
Evolutionary Algorithms

Dr. Sascha Lange
AG Maschinelles Lernen und Natürlichsprachliche Systeme

Albert-Ludwigs-Universität Freiburg

slange@informatik.uni-freiburg.de

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms (1)

Acknowlegements and Further Reading

These slides are mainly based on the following three sources:

I A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,
corrected reprint, Springer, 2007 — recommendable, easy to read but
somewhat lengthy

I B. Hammer, Softcomputing, Lecture Notes, University of Osnabrück, 2003
— shorter, more research oriented overview

I T. Mitchell, Machine Learning, McGraw Hill, 1997 — very condensed
introduction with only a few selected topics

Further sources include several research papers (a few important and / or
interesting are explicitly cited in the slides) and own experiences with the
methods described in these slides.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms (2)

‘Evolutionary Algorithms’ (EA) constitute a collection of methods that
originally have been developed to solve combinatorial optimization problems.
They adapt Darwinian principles to automated problem solving. Nowadays,
Evolutionary Algorithms is a subset of Evolutionary Computation that itself is a
subfield of Artificial Intelligence / Computational Intelligence.

Evolutionary Algorithms are those metaheuristic optimization algorithms from
Evolutionary Computation that are population-based and are inspired by
natural evolution. Typical ingredients are:

I A population (set) of individuals (the candidate solutions)

I A problem-specific fitness (objective function to be optimized)

I Mechanisms for selection, recombination and mutation (search strategy)

There is an ongoing controversy whether or not EA can be considered a
machine learning technique. They have been deemed as ‘uninformed search’
and failing in the sense of learning from experience (‘never make an error
twice’). However, they have been applied successfully to problems that are at
the very heart of machine learning.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms (3)

History of Evolutionary Algorithms

Around ever since the early days of computing: Box 1957, Bledsoe 1961

Pioneered in the 1960s and early 70s as

I Genetic Algorithms (GA) by Holland and Goldberg (US):
optimization of bit strings in analogy to discrete-valued DNA-sequences

I Evolution Strategies (ES) by Rechenberg and Schwefel (Europe):
similar techniques, but using real-valued numbers and only mutation

Have been developed in parallel for about two decades.

Nowadays considered as two different flavours of the same thing (EA).

More recent developments include:

I Neuroevolution: evolution of (recurrent) neural networks in control tasks

I Evolutionary Image Processing: analyzing and understanding images with
help of evolutionary programming

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms (4)

Outline

1 Motivation

2 Framework

3 Representations

4 Applications

5 Discussion

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms (5)

Section 1: Motivation

I Natural Evolution

I Surface Metaphor

I Convergence

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (6)

Blue-print Natural Evolution

Why might Evolution be an interesting model for computer algorithms?

I Evolution has proven a powerful mechanism in ‘improving’ life-forms and
forming ever more complex species.

I Driven by suprisingly simple mechanisms, nevertheless produced
astonishing results.

Evolution is basically a random process, driven by evolutionary pressure:

1. Tinkering with genes (Genotype)
I Mating: recombination of genes in descendants
I Mutation: random changes (external influences, reproduction errors)

2. Testing (Phenotype), Competition (‘Survival of the fittest’)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (7)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

trait a

trait b

fitness

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor
sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Surface metaphor

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Traits and fitness form a surface with hills and valleys.

I Population ‘travels’ this surface and slowly climbs the hills.

I Due to genetic drift it’s possible to also travel through valleys and reach
another (higher) hill.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (8)

Convergence of Natural Evolution

One could be uncomfortable with such a random process (no driving force):

I Does it find solutions just by (unlikely) coincidence?

I How random are the solutions it finds? Is it repeatable?

I We’re looking for ‘specific’ or even the ’optimal’ solutions.

But, there is promising empirical evidence for evolution to work in a desired
way. Example from natural evolution: hypothesis of ‘convergence’.

I The argument is that results and ‘solutions’ found by evolution are not
purely random but to a certain degree are repeatable and ‘reasonable’.

I The details are random, but the principles are heavily constrained by
environmental and physical necessities up to being ‘inevitable’.

I Moreover, if evolution would be restarted on earth, the outcome might not
be exactly the same but neither completely different.

Advocates of this argument try to justify it by looking at separated ‘niches’ of
our eco-system (we have only one evolution at hand), identifying similar
solutions found by independent processes; thus a ‘convergence’ of solutions.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (9)

Example: Camera-Eye

from: Simon Conway Morris, Life’s solution, 2003

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (10)

Example: Camera-Eye

Annelid (Ringelwurm). Image from: NOAA National Estuarine Research Reserve

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (10)

Example: Camera-Eye

Cephalopod (Kopffüssler). Image from: Nhobgood, 2006, CCA-SA 3.0

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (10)

Example: Camera-Eye

from: Simon Conway Morris, Life’s solution, 2003

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (10)

Example: Camera-Eye (continued)

light

from: Gray’s Anatomy, 1918

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (11)

Noteworthy Principles

Basics:

I Evolution is a random process of selection, reproduction and mutation

I It’s driven by evolutionary pressure (‘survival of the fitesst’)

I ‘Search’ is conducted with generations of populations, not by improving
individuals

Details:

I Populations evolving in different niches can independently develop
different (but similar) solutions to the same problem (EA: parallel
evolution, island model)

I Solutions may reach a local optimum from which it’s hard to achieve any
significant improvements (example: human eye)

I Nevertheless, it’s possible that populations leave a hill and ‘wade through
the water’ to finally reach a better hill (surface metaphor, genetic drift)

I Fitness of individuals may depend on the other individuals in the
population (example: predator — prey, EA: coevolution)

I ‘Good’ solutions are somehow constrained by the environment
(convergence, inevitable?)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Motivation (12)

Section 2: Framework

I From Biology to Computer Science

I Basic Framework

I Example: evoVision

I Advanced Techniques

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (13)

From Natural Evolution to Evolutionary Algorithms

I Natural evolution has proven a powerful optimization process

I We have identified it’s main ingreedients

I How can we use these principles for solving optimization problems?

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (14)

Example: Traveling Salesman Problem (TSP)

Task: In a complete graph, given a list of pairwise distances between its nodes,
find the shortest tour that visits every node exactly once. NP-hard optimization
problem.

Naive search algorithm:

I Start with a random tour
I Loop:

1. Alter tour randomly
2. Keep new tour, iff shorter

Problems:

I Might get stuck in local optima

I Might be necessary to become
worse in order to ‘escape’

I Solution (local optimum) found
heavily depends on starting point

A
B

C

D

E

(A,B,C,E,D)

accept

reject

(A,D,C,E,B)

(A,C,B,E,D)

Hypothesis Space

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (15)

Example: Traveling Salesman Problem (TSP) (cont.)

Idea: Search from different starting
positions in parallel

I Explore different regions of
hypothesis space

I Will end up in different local
optima

I More likely to find global optimum
(in the limit P towards 1)

Problem: How to distribute ‘computing’
power?

I Equal distribution: Same as doing
naive search several times in a row

I Exploring always the best so far:
equals naive search

A
B

C

D

E

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (16)

Example: Traveling Salesman Problem (TSP) (cont.)

Idea: Distribute according to quality

I Assign more computing power to exploring
better regions

I Realized by exploring more descendents of
already good tour

I Don’t throw non-optimal tours away
(immediately) but continue to explore
their descendents

Idea for further improvement:

I Combine a tour that is good at the cities
A, B, C with another tour that is good at
D and E.

(A,B,C,E,D)
(B,C,A,D,E)

(A,B,C,D,E)

+

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (17)

Surface metaphor (EA)

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Start with a random-initialized population of candidate solutions.

I Population ‘travels’ this surface and slowly climbs the hills.

I Eventually, a (sub-)population will ‘converge’ on the global optimum.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (18)

Surface metaphor (EA)

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Start with a random-initialized population of candidate solutions.

