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Probabilities

probabilistic statements subsume different effects due to:

◮ convenience: declaring all conditions, exceptions, assumptions would be too
complicated.
Example: “I will be in lecture if I go to bed early enough the day before and I
do not become ill and my car does not have a breakdown and ...”
or simply: I will be in lecture with probability of 0.87
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Probabilities

probabilistic statements subsume different effects due to:

◮ convenience: declaring all conditions, exceptions, assumptions would be too
complicated.
Example: “I will be in lecture if I go to bed early enough the day before and I
do not become ill and my car does not have a breakdown and ...”
or simply: I will be in lecture with probability of 0.87

◮ lack of information: relevant information is missing for a precise statement.
Example: weather forcasting
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Probabilities

probabilistic statements subsume different effects due to:

◮ convenience: declaring all conditions, exceptions, assumptions would be too
complicated.
Example: “I will be in lecture if I go to bed early enough the day before and I
do not become ill and my car does not have a breakdown and ...”
or simply: I will be in lecture with probability of 0.87

◮ lack of information: relevant information is missing for a precise statement.
Example: weather forcasting

◮ intrinsic randomness: non-deterministic processes.
Example: appearance of photons in a physical process
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Probabilities
(cont.)

◮ intuitively, probabilities give the expected relative frequency of an event
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Probabilities
(cont.)

◮ intuitively, probabilities give the expected relative frequency of an event

◮ mathematically, probabilities are defined by axioms (Kolmogorov axioms).
We assume a set of possible outcomes Ω. An event A is a subset of Ω

• the probability of an event A, P (A) is a welldefined non-negative

number: P (A) ≥ 0

• the certain event Ω has probability 1: P (Ω) = 1

• for two disjoint events A and B: P (A ∪ B) = P (A) + P (B)

P is called probability distribution
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Probabilities
(cont.)

◮ intuitively, probabilities give the expected relative frequency of an event

◮ mathematically, probabilities are defined by axioms (Kolmogorov axioms).
We assume a set of possible outcomes Ω. An event A is a subset of Ω

• the probability of an event A, P (A) is a welldefined non-negative

number: P (A) ≥ 0

• the certain event Ω has probability 1: P (Ω) = 1

• for two disjoint events A and B: P (A ∪ B) = P (A) + P (B)

P is called probability distribution

◮ important conclusions (can be derived from the above axioms):
P (∅) = 0
P (¬A) = 1 − P (A)
if A ⊆ B follows P (A) ≤ P (B)
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
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Probabilities
(cont.)

◮ example: rolling the dice Ω = {1, 2, 3, 4, 5, 6}
Probability distribution (optimal dice):

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1
6
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Probabilities
(cont.)

◮ example: rolling the dice Ω = {1, 2, 3, 4, 5, 6}
Probability distribution (optimal dice):

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1
6

probabilities of events, e.g.:

P ({1}) = 1
6

P ({1, 2}) = P ({1}) + P ({2}) = 1
3

P ({1, 2} ∪ {2, 3}) = 1
2
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Probabilities
(cont.)

◮ example: rolling the dice Ω = {1, 2, 3, 4, 5, 6}
Probability distribution (optimal dice):

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1
6

probabilities of events, e.g.:

P ({1}) = 1
6

P ({1, 2}) = P ({1}) + P ({2}) = 1
3

P ({1, 2} ∪ {2, 3}) = 1
2

Probability distribution (manipulated dice):
P (1) = P (2) = P (3) = 0.13, P (4) = P (5) = 0.17, P (6) = 0.27

◮ typically, the actual probability distribution is not known in advance, it has to
be estimated
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Joint events

◮ for pairs of events A,B, the joint probability expresses the probability of both
events occuring at same time: P (A,B)
example:
P (“Bayern München is losing”, “Werder Bremen is winning”) = 0.3
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Joint events

◮ for pairs of events A,B, the joint probability expresses the probability of both
events occuring at same time: P (A,B)
example:
P (“Bayern München is losing”, “Werder Bremen is winning”) = 0.3

◮ Definition: for two events the conditional probability of A|B is defined as the
probability of event A if we consider only cases in which event B occurs. In
formulas:

