
.

Machine Learning

Decision Trees

Prof. Dr. Martin Riedmiller
AG Maschinelles Lernen und Natürlichsprachliche Systeme

Institut für Informatik
Technische Fakultät

Albert-Ludwigs-Universität Freiburg

riedmiller@informatik.uni-freiburg.de

Acknowledgment Slides were adapted from slides provided by
Tom Mitchell, Carnegie-Mellon-University
and Peter Geibel, University of Osnabrück

Outline

• Decision tree representation

• ID3 learning algorithm

• Which attribute is best?

• C4.5: real valued attributes

• Which hypothesis is best?

• Noise

• From Trees to Rules

• Miscellaneous

Decision Tree Representation

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Outlook, Temperature, etc.: attributes
PlayTennis: class
Shall I play tennis today?

Decision Tree for PlayTennis

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Decision Trees

Decision tree representation:

• Each internal node tests an attribute

• Each branch corresponds to attribute value

• Each leaf node assigns a classification

How would we represent:

• ∧,∨, XOR

When to Consider Decision Trees

• Instances describable by attribute–value pairs

• Target function is discrete valued

• Disjunctive hypothesis may be required

• Possibly noisy training data

• Interpretable result of learning is required

Examples:

• Medical diagnosis

• Text classification

• Credit risk analysis

Top-Down Induction of Decision Trees, ID3 (R.

Quinlan, 1986)

ID3 operates on whole training set S

Top-Down Induction of Decision Trees, ID3 (R.

Quinlan, 1986)

ID3 operates on whole training set S

Algorithm:

1. create a new node

Top-Down Induction of Decision Trees, ID3 (R.

Quinlan, 1986)

ID3 operates on whole training set S

Algorithm:

1. create a new node

2. If current training set is sufficiently pure:

• Label node with respective class
• We’re done

Top-Down Induction of Decision Trees, ID3 (R.

Quinlan, 1986)

ID3 operates on whole training set S

Algorithm:

1. create a new node

2. If current training set is sufficiently pure:

• Label node with respective class
• We’re done

3. Else:

• x← the “best” decision attribute for current training set
• Assign x as decision attribute for node
• For each value of x, create new descendant of node
• Sort training examples to leaf nodes
• Iterate over new leaf nodes and apply algorithm recursively

Example ID3

• Look at current training set S

Example ID3

• Look at current training set S

• Determine best attribute

Example ID3

• Look at current training set S

• Determine best attribute

• Split training set according to different values

Example ID3

• Tree

Example ID3

• Tree

• Apply algorithm recursively

Example – Resulting Tree

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

ID3 – Intermediate Summary

• Recursive splitting of the training set

• Stop, if current training set is sufficiently pure

ID3 – Intermediate Summary

• Recursive splitting of the training set

• Stop, if current training set is sufficiently pure

• ... What means pure? Can we allow for errors?

• What is the best attribute?

• How can we tell that the tree is really good?

• How shall we deal with continuous values?

Which attribute is best?

• Assume a training set {+,+,−,−,+,−, +,+,−,−} (only classes)

• Assume binary attributes x1, x2, and x3

Which attribute is best?

• Assume a training set {+,+,−,−,+,−, +,+,−,−} (only classes)

• Assume binary attributes x1, x2, and x3

• Produced splits:

Value 1 Value 2

x1 {+,+,−,−, +} {−,+,+,−,−}
x2 {+} {+,−,−,+,−,+,+,−,−}
x3 {+,+,+,+,−} {−,−,−,−,+}

Which attribute is best?

• Assume a training set {+,+,−,−,+,−, +,+,−,−} (only classes)

• Assume binary attributes x1, x2, and x3

• Produced splits:

Value 1 Value 2

x1 {+,+,−,−, +} {−,+,+,−,−}
x2 {+} {+,−,−,+,−,+,+,−,−}
x3 {+,+,+,+,−} {−,−,−,−,+}

• No attribute is perfect

• Which one to choose?