I Population ‘travels’ this surface and slowly climbs the hills.

I Eventually, a (sub-)population will ‘converge’ on the global optimum.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (18)

Surface metaphor (EA)

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Start with a random-initialized population of candidate solutions.

I Population ‘travels’ this surface and slowly climbs the hills.

I Eventually, a (sub-)population will ‘converge’ on the global optimum.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (18)

Surface metaphor (EA)

sin(x)*sin(y)*((10-(x+1)**1.2)+(10-y**1.2))+0.001*x**3+.2*x+.5*y

I Start with a random-initialized population of candidate solutions.

I Population ‘travels’ this surface and slowly climbs the hills.

I Eventually, a (sub-)population will ‘converge’ on the global optimum.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (18)

General Framework of Evolutionary Algorithms

Evaluation Selection Reproduction
Criterion

met?

P0
initial population

Pi

Pi+1

final population or
best individual from population

yes

no
Evaluation Selection

I Individuals: hypothesis x from a hypothesis space X

I Population: collection P of µ present hypotheses P = {xi |i = 1, . . . , µ}
I Evaluation: apply a mapping f : X 7→ R (fitness function) to all individuals

I Selection mechanism: selects individuals x ∈ Pi for reproduction (mating);
selects individuals from offsprings and Pi to form the new population Pi+1

I Reproduction: combination of two or more individuals (Crossover) and
random alteration (Mutation).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (19)

Individuals

Individuals are the chosen representation of the candidate hypotheses.
Within EA you have (nearly) free choice of the model!

Common representations within EA:

I Bit-strings: binary representations of logic formulae (e.g. rules), values of
boolean variables, ... 7→ Genetic Algorithms

I Real-valued: parameter vectors of a polynom of 3rd degree, a control law,
a neural network, a process, ... 7→ Evolutionary Strategies

I Structured: Decision trees, neural networks, programs, ... 7→ Genetic /
Evolutionary Programming, Neuroevolution

Restriction: Definition of (at least) a meaningful mutation-operator for a given
representation must be possible. (Crossover operator is no necessity.)

Example TSP: Sequence of nodes to visit, X the set of all permutations of
(A,B,C ,D,E).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (20)

Fitness Function

The fitness function ‘rates’ the quality of the candidate solutions and forms the
basis for the selection procedure. Thus, it’s problem dependent! Usually:

I A function f : X 7→ R with f (x) ≥ 0, ∀x ∈ X

The fitness may be either a direct function of the individual’s parameters, or it
also may involve more complex computations or even a testing procedure that
is performed in the real-world.

Examples:

I Calculating the generalization error of an evolved image-classifier on
validation data

I Measuring the time an evolved control law manages to balance a pole

I Walking distance (within 30s) of a robot dog using an evolved gait pattern

As such, the fitness may have a non-deterministic component!
In nature: difference between testing the genotype or phenotype.

Example TSP: f : X 7→ R : f (x) = f (x1, . . . , x5) = 1− d(x1,x2)+d(x2,x3)+...+d(x4,x5)
maxi,j d(xi ,xj)·4

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (21)

Selection of Parents

Randomly selects individuals of a population that get the chance for generating
offsprings. The sampling is usually done from a probability distribution somehow
derived from the fitness of the individuals. Specifically, fitter individuals must
be more likely to send offsprings to the next generation than less fit individuals.

I Number of individuals to select is a parameter; it’s relation to the
population size diffesr among EA variants (from smaller to larger than µ)

I Usually, it’s allowed to select the same individual more than once
(selection with or without replacement)

Selection mechanisms commonly found in EAs:

I Fitness proportional selection (roulette wheel selection)

I Ranking selection

I Tournament selection

I Uniform selection (pressure must come from survivor selection)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (22)

Selection of Parents: Fitness proportional selection

Probability P(xi) for selecting the individual xi with fitness f (xi) is given by

P(xi) =
f (xi)∑µ
j=1 f (xj)

Thus, the selection probability depends on the absolute fitness value of the
individual compared to the absolute fitness values of the rest of the population.

Problems

I Premature Convergence: outstanding individuals dominate population too
early

I Almost no selection pressure, when all individuals have similar fitness

I Different behavior on transposed versions of the fitness function

Improvements

I Windowing: Subtract a constant betai from the fitness of each individual,
e.g. βi = minx∈Pi f (x). Doesn’t help with premature convergence.

I Sigma-Scaling: f ′(x) = max
(
f (x)− (f̄ − c · σf), 0

)
using the variance σf

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (23)

Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number λ
of parents to select) is noninteger. Thus, we have to sample the parents.

D ← empty collection (might contain multiple copies of same member)
While |D| < λ

r ← uniformly picked random value from [0, 1]
i ← 0
Do

i ← i + 1
r ← r − P(xi) where xi i-th element of population P

While r > 0
add xi to collection D

return D

Subtracting a probability P(xi) from the random value can be seen as letting a
ball roll over a field (with its size proportional to P(xi)) of a roulette wheel.

Problem: The sample might quite largely deviate from ideal distribution.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (24)

Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number λ
of parents to select) is noninteger. Thus, we have to sample the parents.

D ← empty collection (might contain multiple copies of same member)
While |D| < λ

r ← uniformly picked random value from [0, 1]
i ← 0
Do

i ← i + 1
r ← r − P(xi) where xi i-th element of population P

While r > 0
add xi to collection D

return D

Subtracting a probability P(xi) from the random value can be seen as letting a
ball roll over a field (with its size proportional to P(xi)) of a roulette wheel.

Problem: The sample might quite largely deviate from ideal distribution.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (24)

Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number λ
of parents to select) is noninteger. Thus, we have to sample the parents.

D ← empty collection (might contain multiple copies of same member)
While |D| < λ

r ← uniformly picked random value from [0, 1]
i ← 0
Do

i ← i + 1
r ← r − P(xi) where xi i-th element of population P

While r > 0
add xi to collection D

return D

Subtracting a probability P(xi) from the random value can be seen as letting a
ball roll over a field (with its size proportional to P(xi)) of a roulette wheel.

Problem: The sample might quite largely deviate from ideal distribution.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (24)

Selection of Parents: Stochastic Universal Sampling

Idea: Just draw one random number to determine the whole sample. Spin only
one time a roulette wheel with λ equally spaced arms, instead of spinning a
one-armed wheel λ-times.

D ← empty collection (might contain multiple copies of same member)
i ← 1
r ← uniformly picked random value from [0, 1/λ]
While |D| < λ

While r ≤ P(xi) (where xi i-th element of population P)
add xi to collection D
r ← r + 1/λ

r ← r − P(xi)
i ← i + 1

return D

The number of copies of each parent xi is

I at least the integer part of λ · P(xi)

I no more than one greater,

because r initialized in [0, 1/λ] and incremented by 1/λ with every selection.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (25)

Selection of Parents: Stochastic Universal Sampling

Idea: Just draw one random number to determine the whole sample. Spin only
one time a roulette wheel with λ equally spaced arms, instead of spinning a
one-armed wheel λ-times.

D ← empty collection (might contain multiple copies of same member)
i ← 1
r ← uniformly picked random value from [0, 1/λ]
While |D| < λ

While r ≤ P(xi) (where xi i-th element of population P)
add xi to collection D
r ← r + 1/λ

r ← r − P(xi)
i ← i + 1

return D

The number of copies of each parent xi is

I at least the integer part of λ · P(xi)

I no more than one greater,

because r initialized in [0, 1/λ] and incremented by 1/λ with every selection.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (25)

Selection of Parents: Ranking Selection

Preserves constant selection pressure by sorting the population on the basis of
fitness and then allocating selection probabilities to individuals according to
their rank.