P (A|B) =
P (A,B)

P (B)
, P (B) 6= 0

Theories – p.5/28



Joint events

◮ for pairs of events A,B, the joint probability expresses the probability of both
events occuring at same time: P (A,B)
example:
P (“Bayern München is losing”, “Werder Bremen is winning”) = 0.3

◮ Definition: for two events the conditional probability of A|B is defined as the
probability of event A if we consider only cases in which event B occurs. In
formulas:

P (A|B) =
P (A,B)

P (B)
, P (B) 6= 0

◮ with the above, we also have

P (A,B) = P (A|B)P (B) = P (B|A)P (A)

◮ example: P (“caries”|“toothaches”) = 0.8
P (“toothaches”|“caries”) = 0.3
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Joint events
(cont.)

◮ a contigency table makes clear the relationship between joint probabilities
and conditional probabilities:

marginals

joint prob.

B ¬B

A P (A,B) P (A,¬B) P (A)

¬A P (¬A,B) P (¬A,¬B) P (¬A)

P (B) P (¬B)

with P (A) = P (A,B) + P (A,¬B),

P (¬A) = P (¬A,B) + P (¬A,¬B),

P (B) = P (A,B) + P (¬A,B),

P (¬B) = P (A,¬B) + P (¬A,¬B)

conditional probability = joint probability / marginal probability

◮ example → blackboard (cars: colors and drivers)

Theories – p.6/28



Marginalisation

◮ Let B1, ...Bn disjoint events with ∪iBi = Ω. Then
P (A) =

∑

i P (A,Bi)
This process is called marginalisation.
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Productrule and chainrule

◮ from definition of conditional probability:

P (A,B) = P (A|B)P (B) = P (B|A)P (A)
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Productrule and chainrule

◮ from definition of conditional probability:

P (A,B) = P (A|B)P (B) = P (B|A)P (A)

◮ repeated application: chainrule:

P (A1, . . . , An) = P (An, . . . , A1)

= P (An|An−1, . . . , A1) P (An−1, . . . , A1)

= P (An|An−1, . . . , A1) P (An−1|An−2, . . . , A1) P (An−2, . . . , A1)

= . . .

= Πn
i=1P (Ai|A1, . . . , Ai−1)
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Conditional Probabilities

◮ conditionals:
Example: if someone is taking a shower, he gets wet (by causality)
P (“wet”|“taking a shower”) = 1
while:
P (“taking a shower”|“wet”) = 0.4
because a person also gets wet if it is raining
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Conditional Probabilities

◮ conditionals:
Example: if someone is taking a shower, he gets wet (by causality)
P (“wet”|“taking a shower”) = 1
while:
P (“taking a shower”|“wet”) = 0.4
because a person also gets wet if it is raining

◮ causality and conditionals:
causality typically causes conditional probabilities close to 1:
P (“wet”|“taking a shower”) = 1, e.g.

P (“score a goal”|“shoot strong”) = 0.92 (’vague causality’: if you shoot
strong, you very likely score a goal’).
Offers the possibility to express vagueness in reasoning.
you cannot conclude causality from large conditional probabilities:
P (“being rich”|“owning an airplane”) ≈ 1
but: owning an airplane is not the reason for being rich
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Bayes rule

◮ from the definition of conditional distributions:

P (A|B)P (B) = P (A,B) = P (B|A)P (A)

Hence:

P (A|B) =
P (B|A)P (A)

P (B)

is known as Bayes rule.
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Bayes rule

◮ from the definition of conditional distributions:

P (A|B)P (B) = P (A,B) = P (B|A)P (A)

Hence:

P (A|B) =
P (B|A)P (A)

P (B)

is known as Bayes rule.

◮ example:

P (“taking a shower”|“wet”)=P (“wet”|“taking a shower”)
P (“taking a shower”)

P (“wet”)

P (reason|observation) = P (observation|reason)
P (reason)

P (observation)
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Bayes rule (cont)

◮ often this is useful in diagnosis situations, since P (observation|reason)
might be easily determined.