Entropy

E
nt

ro
py

(S
)

1.0

0.5

0.0 0.5 1.0
p
+

• p⊕ is the proportion of positive
examples

• p⊖ is the proportion of negative
examples

• Entropy measures the impurity
of S

• Entropy(S) ≡ −p⊕ log2 p⊕ −
p⊖ log2 p⊖

• Information can be seen as the
negative of entropy

Information Gain

• Measuring attribute x creates subsets S1 and S2 with different
entropies

• Taking the mean of Entropy(S1) and Entropy(S2) gives
conditional entropy Entropy(S|x), i.e. in general:

Entropy(S|x) =
∑

v∈V alues(x)
|Sv|
|S| Entropy(Sv)

• → Choose that attribute that maximizes difference:

Gain(S, x) := Entropy(S)− Entropy(S|x)

• Gain(S, x) = expected reduction in entropy due to partitioning on
x

Gain(S, x) ≡ Entropy(S) −
∑

v∈V alues(x)

|Sv|

|S|
Entropy(Sv)

Selecting the Next Attribute

• For whole training set:
Gain(S, Outlook) = 0.246
Gain(S, Humidity) = 0.151
Gain(S, Wind) = 0.048
Gain(S, Temperature) = 0.029

• → Outlook should be used to split training set!

Selecting the Next Attribute

• For whole training set:
Gain(S, Outlook) = 0.246
Gain(S, Humidity) = 0.151
Gain(S, Wind) = 0.048
Gain(S, Temperature) = 0.029

• → Outlook should be used to split training set!

• Further down in the tree, Entropy(S) is computed locally

• Usually, the tree does not have to be minimized

• Reason of good performance of ID3!

Real-Valued Attributes

• Temperature = 82.5

Real-Valued Attributes

• Temperature = 82.5

• Create discrete attributes to test continuous:

– (Temperature > 54) = true or = false
– Sort attribute values that occur in training set:

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

– Determine points where the class changes
– Candidates are (48 + 60)/2 and (80 + 90)/2

• Select best one using info gain

• Implemented in the system C4.5 (successor of ID3)

Hypothesis Space Search by ID3

...

+ + +

A1

+ – + –

A2

A3
+

...

+ – + –

A2

A4
–

+ – + –

A2

+ – +

... ...

–

Hypothesis Space Search by ID3

• Hypothesis H space is complete:

– This means that every function on the feature space can be
represented

– Target function surely in there for a given training set

• The training set is only a subset of the instance space

• Generally, several hypotheses have minimal error on training set

• Best is one that minimizes error on instance space

– ... cannot be determined because only finite training set is
available

– Feature selection is shortsighted
– ... and there is no back-tracking → local minima...

• ID3 outputs a single hypothesis

Inductive Bias in ID3

• Inductive Bias corresponds to explicit or implicit prior assumptions
on the hypothesis

– E.g. hypothesis space H (language for classifiers)
– Search bias: how to explore H
– Bias here is a preference for some hypotheses, rather than a

restriction of hypothesis space H

Inductive Bias in ID3

• Inductive Bias corresponds to explicit or implicit prior assumptions
on the hypothesis

– E.g. hypothesis space H (language for classifiers)
– Search bias: how to explore H
– Bias here is a preference for some hypotheses, rather than a

restriction of hypothesis space H

• Bias of ID3:

– Preference for short trees,
– and for those with high information gain attributes near the root

• Occam’s razor: prefer the shortest hypothesis that fits the data

• How to justify Occam’s razor?

Occam’s Razor

• Why prefer short hypotheses?

• Argument in favor:

– Fewer short hyps. than long hyps.
→ A short hyp that fits data unlikely to be coincidence
→ A long hyp that fits data might be coincidence

• Bayesian Approach: A probability distribution on the hypothesis
space is assumed.

– The (unknown) hypothesis hgen was picked randomly
– The finite training set was generated using hgen

– We want to find the most probable hypothesis h′ ≈ hgen given
the current observations (training set).