I the mapping from rank to selection probability can be done arbitrarily

I e.g. using a linearly or exponentially decreasing mapping

I as long as the probabilities add up to one

Ranking selection does not suffer from premature convergence and does not
have the same problems as fitness-proportional selection with transposed
versions of the fitness function.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (26)

Selection of Parents: Linear Ranking Scheme

One particular ranking scheme that is often found in GA (with i = 0 the rank
of the worst individual and i = µ− 1 the rank of the best):

Plin rank (xi) =
2− s

µ
+

2i(s − 1)

µ(µ− 1)

Here, we assume the size of the parent population µ equals the number of
produced descendents λ. s ∈ (1, 2] is a parameter controlling the expected
number of copies of the highest-ranked individual.

Results for s = 2 and µ = 10 individuals:

0

0,05

0,10

0,15

0,20

9 8 7 6 5 4 3 2 1 0

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (27)

Selection of Parents: Exponential Ranking Scheme

If more selection pressure is needed and higher-ranked individuals should be
more likely to being selected, one could use an exponential function for
mapping ranks to selection probabilities, e.g. (with i = 0 the rank of the worst
individual and i = µ− 1 the rank of the best):

Pexp rank (xi) =
e−s(µ−i)∑µ−1

j=0 e−s(µ−j)

Again, we assume the size of the parent population µ equals the number of
produced descendents λ. s ∈ (0, 1] is a parameter controlling the probability
mass on the higher-ranked individuals.

Results for s = 0.5 and µ = 10 individuals:

0

0,1

0,2

0,3

0,4

9 8 7 6 5 4 3 2 1 0

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (28)

Selection of Parents: Tournament Selection

Tournament Selection (TS) is another selection mechanism that does look only
at relative fitnesses and that has the same beneficial properties as the ranking
schemes regarding translated and transposed versions of the fitness function.

D ← empty collection (might contain multiple copies of same member)
While |D| < λ

select k individuals randomly (with or without replacement)
determine the best of these k individuals comparing their fitness values
add the best individual to D

return D

TS is widely used because the easy control of its selection pressure through

I the tournament size k ∈ {2, 3, 4, . . .} (larger k 7→ more pressure)

I the probability of selecting the winner (usually p = 1, highest pressure)

I replacement (without replacement: k − 1 worst cannot be chosen)

and because it doesn’t have to know absolute fitness values of all individuals
but only relative fitnesses of the tournament participants. Example: two
candidate solutions compete against each other and the winner is selected.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (29)

Selection of Survivors

This processing step is responsible for producing the next generation Pi+1 from
the old population Pi and newly formed offsprings. It’s mechanisms are closely
coupled to the earlier parent selection.

In general, there are two principle population models to select from:

Generation-based

I given a population of size µ

I select a ‘mating pool’ of parents from the population

I produce λ offsprings (in GA often: λ = µ)

I the whole population is replaced by µ ≤ λ offsprings

I may loose the fittest individual and maximal fitness may decline again

Steady-State

I given a population of size µ

I produce a number of offsprings

I replace only part of the population by λ < µ offsprings

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (30)

Selection of Survivors: Age-Based Replacement

Replacement of the individuals of a population independent of their fitness
value but depending on their age (number of generations the individual
survived). Keeping the individuals with highest fitness in this scheme depends
on them being selected for reproduction.

Possible realizations:

I In the extreme case where λ = µ each individual just survives one
generation, as the whole population is replaced in each step
(generation-based)

I In the other extreme case of λ = 1 only the oldest individual is “killed” and
each individual survives µ generations (realizing a FIFO) (steady-state)

I In the steady-state case of λ < µ the λ oldest are replaced

Note: Randomly selecting “dying” individuals is also considered age-based
replacement. Although used quite often, using random selection is strongly
discouraged as loosing the fittest individual is more likely (Smith and Vavak).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (31)

Selection of Survivors: Fitness-Based Replacement

Fitness-based replacement is a widely used technique with countless variants for
selecting the µ individuals that form the new population from the µ+ λ parents
and offsprings. In principle, all techniques discussed for the selection of parents
can be also used here, based on inverse fitness or ranks. Further techniques:

Replace Worst (GENITOR)

I Replace the λ worst individuals

I Rapidly improving mean fitness, but: danger of premature convergence

I Thus: use only with large populations and / or no-duplicates policy

Elitism

I Add-on to all age-based and stochastic fitness-based schemes

I Rule: always keep the fittest member in population

I If the fittest individual is selected for replacement and no offspring with
better fitness is inserted, keep it and discard another individual

I Guaranteed monotonic improvement of fittest individual in population

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (32)

Reproduction

The task of the reproduction step is to create new individuals from old ones.
There are two principal types of variation operators: unary and binary operators.

Unary: Mutation

I Applied to one individual, delievers a “slightly” changed mutant (offspring)

I Mutation is almost always stochatic, causing a random, unbiased change

Binary: Recombination or “Cross-Over”

I Merges information from two parents into one or two offsprings

I As mutation, involves random choices of what and how to merge

I Often used option: a non-zero chance of this operator not being applied

I Operators involving more parents are possible, but seldom used

The details of the used operators depend on the particular representation. Thus,
the operators will be discussed in more detail in the corresponding section.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (33)

Termination Condition

Ideal world: if we know the optimum of the objective (fitness) function (and
have unlimited time), we could stop the procedure when a candidate solution is
found with a fitness that is within a given boundary ε > 0 of the optimum.

Practice: in most cases one of the following stopping criteria is used:

I The maximally allowed time elapses (CPU time, real time)

I The total number of fitness evaluations reaches a given limit

I The fitness improvement remains under a given threshold for a given
period of time

I The diversity of the population remains under a given threshold

I A given number of generations has been evolved

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (34)

Example: evoVision — Exemplary Realization of the Modules

Evaluation Selection Reproduction
Criterion

met?

P0
initial population

Pi

Pi+1

final population or
best individual from population

yes

no
Evaluation Selection

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (35)

Example: evoVision — Supervised Learning with Feature Extraction

Common approach to learning with images (classification or regression): two
layered architecture.

S.L. Evolution of CV-Subsytems 1

Sascha Lange

A common approach:
two layered architecture

Open problem: How can one additionally learn the feature
extraction subsystem in such a task?

((ball 100, -30),
(goal 110, -20))

(0.63, 0.50, 0.00)

edges, corners, contours,
regions, textures, …

2. learning
algorithm

1. feature extraction

Open problem: how can the feature extraction subsytem also be learned?

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (36)

Example: evoVision — Representation

Phenotype: image processing algorihtms (operators) & trained neural network
Genotype: boolean, ordinal and real-valued parameters of image processing
algorithms, for controlling the neural net’s topology, selecting the error function

Exemplary Operators:
I Histograms. Parameters: number of windows, number of buckets

I Colored-Blobs-Encoder. Parameters: Prototype colors for color
segmentation of the whole image, properties of blobs to pass on (e.g.
position, size, bounding box, roundness, etc.)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (37)

Example: evoVision — Reproduction

Cross-Over

I The i-th parent is recombined with both the (i − i)-th and the (i + 1)-th
parent (produces as many offsprings as selected parents)

I The offspring inherits a randomly selected subset of the joint set of its
parents’ operators as well as the neural net topology of its first parent.

I Parameters of operators and neural net remain unchanged.

I There is a chance of p = 1− rrecombination for each parent remaining
unchanged and being copied directly to the collection of offsprings.