◮ often delivers suprising results
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Bayes rule - Example

◮ if patient has meningitis, then very often a stiff neck is observed
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Bayes rule - Example

◮ if patient has meningitis, then very often a stiff neck is observed
P (S|M) = 0.8 (can be easily determined by counting)

◮ observation: ’I have a stiff neck! Do I have meningitis?’ (is it reasonable to be
afraid?)
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Bayes rule - Example

◮ if patient has meningitis, then very often a stiff neck is observed
P (S|M) = 0.8 (can be easily determined by counting)

◮ observation: ’I have a stiff neck! Do I have meningitis?’ (is it reasonable to be
afraid?)
P (M |S) =?

◮ we need to now: P (M) = 0.0001 (one of 10000 people has meningitis)

and P (S) = 0.1 (one out of 10 people has a stiff neck).
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Bayes rule - Example

◮ if patient has meningitis, then very often a stiff neck is observed
P (S|M) = 0.8 (can be easily determined by counting)

◮ observation: ’I have a stiff neck! Do I have meningitis?’ (is it reasonable to be
afraid?)
P (M |S) =?

◮ we need to now: P (M) = 0.0001 (one of 10000 people has meningitis)

and P (S) = 0.1 (one out of 10 people has a stiff neck).

◮ then:

P (M |S) =
P (S|M)P (M)

P (S)
=

0.8 × 0.0001

0.1
= 0.0008

◮ Keep cool. Not very likely
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Independence

◮ two events A and B are called independent, if

P (A,B) = P (A) · P (B)

◮ independence means: we cannot make conclusions about A if we know B

and vice versa. Follows: P (A|B) = P (A), P (B|A) = P (B)

◮ example of independent events: roll-outs of two dices

◮ example of dependent events: A =’car is blue’, B =’driver is male’
→ contingency table at blackboard
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Random variables

◮ random variables describe the outcome of a random experiment in terms of a
(real) number

◮ a random experiment is a experiment that can (in principle) be repeated
several times under the same conditions
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Random variables

◮ random variables describe the outcome of a random experiment in terms of a
(real) number

◮ a random experiment is a experiment that can (in principle) be repeated
several times under the same conditions

◮ discrete and continuous random variables
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Random variables

◮ random variables describe the outcome of a random experiment in terms of a
(real) number

◮ a random experiment is a experiment that can (in principle) be repeated
several times under the same conditions

◮ discrete and continuous random variables

◮ probability distributions for discrete random variables can be represented in
tables:
Example: random variable X (rolling a dice):

X 1 2 3 4 5 6

P (X) 1
6

1
6

1
6

1
6

1
6

1
6

◮ probability distributions for continuous random variables need another form
of representation
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Continuous random variables

◮ problem: infinitely many outcomes
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Continuous random variables

◮ problem: infinitely many outcomes

◮ considering intervals instead of single real numbers: P (a < X ≤ b)
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Continuous random variables

◮ problem: infinitely many outcomes

◮ considering intervals instead of single real numbers: P (a < X ≤ b)

◮ cumulative distribution functions (cdf):
A function F : R → [0, 1] is called cumulative distribution function of a
random variable X if for all c ∈ R hold:

P (X ≤ c) = F (c)

◮ Knowing F , we can calculate P (a < X ≤ b) for all intervals from a to b

◮ F is monotonically increasing, limx→−∞ F (x) = 0, limx→∞ F (x) = 1
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Continuous random variables

◮ problem: infinitely many outcomes

◮ considering intervals instead of single real numbers: P (a < X ≤ b)

◮ cumulative distribution functions (cdf):
A function F : R → [0, 1] is called cumulative distribution function of a
random variable X if for all c ∈ R hold:

P (X ≤ c) = F (c)

◮ Knowing F , we can calculate P (a < X ≤ b) for all intervals from a to b

◮ F is monotonically increasing, limx→−∞ F (x) = 0, limx→∞ F (x) = 1

◮ if exists, the derivative of F is called a probability density function (pdf). It
yields large values in the areas of large probability and small values in the
areas with small probability. But: the value of a pdf cannot be interpreted as
a probability!
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Continuous random variables
(cont.)

