{\mu,\sigma^2} \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \left(\frac{1}{2} \sum_{i=1}^p (x^{(i)} - \mu)^2\right)
$$

sq. error term

 \blacktriangleright b observation: maximizing likelihood w.r.t. μ is equivalent to minimizing squared error term w.r.t. μ

(cont.)

- \blacktriangleright Extension: regression case, μ depends on input pattern and some parameters
- \blacktriangleright given: pairs of input patterns and target values $(\vec{x}^{(1)}, d^{(1)}), \ldots, (\vec{x}^{(p)}, d^{(p)}),$ a parameterized function f depending on some parameters \vec{w}
- \blacktriangleright **task:** estimate \vec{w} and σ distribution in best way 2 so that $d^{(i)}-f(\vec{x}^{(i)};\vec{w})$ fits a Gaussian ;

(cont.)

- \blacktriangleright Extension: regression case, μ depends on input pattern and some parameters
- \blacktriangleright given: pairs of input patterns and target values $(\vec{x}^{(1)}, d^{(1)}), \ldots, (\vec{x}^{(p)}, d^{(p)}),$ a parameterized function f depending on some parameters \vec{w}
- \blacktriangleright **task:** estimate \vec{w} and σ distribution in best way 2 so that $d^{(i)}-f(\vec{x}^{(i)};\vec{w})$ fits a Gaussian ;
- \blacktriangleright maximum likelihood principle:

$$
maximize \frac{1}{\vec{w}, \sigma^2} e^{-\frac{1}{2} \frac{(d^{(1)} - f(\vec{x}^{(1)}, \vec{w}))^2}{\sigma^2}} \dots \dots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(d^{(p)} - f(\vec{x}^{(p)}, \vec{w}))^2}{\sigma^2}}
$$

▶ minimizing negative log likelihood:

$$
\underset{\vec{w}, \sigma^2}{minimize} \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \left(\frac{1}{2} \sum_{i=1}^p (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^2\right)
$$

▶ minimizing negative log likelihood:

$$
\underset{\vec{w}, \sigma^2}{minimize} \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \underbrace{\left(\frac{1}{2} \sum_{i=1}^p (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^2\right)}_{\text{sq. error term}}
$$

 \blacktriangleright minimizing negative log likelihood:

$$
minimize_{\vec{w}, \sigma^2} \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \underbrace{\left(\frac{1}{2} \sum_{i=1}^p (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^2\right)}_{\text{sq. error term}}
$$

 $\blacktriangleright\ f$ could be, e.g., a linear function or a multi layer perceptron

◮minimizing the squared error term can be interpreted as maximizing the data $T_{\text{heories}-p.24/28}^{\text{Theories}-p.24/28}$

Probability and machine learning

- \blacktriangleright probabilities allow to precisely describe the relationships in ^a certain domain, e.g. distribution of the input data, distribution of outputs conditioned oninputs, ...
- \blacktriangleright ML principles like minimizing squared error can be interpreted in ^a stochastic sense

References

- ▶ Norbert Henze: Stochastik für Einsteiger
- \blacktriangleright Chris Bishop: Neural Networks for Pattern Recognition