Mutation

I Each offspring is mutated with a chance of rmutation

I Mutation can delete operators or add random-initialized new operators

I Each parameter is changed with a 10%-chance

I Real-valued parameters get added normal distributed noise

I Ordinal numbers are drawn from a uniform distribution

I Ranges (variances derived) are specified for each parameter individually

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (38)

Example: evoVision — Parameter Abstraction

Page 1 of 2

Untitled 21.05.11 15:29

class ParameterMetaInfo {
public:
 enum parameterType {
 BOOL=0, //!< interpret as vector of boolean values
 INT, //!< interpret as vector of integer values
 DOUBLE //!< interpret as vector of double values
 };
 ParameterMetaInfo(enum parameterType type,
 unsigned int dimension,
 const vector<double>& minValues,
 const vector<double>& maxValues);

 Parameter create() const;
};

class Parameter {
public:
 const ParameterMetaInfo * const getMetaInfo() const;

 vector<double> getValue() const;
 void setValue(const vector<double>& v);
};

class Individual {
public:
 virtual Individual* clone() const;

 const vector<ParameterMetaInfo>& getParameterDescriptions() const;

 void addParameter(const Parameter&);
 Parameter* getParameter(unsigned int i) const;
 virtual bool isParameterValid(int i);

 virtual void initialize();
};

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (39)

Example: evoVision — Parameter Abstraction

Page 1 of 2

Untitled 21.05.11 15:24

class ParameterMetaInfo {
public:
 enum parameterType {
 BOOL=0, //!< interpret as vector of boolean values
 INT, //!< interpret as vector of integer values
 DOUBLE //!< interpret as vector of double values
 };
 ParameterMetaInfo(ConfigurableObject* parent,
 enum parameterType type,
 unsigned int dimension,
 const vector<double>& minValues,
 const vector<double>& maxValues);

 Parameter create() const;
};

class Parameter {
public:
 const ParameterMetaInfo * const getMetaInfo() const;

 vector<double> getValue() const;
 void setValue(const vector<double>& v);
};

class Individual {
public:
 virtual Individual* clone() const;

 const vector<ParameterMetaInfo>& getParameterDescriptions() const;

 void addParameter(const Parameter&);
 Parameter* getParameter(unsigned int i) const;
 virtual bool isParameterValid(int i);

 virtual void initialize();
};

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (39)

Example: evoVision — Population Model

I Random initialization of candidates

I Constant population size of (typically) 60 individuals (quite small)

I Selection: Fitness proportional selection of 20 parents for mating,
implemented with roulette wheel algorithm (not optimal!)

I Replacement: The λ = 15 best offsprings replace the 15 worst individuals
(GENITOR)

I Thus: steady-state population model

Problem in experiments: Some operators quickly dominated the whole
population. That was due to some operators already producing ok-results with
initial parameters (e.g. histogram), whereas other operators needed much more
time to optimize parameters to just reach average results.

Implemented solution: Start with 30 epochs of parallel evolution of several
sub-populations that each only contain one particular operator. After 30 epochs
merge the candidates with already pre-optimized parameters into one
population (fitness-based). Crossover slowly mixes operators into offsprings.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (40)

Example: evoVision — Fitness

The fitness of the individuals is determined testing the fully trained neural
network on the training and testing data sets.

The fitness includes the following components:

I training error (directing early evolution)

I generalization error (directing evolution in later phases)

I size of description generated by the operators (smaller is better)

I size of neural network (smaller is better)

I computing time (real-time capabilities wanted!)

The computing time turned out to be a very useful component in replacing
both size components and in speeding-up the whole evolutionary process.

All components were transformed (non-negative, larger = better) and scaled
appropriately. Determining good weighting factors for the components wasn’t
easy and had large influence on results in particular tasks.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (41)

Example: evoVision — Termination

Very basic, non-optimized termination criterion:

I Fixed number of generations

I Number of generations in the range from 200 to 1000 (problem dependent)

I Tendency: longer than necessary

Note: Overfitting here was only a minor problem because the fitness function
contained a component reflecting the generalization error / generalization
performance on a validation set.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (42)

Example: evoVision — Classification Tasks

42 KAPITEL 4. EXPERIMENTE

Abbildung 4.1: Auszug aus der Bildmenge im Experiment 4.1.1.

Die Aufgabe besteht darin, die Bilder entsprechend der Anzahl der abge-
bildeten Post-its richtig zu klassifizieren (0, 1, 2). Die Bilder haben eine Größe
von x× y Pixel. Im Trainingsset befinden sich 20, im Testset 12 und im zweiten
Testset 8 Aufnahmen.

4.1.2 Würfel ablesen

Die nächstschwierigere Aufgabe befasst sich mit dem Ablesen der Augenzahl
eines Würfels. Die Trainingsmenge besteht aus 46 Aufnahmen eines weißen
Würfels mit schwarzen Augen. Der Würfel ist auf allen Bildern in ungefähr
dem gleichen Abstand von der Kamera zu sehen. In der Testmenge für die inne-
re Evaluationsschleife befinden sich 12 andere Bilder desselben Würfels. In der
zweiten Testmenge sind neben 11 Bildern vom gleichen Würfel auch 4 Bilder
von einem anderen, größeren Würfel enthalten (siehe Abb. 4.2).

Abbildung 4.2: Auszug aus der Bildmenge im Experiment 4.1.2. Bilder vom
letzten, größeren Würfel sind nur in der zweiten Testmenge enthalten.

4.1.3 Subtraktion von Spielsteinen

Diese Aufgabe ähnelt der Zählen-Aufgabe, erfordert aber die Detektion und
Unterscheidung von zwei Objektklassen. Im Bild befinden sich null bis acht
blaue und rote Spielsteine. Dabei sind von jeder Farbe maximal vier Steine
und immer mindestens so viele blaue wie rote Spielsteine im Bild. Die Aufgabe
besteht darin, die Differenz zwischen blauen und roten Steinen zu bilden. Mit
den oben genannten Randbedingungen bewegt sich die auszugebende Zahl im
Bereich zwischen Null und Vier.

In der Trainingsmenge befinden sich 98 Bilder, in der ersten Testmenge 27
und in der zweiten Testmenge 9 Bilder.

4.1. PROBLEMSTELLUNGEN 43

Abbildung 4.3: Auszug aus der Bildmenge im Experiment 4.1.3.

4.1.4 Spielfiguren klassifizieren

Bei diesem Experiment müssen Aufnahmen von Spielzeugfiguren in drei ver-
schiedene Klassen eingeteilt werden. Zu diesem Zweck wurden 66 Makroauf-
nahmen von je fünf verschiedenen Figuren von drei verschiedenen Figurtypen
aus verschiedenen Winkeln angefertigt. Um die Aufgabe zu erschweren, wur-
den die Figuren vor dem gleichen Hintergrund mit einer festen Kameraposition
aufgenommen.

Bei den Figuren handelt es sich um aktuelle Überraschungseifiguren, War-
hammer Menschen und Warhammer Orks. Die Aufnahmen sollen nun analog in
drei Klassen (1 = Überraschungsei, 2 = Mensch, 3 = Ork) einsortiert werden.
Hierbei wird die Aufgabe dadurch weiter erschwert, dass sich die Figuren aus
den Überraschungseiern zum Teil sehr stark unterscheiden und so eine inhomo-
gene Klasse bilden.

In Abb. 4.4 sind alle Figuren der drei Klassen aus einem Drehwinkel zu sehen.
Je Klasse wurde eine Figur ausgewählt, deren Bilder nicht in die Trainingsmen-
ge, sondern nur in die Testmengen aufgenommen wurden. Die Trainingsmenge
beinhaltet 32 , die Testmenge 26 und die zweite Testmenge 8 Bilder.

4.1.5 Roboter zum Ball steuern mittels gerichteter Kame-
ra

In diesem Experiment besteht die Aufgabe darin, einen Roboter mit omnidi-
rektionalem Antrieb zu einem Ball zu fahren. Es sind für jedes von einer am
Roboter befestigten, nach vorne gerichteten Kamera aufgenommenes Bild pas-
sende Steuersignale zu generieren. Ein Steuersignal besteht hierbei aus einem
Richtungsvektor im egozentrischen Koordinatensystem des Roboters und einem
Wert für die Drehgeschwindigkeit um die eigene Achse.

Mittels einer Joysticksteuerung wird der Roboter mehrere Male von verschie-
denen Positionen zum Ball gefahren. Dabei werden Bilder mit einer Frequenz
von 7,5 Hz aufgezeichnet und zusammen mit dem über den Joystick eingegebe-
nen Steuerbefehl abgespeichert. Von je 10 Bildern gelangen 2 in das erste und 2
in das zweite Testset. Die restlichen sechs Bilder werden in der Trainingsmenge
gespeichert.