◮ example: a continuous random variable that can take any value between a

and b and does not prefer any value over another one (uniform distribution):

X X

cdf(X) pdf(X)

0

1

a b

0

a b
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Gaussian distribution

◮ the Gaussian/Normal distribution is a very important probability distribution.
Its pdf is:

pdf(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2

µ ∈ R and σ2 > 0 are parameters of the distribution.
The cdf exists but cannot be expressed in a simple form
µ controls the position of the distribution, σ2 the spread of the distribution

cdf(X)

X X

pdf(X)

0

1

0
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Statistical inference

◮ determining the probability distribution of a random variable (estimation)
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Statistical inference

◮ determining the probability distribution of a random variable (estimation)

◮ collecting outcome of repeated random experiments (data sample)

◮ adapt a generic probability distribution to the data. example:

• Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter
p (=probability of outcome ’1’)

• Gaussian distribution with parameters µ and σ2

• uniform distribution with parameters a and b
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Statistical inference

◮ determining the probability distribution of a random variable (estimation)

◮ collecting outcome of repeated random experiments (data sample)

◮ adapt a generic probability distribution to the data. example:

• Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter
p (=probability of outcome ’1’)

• Gaussian distribution with parameters µ and σ2

• uniform distribution with parameters a and b

◮ maximum-likelihood approach:

maximize
parameters

P (data sample|distribution)
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Statistical inference
(cont.)

◮ maximum likelihood with Bernoulli-distribution:

◮ assume: coin toss with a twisted coin. How likely is it to observe head?
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Statistical inference
(cont.)

◮ maximum likelihood with Bernoulli-distribution:

◮ assume: coin toss with a twisted coin. How likely is it to observe head?

◮ repeat several experiments, to get a sample of observations, e.g.: ’head’,
’head’, ’number’, ’head’, ’number’, ’head’, ’head’, ’head’, ’number’, ’number’,
...
You observe k times ’head’ and n times ’number’
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Statistical inference
(cont.)

◮ maximum likelihood with Bernoulli-distribution:

◮ assume: coin toss with a twisted coin. How likely is it to observe head?

◮ repeat several experiments, to get a sample of observations, e.g.: ’head’,
’head’, ’number’, ’head’, ’number’, ’head’, ’head’, ’head’, ’number’, ’number’,
...
You observe k times ’head’ and n times ’number’
Probabilisitic model: ’head’ occurs with (unknown) probability p, ’number’
with probability 1 − p

◮ maximize the likelihood, e.g. for the above sample:

maximize
p

p·p·(1−p)·p·(1−p)·p·p·p·(1−p)·(1−p)·· · · = pk(1−p)n
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Statistical inference
(cont.)

◮ simplification:

minimize
p

− log(pk(1 − p)n) = −k log p − n log(1 − p)
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Statistical inference
(cont.)

◮ simplification:

minimize
p

− log(pk(1 − p)n) = −k log p − n log(1 − p)

calculating partial derivatives w.r.t p and zeroing: p = k
k+n

The relative frequency of observations is used as estimator for p
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Statistical inference
(cont.)

◮ maximum likelihood with Gaussian distribution:

◮ given: data sample {x(1), . . . , x(p)}
◮ task: determine optimal values for µ and σ2
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Statistical inference
(cont.)

◮ maximum likelihood with Gaussian distribution:

◮ given: data sample {x(1), . . . , x(p)}
◮ task: determine optimal values for µ and σ2

assume independence of the observed data:

P (data sample|distribution) = P (x(1)|distribution)·· · ··P (x(p)|distribution)

replacing probability by density:

P (data sample|distribution) ∝ 1√
2πσ2

e−
1
2

(x(1)
−µ)2

σ2 ·· · ·· 1√
2πσ2

e−
1
2

(x(p)
−µ)2

σ2
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Statistical inference
(cont.)