Noise

Consider adding noisy training example #15:

Sunny, Mild, Normal, Weak, P layTennis = No

What effect on earlier tree?
Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Overfitting in Decision Trees

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

• Algorithm will introduce new test

• Unnecessary, because new example was erroneous due to the
presence of Noise

• → Overfitting corresponds to learning coincidental regularities

• Unfortunately, we generally don’t know which examples are noisy

• ... and also not the amount, e.g. percentage, of noisy examples

Overfitting

Consider error of hypothesis h over

• training data (x1, k1), . . . , (xd, kd): training error

errortrain(h) =
1

d

d∑

i=1

L(h(xi), ki)

with loss function L(c, k) = 0 if c = k and L(c, k) = 1 otherwise

• entire distribution D of data (x, k): true error

errorD(h) = P (h(x) 6= k)

Definition Hypothesis h ∈ H overfits training data if there is an
alternative h′ ∈ H such that

errortrain(h) < errortrain(h′) and errorD(h) > errorD(h′)

Overfitting in Decision Tree Learning

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

• The accuracy is estimated on a separate test set

• Learning produces more and more complex trees (horizontal axis)

Avoiding Overfitting

1. How can we avoid overfitting?

• Stop growing when data split not statistically significant
(pre-pruning)
– e.g. in C4.5: Split only, if there are at least two descendant

that have at least n examples, where n is a parameter
• Grow full tree, then post-prune (post-prune)

2. How to select “best” tree:

• Measure performance over training data
• Measure performance over separate validation data set
• Minimum Description Length (MDL): minimize

size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

1. An example for post-pruning

2. Split data into training and validation set

3. Do until further pruning is harmful:

(a) Evaluate impact on validation set of pruning each possible node
(plus those below it)

(b) respective node is labeled with most frequent class
(c) Greedily remove the one that most improves validation set

accuracy

4. Produces smallest version of most accurate subtree

5. What if data is limited?

Rule Post-Pruning

1. Grow tree from given training set that fits data best, and allow
overfitting

2. Convert tree to equivalent set of rules

3. Prune each rule independently of others

4. Sort final rules into desired sequence for use

• Perhaps most frequently used method (e.g., C4.5)

• allows more fine grained pruning

• converting to rules increases understandability

Converting A Tree to Rules
Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

IF (Outlook = Sunny) ∧ (Humidity = High)
THEN PlayTennis = No
IF (Outlook = Sunny) ∧ (Humidity = Normal)
THEN PlayTennis = Y es
. . .

Attributes with Many Values

Problem:

• If attribute has many values, Gain will select it

• For example, imagine using Date as attribute (very many values!)
(e.g. Date = Day1, ...)

• Sorting by date, the training data can be perfectly classified

• this is a general phenomen with attributes with many values, since
they split the training data in small sets.

• but: generalisation suffers!

One approach: use GainRatio instead

Gain Ratio

Idea: Measure how broadly and uniformly A splits the data:

SplitInformation(S,A) ≡ −
c∑

i=1

|Si|

|S|
log2

|Si|

|S|

where Si is subset of S for which A has value vi and c is the number
of different values.

Example:

• Attribute ’Date’: n examples are completely seperated. Therefore:
SplitInformation(S,′ Date′) = log2 n

• other extreme: binary attribute splits data set in two even parts:
SplitInformation(S,′ Date′) = 1

By considering as a splitting criterion the

GainRatio(S,A) =
Gain(S,A)

SplitInformation(S, A)

one relates the Information gain to the way, the examples are split

Attributes with Costs

• Consider

– medical diagnosis, BloodTest has cost $150
– robotics, Width from 1ft has cost 23 sec.

• How to learn a consistent tree with low expected cost?

• One approach: replace gain by

– Tan and Schlimmer (1990): Gain2(S,A)
Cost(A)

– Nunez (1988): 2Gain(S,A)−1
(Cost(A)+1)w

• Note that not the misclassification costs are minimized, but the
costs of classifying

Unknown Attribute Values

• What if an example x has a missing value for attribute A?

• To compute gain (S, A) two possible strategies are:

– Assign most common value of A among other examples with
same target value c(x)

– Assign a probability pi to each possible value vi of A

• Classify new examples in same fashion

Summary

• Decision trees are a symbolic representation of knowledge

• → Understandable for humans

• Learning:

– Incremental, e.g., CAL2
– Batch, e.g., ID3

• Issues:

– Pruning
– Assessment of Attributes (Information Gain)
– Continuous attributes
– Noise