Bei der Durchführung wurde darauf geachtet, dass sich der Ball möglichst
immer im Sichtfeld der Kamera befunden hat. Die Performance wird nur qua-
litativ verifiziert, indem das gelernte Steuerprogramm auf den Roboter selber

44 KAPITEL 4. EXPERIMENTE

Abbildung 4.4: Auszug aus der Bildmenge im Experiment 4.1.4. In jeder Reihe
sind fünf verschiedene Figuren einer Klasse abgebildet. Von der fünften, abge-
setzten Figur sind keine Bilder in der Trainingsmenge enthalten.

56 KAPITEL 4. EXPERIMENTE

Tabelle 4.2: Anteil richtig klassifizierter Bilder bei unterschiedlich langer Evolu-
tion in homogenen Subpopulationen (Experiment 4.1.3). Die Evolution wurde
für 0, 10 und 30 Epochen in getrennten Subpopulationen begonnen, die jeweils
nur einen Operatortyp enthielten.

Subtraktion
Testmenge Testmenge 2

keine Isolation 96% 44%
10 Epochen isoliert 96% 56%
30 Epochen isoliert 100% 100%

den Bildern zu extrahieren und die Menge der für die Entscheidung berücksich-
tigten Daten zu minimieren – zwar nicht unbedingt bis auf ein Optimum, aber
zumindest bis auf ein vernünftiges Maß. Nachdem dieser Nachweis erbracht
wurde, erübrigt sich eigentlich eine weitere Untersuchung der resultierenden
Kontroller: Die ursprüngliche Intention war es ja gerade, einen Algorithmus zu
liefern, der selbstständig Bilder so verarbeitet, dass es ihm möglich ist, eine ihm
gestellte Aufgabe zu erlernen. Wie dies geschieht und welche Lösung hierzu her-
angezogen wird, sagt eigentlich im Sinne der Problemstellung nichts über die
Qualität des Kontrollers aus, solange die Aufgabe korrekt und zuverlässig gelöst
wird. Man möchte sich ja eben nicht mehr mit den verschiedenen Lösungswegen
beschäftigen, sondern einfach “visuelle” Aufgaben formulieren. Die Art der von
den evolvierten Kontrollern verwendeten Lösung ist hierbei natürlich stark von
der Aufgabenstellung abhängig. Von einer Bildverarbeitungsschicht eines Kon-
trollers, der die Aufgabe 4.1.2 löst, kann man zum Beispiel nicht erwarten, dass
sie auch Informationen über die Position des Würfels liefert. Befindet sich der
Würfel immer im gleichen Abstand zur Kamera, kann es sogar sein, dass der
Würfel als solcher gar nicht erkannt wird, sondern mittels des Histogrammope-
rators lediglich die Gesamtfläche der schwarzen Augen berechnet und für die
Bestimmung der Ausgabe verwendet wird.

Aus diesen Gründen wurden die evolvierten Kontroller in den verschiede-
nen Aufgabenstellungen im Wesentlichen lediglich auf ihre äußeren Eigenschaf-
ten (Generalisierungsleistung, Erprobung auf dem Roboter) untersucht und nur
dann, wenn möglich einige interessante Ergebnisse der Evolution aufgeführt.
In allen Aufgaben erzielt der Algorithmus Ergebnisse, die deutlich über der
Zufallsrate liegen (siehe Tab. 4.3). Bei den Aufgabenstellungen 4.1.2, 4.1.3 und
4.1.4 liegen die Klassifizierungsergebnisse der neuen Bilder aus der zweiten Test-
menge bei einer Korrektheit von 100%. Beim Experiment 4.1.1 wird konsistent
eines der Bilder aus der zweiten Testmenge falsch klassifiziert. Dieses Bild zeigt
einen zerissenen Post-it, der mit einem anderen Kameraabstand und bei einer
wesentlich schwächeren Beleuchtung aufgenommen wurde.

Bei den Roboteraufgaben galt es keine Klassifizierungen sondern ein dreidi-
mensionales Steuersignal zu lernen. Gemessen wurde hier der Trainings- und er

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (43)

Example: evoVision — Exemplary Learning Curve

48 KAPITEL 4. EXPERIMENTE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Fi
tn

es
s

(n
or

m
al

is
ie

rt)

Epoche

Population
Bestes

Abbildung 4.7: Fitness des besten Individuums und gemittelte Fitness der Ge-
samtpopulation über 200 Evolutionsepochen in der Subtraktionsaufgabe bei Be-
schränkung der Vorverarbeitungsschichten auf einen einzelnen CVTK-Operator.

aufgerufen, hat aber keinerlei Auswirkungen, da es keinen zweiten Operator
zum Austauschen gibt. Die evolutionäre Veränderung beschränkt sich also auf
eine Mutation der Parametervektoren.

Der CVTK Operator eignet sich für diese Experimente nicht nur weil er einen
großen Parameterraum hat, sondern auch, weil sich seine Ergebnisse einfach
visualisieren lassen und die Güte der evolvierten Vorverarbeitungsschichten an
Hand der von ihnen erzeugten Regionenbilder leicht zu beurteilen ist.

In Abb. 4.7 ist die Entwicklung der durchschnittlichen Fitness der Popula-
tion und des jeweils besten Individuums eines einzelnen Durchlaufes über 200
Epochen hinweg aufgetragen. Abbildung 4.8 zeigt den Hamming Abstand1 des
jeweils besten Individuums, gemessen auf der Trainings- und auf der Testmenge.

Wie zu sehen ist, wird die Trainingsmenge schnell gelernt; der Hamming
Abstand auf dieser Menge ist bereits zu Beginn der Evolution sehr niedrig
(siehe Abb. 4.8). Dies liegt daran, dass sehr viele Kombinationen der mögli-
chen RGB-Tupel immerhin zu einem Ergebnis (mindestens eine vom Hinter-
grund verschiedene Fläche gefunden) der Segmentierungsschicht führen. Gerade
schlecht ausgewählte Farbbeispiele können zu vielen kleinen Flächen führen.
An Hand der resultierenden, zumeist sehr hochdimensionalen Daten können die
Trainingsbeispiele leicht auswendig gelernt werden. Die so gefundenen und für
die Diskriminierung herangezogenen Regionen stimmen aber zu einer sehr ho-

1Der Hamming Abstand gibt die Anzahl der Zeichen (oder “Bits”) an, in denen sich zwei
Strings von Nullen und Einsen unterscheiden.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (44)

Example: evoVision — Exemplary Improvement of Fittest Individual

4.2. ERGEBNISSE 51

Abbildung 4.10: Originalbild aus der Testmenge der Subtraktionsaufgabe und
vom Operator des jeweils besten Individuums der Populationen Xt, erzeugtes
Regionenbild. Von oben nach unten, von links nach rechts ist die Ausgabe nach
t = 0, t = 4, t = 8, t = 9, und t = 42 Epochen zu sehen.

lich kleiner ist als die Fläche der blauen Spielsteine. Da bei diesem Operator
auch der Wert für die Fläche der gefundenen Regionen in den Ausgabevektor
eingefügt wird, liegt die Vermutung nahe, dass das neuronale Netz die Größe der
Flächen zur Unterscheidung blauer und roter Spielsteine verwendet (eine andere
Information zur Diskriminierung ist zumindest für das Netz nicht verfügbar).
Auch mit diesem überraschenden (kreativen?) Lösungsansatz ist bereits eine
sehr gute, weit über dem Zufallsniveau liegende Generalisierung möglich.