◮ maximum likelihood with Gaussian distribution:

◮ given: data sample {x(1), . . . , x(p)}
◮ task: determine optimal values for µ and σ2

assume independence of the observed data:

P (data sample|distribution) = P (x(1)|distribution)·· · ··P (x(p)|distribution)

replacing probability by density:

P (data sample|distribution) ∝ 1√
2πσ2

e−
1
2

(x(1)
−µ)2

σ2 ·· · ·· 1√
2πσ2

e−
1
2

(x(p)
−µ)2

σ2

performing log transformation:

p
∑

i=1

(
log

1√
2πσ2

− 1

2

(x(i) − µ)2

σ2

)
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Statistical inference
(cont.)

◮ minimizing negative log likelihood instead of maximizing log likelihood:

minimize
µ,σ2

−
p

∑

i=1

(
log

1√
2πσ2

− 1

2

(x(i) − µ)2

σ2

)
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Statistical inference
(cont.)

◮ minimizing negative log likelihood instead of maximizing log likelihood:

minimize
µ,σ2

−
p

∑

i=1

(
log

1√
2πσ2

− 1

2

(x(i) − µ)2

σ2

)

◮ transforming into:

minimize
µ,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(x(i) − µ)2
)
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Statistical inference
(cont.)

◮ minimizing negative log likelihood instead of maximizing log likelihood:

minimize
µ,σ2

−
p

∑

i=1

(
log

1√
2πσ2

− 1

2

(x(i) − µ)2

σ2

)

◮ transforming into:

minimize
µ,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(x(i) − µ)2
)

︸ ︷︷ ︸

sq. error term
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Statistical inference
(cont.)

◮ minimizing negative log likelihood instead of maximizing log likelihood:

minimize
µ,σ2

−
p

∑

i=1

(
log

1√
2πσ2

− 1

2

(x(i) − µ)2

σ2

)

◮ transforming into:

minimize
µ,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(x(i) − µ)2
)

︸ ︷︷ ︸

sq. error term

◮ observation: maximizing likelihood w.r.t. µ is equivalent to minimizing
squared error term w.r.t. µ
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Statistical inference
(cont.)

◮ extension: regression case, µ depends on input pattern and some
parameters

◮ given: pairs of input patterns and target values (~x(1), d(1)), . . . , (~x(p), d(p)),
a parameterized function f depending on some parameters ~w

◮ task: estimate ~w and σ2 so that d(i) − f(~x(i); ~w) fits a Gaussian
distribution in best way
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Statistical inference
(cont.)

◮ extension: regression case, µ depends on input pattern and some
parameters

◮ given: pairs of input patterns and target values (~x(1), d(1)), . . . , (~x(p), d(p)),
a parameterized function f depending on some parameters ~w

◮ task: estimate ~w and σ2 so that d(i) − f(~x(i); ~w) fits a Gaussian
distribution in best way

◮ maximum likelihood principle:

maximize
~w,σ2

1√
2πσ2

e−
1
2

(d(1)
−f(~x(1);~w))2

σ2 · · · · · 1√
2πσ2

e−
1
2

(d(p)
−f(~x(p);~w))2

σ2
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Statistical inference
(cont.)

◮ minimizing negative log likelihood:

minimize
~w,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(d(i) − f(~x(i); ~w))2
)

Theories – p.24/28



Statistical inference
(cont.)

◮ minimizing negative log likelihood:

minimize
~w,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(d(i) − f(~x(i); ~w))2
)

︸ ︷︷ ︸

sq. error term
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Statistical inference
(cont.)

◮ minimizing negative log likelihood:

minimize
~w,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(d(i) − f(~x(i); ~w))2
)

︸ ︷︷ ︸

sq. error term

◮ f could be, e.g., a linear function or a multi layer perceptron

x

y f(x)

◮ minimizing the squared error term can be interpreted as maximizing the data
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Probability and machine learning

machine learning statistics

unsupervised learning we want to create
a model of observed
patterns

estimating the prob-
ability distribution
P (patterns)

classification guessing the class
from an input pattern

estimating
P (class|input pattern)

regression predicting the output
from input pattern

estimating
P (output|input pattern)

◮ probabilities allow to precisely describe the relationships in a certain domain,
e.g. distribution of the input data, distribution of outputs conditioned on
inputs, ...

◮ ML principles like minimizing squared error can be interpreted in a stochastic
sense
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