Eine Inspektion der Populationen verschiedener Epochen und Durchläufe
zeigt, dass vermutlich aufgrund der geringen Populationsgröße die Anzahl der
unterscheidbaren, innerhalb einer Population parallel verfolgten Lösungsansätze
eher gering ist (zumeist nur 2-3 vergleichbar erfolgreiche Ansätze). Oftmals stellt
über die ganze Evolution hinweg ein und derselbe Lösungsansatz das beste In-
dividuum aller Epochen, dessen Fitness, wie bei dem in Abb. 4.9 dargestellten
Durchlauf, nie von einem Individuum eines gänzlich anderen Ansatzes übertrof-
fen wird. Häufig dominiert dieser Ansatz die Population schon frühzeitig völlig
und läßt kaum Raum für eine parallele Verfolgung anderer Ansätze. Falls zur
Lösung einer komplexeren Aufgabenstellung notwendig, könnte hier vermutlich
eine Erhöhung der Populationsgröße (in der Literatur findet man oftmals ei-
ne Populationsgröße von ca. 7 ∗ µ Individuen) oder die Evolvierung getrennter
Subpopulationen helfen.

In Abb. 4.12 sind die evolvierten RGB-Farbtupel des besten Individuums
des in Abb. 4.11 dargestellten Durchlaufs aufgeführt. Alle Tupel einer Farbklas-
se befinden sich im selben Rechteck. Auf den ersten Blick ist es nicht leicht
zu erkennen, welche Tupel für welche Klasse stehen, da sich sowohl in der Bei-

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (45)

Example: evoVision — Movie

Driving to a ball: training data — learned behavior 1, learned behavior 2
Turning towards a balll: learned behavior
Driving to the goal: learned behavior

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (46)

Theoretical Properties of the EA Framework

It is often noted that Evolutionary Algorithms do a global search and are not
affected by local optima as other, local search and learning methods are.

In fact, in many cases it can be proven that EAs are guaranteed to find the
optimal solution with probability 1 if we let them ‘search long enough’.

This is often done by proving the probability P(xoptimal ∈ Pi) of having an
optimal candidate solution xoptimal with the best possible fitness value in the
population Pi going to 1 as the number i of generations goes to ∞:

lim
i→∞

P(xoptimal ∈ Pi) = 1.

Necessary condition: hypothesis space is connected; mutation and cross-over
operator can reach every possible hypothesis

Can be easily achieved by using a mutation operator mutate with a small but
positive probability of mutating any given individual directly into any other
possible individual: ∀x1, x2 ∈ X P(mutate(x1) = x2) > 0.

Criticism: no convergence rate, no error-bounds if searching only for finite time

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (47)

Advanced Techniques

In the following, we will briefly discuss several advanced techniques. These can
be used as generic (problem independent) extensions of the basic framework.

I Coevolution

I Parallel Distributed Evolution (Island Model EA)

I Self Adaptation

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (48)

Advanced Techniques: Coevolution

Two (or more) separate populations are evolved at the same time with the
intention of stimulating the evolutionary improvement of both.

Cooperative Coevolution

A taks is split into two or more sub-task and several populations each solving
one of the sub-tasks are evolved in parallel. The fitness is tested on the whole
task, combining sub-solutions from the populations.

One major problem is how to select the individuals that are combined for
fitness-testing. For example, 1) test each individual of population A with best
individual of population B or 2) test each individual of population A with n
randomly selected individuals (encounters) of population B.

Competitive Coevolution

In this scheme individuals compete with each other and gain fitness at each
other’s expense. Competing individuals can be members of the same population
or of different, separately evolved populations.

Classic examples: board games, prisoners dilemma.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (49)

Advanced Techniques: Parallel Distributed Evolution

Individuals are spread among several sub-populations that are evolved in
parallel and (most of the time) independently from each other. Benefits:

I Simple but effective scheme for utilizing parallel processors (speed-up)

I Helps fighting premature convergence (can be used as initial phase)

Sub-population “communicate” with each other from time to time, by
exchanging individuals. Questions regarding this “migration” process involve:

I When to migrate?

I Which individuals to migrate (e.g. random or fitness-based selelction)?

I Which populations communicate with each other? 7→ Which topology?

Also known as ‘coarse-grain’ parallel EA or ‘Island Model’ EA.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (50)

Advanced Techniques: Self Adaptation

Finding good parameters for the population size µ, the mutation rate pm, the
recombination rate pr and the parameters controlling the selective pressure
(e.g. number of replaced individuals λ) often is a hard task in itself.

Moreover, the optimum of the combination of these parameters may vary over
the course of the evolutionary process.

Idea of self-adaptation: some of the parameters of the evolutionary process are
made subject to optimization themselves; the evolutionary process evolves its
own parameters!

I Self-adaptation is a standard method in Evolution Strategies

I Parameters are included in the representation of the individuals:

x = (x1, x2, . . . , xn︸ ︷︷ ︸
solution

, p1, p2, . . . , pk︸ ︷︷ ︸
parameters

)

I Most often: parameters regarding the mutation (Evolution Strategies)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (51)

Section 3: Representations

I Genetic Algorithms (bit strings)

I Evolution Strategies (real-valued vectors)

I Genetic Programming (trees, programms)

I Neuroevolution (neural networks)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (52)

Genetic Algorithms

Pioneered by John Holland and David E. Goldberg in the 1970s. Classic book:
J. Holland, Adaptation in Natural and Artificial Systems,
The MIT Press; Reprint edition 1992 (originally published in 1975).

We will discuss A) ‘simple’ Genetic Algorithms that exclusively use bit-strings
and B) a variant for evolving permutations (like in the TSP discussed earlier).

Classic Simple Genetic Algorithms:

Represtation: Bit-strings

Recombination: 1-Point crossover

Mutation: Bit flip

Parent selection: Fitness proportional

Survival selection: Generational

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (53)

Representation

Genotype: Bit-string with bi ∈ {0, 1}:

b1 b2 b3 b4
. . . bn e.g. 1 0 0 1 1

Length and interpretation as phenotype depend on application.

Representing numbers in binary is problematic. For example:

I Hamming distance between 7 (0111) and 6 (0110) is smaller than that
from 7 to 8 (1000)

I Thus, changing a 7 to a 6 is more likely than changing it to an 8

I Usually, we would want similar chances for both 6 and 8

Gray coding ensures that consecutive integers have Hamming distance one:

I the 1st (most significant) bit of the gray code is the same as the binary

I the i-th (i > 1) bit gi is the result of XOR(bi−1, bi)

I Examples: 3 : 011 7→ 010, 4 : 100 7→ 110, 5 : 101 7→ 111

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (54)

Mutation

Each bit gets flipped with a small probability pm (mutation rate). For example:

1 0 0 1 1 7→ 1 1 0 0 1

The expected number of flipped bits for an encoding of length L is L · pm.

Good mutation rates depend on the application and the desired outcome (good
population vs. one highly fit individual).

Rule of thumb: choose mutation rate such that in average one bit per
generation to one bit per offspring is changed.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (55)

Crossover

In GA, the recombination operator is considered the primary mechanism for
creating diversity, with mutation being only a ‘background’ search operator.

This operator is the most distinguishing feature of GAs from other global
optimization methods.

It’s common to apply crossover operators probabilistically with a probability pr .
With probability 1− pr the parent at hand is copied directly to the offsprings.

One-Point Crossover
Chooses a random integer r from the range [1, L− 1], splits both parents in
two parts after this position and joins these parts to form the two offsprings:

0 0 1 1 0

1 0 0 1 1

0 0 0 1 1

1 0 1 1 0

with the splitting position at r = 2.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (56)

Crossover (continued)

N-Point Crossover
Generalized version of the 1-Point Crossover that chooses N random crossover
points from the range [1, L− 1], for example N=2:

0 0 1 1 0

1 0 0 1 1

0 0 0 1 0

1 0 1 1 1

Uniform Crossover
Treats every bit (gene) separately and decides with the help of a random
experiment whether to choose the bit of parent 1 or 2:

0 0 1 1 0

1 0 0 1 1

0 0 0 1 0

1 0 1 1 1
↑, ↑, ↓, ↑, ↓

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (57)

Permutation Representations

Many problems naturally take the form of deciding on the order in which a
sequence of given events should occur. Examples include job-shop scheduling
tasks and the traveling-salesman problem.

Genotype: Sequence of integers (or letters) ei ∈ {1, 2, 3, . . . , L}:
e1 e2 e3 e4 . . . eL e.g. 4 2 3 1 5

Phenotype: Sequence of nodes to visit / jobs to execute.
Length L equals the number of nodes to visit / events to schedule.

Some of these problems may be order-based—that is, in job-shop scheduling,
the order of execution is important—and some may not—e.g. the routes
4, 3, 1, 2 and 2, 1, 3, 4 in a TSP are equivalent and have the same fitness.

Mutation Operators

Legal mutations are limited to moving values around in the genome:

Swap Mutation: Swap the values at two randomly selected positions

Insert Mutation: Move a randomly selected value to a random position

Scramble Mutation: Scramble the positions of a randomly selected sub-string

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (58)

Permutation Representations (continued)

Problem of crossing over: (both) offsprings need to be valid permutations.

1 2 4 5 3

4 5 3 2 1

4 5 4 5 3

1 2 3 2 1

Order Crossover
Selects two crossover points, copies the values between these two points from
one parent to the offspring

and then copies the remaining values to the empty
spots in the order they appear in the other parent (starting at the second
crossover point and wrapping-around at the end of the string).

1 2 4 5 3

4 5 3 2 1

4 5

3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (59)

Permutation Representations (continued)

Problem of crossing over: (both) offsprings need to be valid permutations.

1 2 4 5 3

4 5 3 2 1

4 5 4 5 3

1 2 3 2 1

Order Crossover
Selects two crossover points, copies the values between these two points from
one parent to the offspring and then copies the remaining values to the empty
spots in the order they appear in the other parent (starting at the second
crossover point and wrapping-around at the end of the string).

1 2 4 5 3

4 5 3 2 1

3 2 4 5 1

4 5 3 2 1

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (59)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

4 3

3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

4 3

3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

4 3

3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

4 3

3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

2 4 3

4 3 2

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Partially Mapped Crossover (PMX)

Partially Mapped Crossover is the most widely used operator in adjacency-type
problems (like the TSP). It works as follows (considering the first offspring):

1. Choose two crossover points at random and copy the values between them
from the first parent (P1) to the offspring.

2. Starting from the first crossover point look for elements i in that segment
of the other parent (P2) that have not been copied (‘4’ in P2).

3. For each of these elements i , look in the offspring to see what element j
has been copied in its place from P1.

4. Place i into the position that was occupied by element j in P2.

5. If that place has already been filled by an element k, put i in the position
occupied by k in P2.

6. The rest of the offspring can be filled from P2.

1 2 4 3 5

4 5 3 2 1

2 5 4 3 1

1 4 3 2 5

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (60)

Permutation Representations (continued)

Edge Crossover

Edge Crossover is based on the idea of using only edges in the offspring that
are present in at least one of the parents.

Edge-3 Crossover produces 1 offspring from 2 parents and works as follows:

1. Construct an edge table.

2. Copy a randomly chosen element to the offspring as ‘current element’

3. Remove all references to this element from the table

4. Choose an edge from the list of edges for the current element:
I If there is a common edge (+), pick that to be the next element
I Otherwise pick the entry which itself has the shortest list
I Ties are split at random

5. Continue with the new element with step 3 of the algorithm. In the case of
reaching an empty list, the other end of the offspring is examined for
possible extensions; otherwise continue with step 2.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (61)

Permutation Representations (continued)

Edge Table

For each possible value list the values of this value’s neighbors in both parents
(thus, up to four entries). If an edge is present in both neighbors, mark it with
a ‘+’ as a common edge (these should be preferred).

1 2 3 4 5

4 5 3 2 1

element edge
1 4, 5, 2+
2 1+, 3+
3 2+, 4, 5
4 5+, 1, 3
5 4+, 1, 3

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (62)

Schemata

The distinguishing property of GAs is the usage of a crossover operator.

Question: Is there some theoretical justification for using this type of operators?
Is it better than just using mutation (random-search)? Can we decide, whether
or not a given representation and operators do actually ‘work‘?

Answer: There’s some positive evidence (not a proof) with the Schema Theory.

Definition: Schema (for bit-strings)

A Schema H is simply a hyperplane in the search space. For binary alphabets,
they’re usually defined with the help of a third literal: the ’#’ symbol (AE:
pound / number sign, BE: hash) for denoting ‘don’t care’.

The schema 1 1 # # #
(from here on we’ll simply write ‘11###’)

stands for the hyperplane defined by having ones in the first two positions and
either a one or a zero in each of the third to fifth position.

All strings x meeting this criterion (e.g. x = 11101) are called instances x ∈ H
of this schema H. The given schema, for example, has 23 different instances.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (63)

Schemata (continued)

Definition: Order and (Defining) Length of a Schema

The order o(H) of a schema H is defined as the number of places where the
schema does not have the ‘#’ symbol.
Examples: o(1#1#0) = 3, o(0###1) = 2, o(11###) = 2

The defining length d(H) of a schema H is defined as the distance between the
outermost defined positions (defined: Hi ∈ {0, 1}, not ‘don’t care’).
Examples: d(1#1#0) = 5− 1 = 4, d(0###1) = 5− 1 = 4,
d(11###) = 2− 1 = 1

Definition: Fitness of a Schema
The fitness f (H) of a schema is defined as the mean fitness

f (H) =

∑
x∈H f (x)

|H|

of its instances x ∈ H. If there are a lot of different instances, the fitness f (H)
is often estimated from samples.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (64)

Schemata (continued)

Definitions Regarding a Population P

I m(H,P) is the percentage of individuals x in population P that are
instances of schema H

I f̂ (H,P) is the mean fitness of the individuals x in population P which are
instances of schema H (this can be interpreted as an estimate of f (H))

I f (P) =
∑

x∈P f (x)

|P| is the mean fitness of all individuals in population P

Global optimization can be described as searching for the schema with zero
‘don’t care’ symbols that has the maximum possible fitness.

As a particular individual can be an instance of many schemata, GAs ‘explore’
many schemata (a multiple of the population size) at the same time.

A string of length L is an instance of 2L schemata. According to a result of
Holland, a population of size n will ‘usefully’ process O(n3) schemata at the
same time.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (65)

Analyzing Operators with Schemata

With the help of these definitions, we can try to analyze the presence and
frequency of particular schemata in an evolving population.

Using fitness proportional selection, the probability Ps (H) of selecting a schema
H as a parent given a population P of size n is

Ps (H) = m(H,P) · f̂ (H,P)

f (P)
.

This, again, can be seen when considering the roulette wheel metaphor:

I m(H,P) is the fraction n(H,P)
n

, with n the population size and n(H,P) the
number of individuals x ∈ P that are instances of H

I hence, f̂ (H,P)
f (P)·n is the average size of a field of the roulette wheel that

represents one instance x ∈ H that is in the population P

I in total, there are n(H,P) fields on the roulette wheel representing

instances of the schema H, so the total size is n(H,P) · f̂ (H,P)
f (P)·n = Ps (H)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (66)

Analyzing Operators with Schemata (continued)

While the selection operators only change the relative frequencies of examples
of pre-existing schemata in an evolving population, mutation and crossover
operators can both create new examples and destroy current examples.

The probability P1X (H) of destroying an instance x ∈ H of a schema H when
applying the 1-Point Crossover operator (1X) is the probability of selecting a
crossover point that falls between the ‘ends’ of the schema1:

P1X (H) =
d(H)

L− 1
.

The probability Pm(H) of destroying an instance x ∈ H of a schema H when
applying the bitwise mutation operator with mutation rate pm depends on the
order o(H) of the schema:

Pm(H) = 1− (1− pm)o(H) .

1Speaking precisely, this is an upper bound on the actual probability as a crossover operation,
by coincidence, could create an offspring that is also an instance of the same schema.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (67)

Schema Theorem

Putting these results together, we obtain Holland’s schema theorem:

E [m(H,Pi+1)] ≥ m(H,Pi) ·
f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
This theorem relates the frequency—more precisely: the frequency’s
expectation—of instances of a schema H in a population Pi+1 to its frequency
in previous generations:

I the first term is the probability of schema H getting selected (note that we
use the observed fitness f̂ (H,Pi) here)

I the second term is the probability of the schema not being destroyed by
recombination (1− pr P1X (H) with pr the probability of applying X 1)

I the third term is the probability of the schema not being destroyed by
mutation (because 1− (1− (1− pm)o(H)) = (1− pm)o(H))

I the inequality is a result of the fact that the theorem’s right hand side
does not consider the probability of a new instance of the schema H being
created by mutation or crossover

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (68)

Schema Theorem

Putting these results together, we obtain Holland’s schema theorem:

E [m(H,Pi+1)] ≥ m(H,Pi) ·
f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
This theorem relates the frequency—more precisely: the frequency’s
expectation—of instances of a schema H in a population Pi+1 to its frequency
in previous generations:

I the first term is the probability of schema H getting selected (note that we
use the observed fitness f̂ (H,Pi) here)

I the second term is the probability of the schema not being destroyed by
recombination (1− pr P1X (H) with pr the probability of applying X 1)

I the third term is the probability of the schema not being destroyed by
mutation (because 1− (1− (1− pm)o(H)) = (1− pm)o(H))

I the inequality is a result of the fact that the theorem’s right hand side
does not consider the probability of a new instance of the schema H being
created by mutation or crossover

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (68)

Schema Theorem

Putting these results together, we obtain Holland’s schema theorem:

E [m(H,Pi+1)] ≥ m(H,Pi) ·
f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
This theorem relates the frequency—more precisely: the frequency’s
expectation—of instances of a schema H in a population Pi+1 to its frequency
in previous generations:

I the first term is the probability of schema H getting selected (note that we
use the observed fitness f̂ (H,Pi) here)

I the second term is the probability of the schema not being destroyed by
recombination (1− pr P1X (H) with pr the probability of applying X 1)

I the third term is the probability of the schema not being destroyed by
mutation (because 1− (1− (1− pm)o(H)) = (1− pm)o(H))

I the inequality is a result of the fact that the theorem’s right hand side
does not consider the probability of a new instance of the schema H being
created by mutation or crossover

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (68)

Schema Theorem

Putting these results together, we obtain Holland’s schema theorem:

E [m(H,Pi+1)] ≥ m(H,Pi) ·
f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
This theorem relates the frequency—more precisely: the frequency’s
expectation—of instances of a schema H in a population Pi+1 to its frequency
in previous generations:

I the first term is the probability of schema H getting selected (note that we
use the observed fitness f̂ (H,Pi) here)

I the second term is the probability of the schema not being destroyed by
recombination (1− pr P1X (H) with pr the probability of applying X 1)

I the third term is the probability of the schema not being destroyed by
mutation (because 1− (1− (1− pm)o(H)) = (1− pm)o(H))

I the inequality is a result of the fact that the theorem’s right hand side
does not consider the probability of a new instance of the schema H being
created by mutation or crossover

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (68)

Schema Theorem

Putting these results together, we obtain Holland’s schema theorem:

E [m(H,Pi+1)] ≥ m(H,Pi) ·
f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
This theorem relates the frequency—more precisely: the frequency’s
expectation—of instances of a schema H in a population Pi+1 to its frequency
in previous generations:

I the first term is the probability of schema H getting selected (note that we
use the observed fitness f̂ (H,Pi) here)

I the second term is the probability of the schema not being destroyed by
recombination (1− pr P1X (H) with pr the probability of applying X 1)

I the third term is the probability of the schema not being destroyed by
mutation (because 1− (1− (1− pm)o(H)) = (1− pm)o(H))

I the inequality is a result of the fact that the theorem’s right hand side
does not consider the probability of a new instance of the schema H being
created by mutation or crossover

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (68)

Schema Theorem (continued)

I The original understanding was that a schema H of above-average fitness
would increase its number of instances from generation to generation

I We can derive the conditions for a schema H to increase it’s frequency
directly from the theorem:

f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
> 1

Also considering effects of crossover and mutation, this tells us that schemata
of above-average fitness which are short and have only few defined values, are
likely to reproduce.

Thus, GAs seem well adapted for optimizing functions that are described by
short building blocks, which independently of each other determine high fitness
values. GAs would explore them in parallel and slowly increase their frequency.

However, the estimation only hints in this direction, but it’s not a formal proof.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (69)

Schema Theorem (continued)

I The original understanding was that a schema H of above-average fitness
would increase its number of instances from generation to generation

I We can derive the conditions for a schema H to increase it’s frequency
directly from the theorem:

f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
> 1

Also considering effects of crossover and mutation, this tells us that schemata
of above-average fitness which are short and have only few defined values, are
likely to reproduce.

Thus, GAs seem well adapted for optimizing functions that are described by
short building blocks, which independently of each other determine high fitness
values. GAs would explore them in parallel and slowly increase their frequency.

However, the estimation only hints in this direction, but it’s not a formal proof.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (69)

Schema Theorem (continued)

I The original understanding was that a schema H of above-average fitness
would increase its number of instances from generation to generation

I We can derive the conditions for a schema H to increase it’s frequency
directly from the theorem:

f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
> 1

Also considering effects of crossover and mutation, this tells us that schemata
of above-average fitness which are short and have only few defined values, are
likely to reproduce.

Thus, GAs seem well adapted for optimizing functions that are described by
short building blocks, which independently of each other determine high fitness
values. GAs would explore them in parallel and slowly increase their frequency.

However, the estimation only hints in this direction, but it’s not a formal proof.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (69)

Schema Theorem (continued)

I The original understanding was that a schema H of above-average fitness
would increase its number of instances from generation to generation

I We can derive the conditions for a schema H to increase it’s frequency
directly from the theorem:

f̂ (H,Pi)

f (Pi)
·
[

1−
(

pr ·
d(H)

L− 1

)]
·
[
(1− pm)o(H)

]
> 1

Also considering effects of crossover and mutation, this tells us that schemata
of above-average fitness which are short and have only few defined values, are
likely to reproduce.

Thus, GAs seem well adapted for optimizing functions that are described by
short building blocks, which independently of each other determine high fitness
values. GAs would explore them in parallel and slowly increase their frequency.

However, the estimation only hints in this direction, but it’s not a formal proof.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (69)

Evolution Strategies

Pioneered by Schwefel and Rechenberg in the late 1960s.

Evolution Strategies:

Represtation: Real-valued vectors

Recombination: none / discrete or intermediate recombination

Mutation: Gaussian perturbation

Parent selection: Uniform random

Survivor selection: Generational (µ, λ) or steady-state (µ+ λ)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (70)

Representation

Genotype: Real-valued vector x = (x1,, xn) ∈ Rn of n variables:

x1 x2 x3 x4 . . . xn e.g. 1.3 −0.5 0.32 11.23 6

Typically, evolutionary strategies are used for continuous parameter
optimization, meaning that the problem at hand can be given as an objective
function Rn 7→ R. In this case, the genotype space and phenotype space are
identical.

Self-Adaptation: In ES, it’s common practice to include parameters controlling
the mutation directly into each individual.

x = (x1, x2, . . . , xn︸ ︷︷ ︸
candidate

, σ1, σ2, . . . , σk︸ ︷︷ ︸
step size

, α1, α2, . . . , αl︸ ︷︷ ︸
‘interaction′

)

Common mutation parameters include

I either k = 1 (one value σ for all variables xi) or k = n (individual value σi

for each variable xi) parameters controlling the mutation step sizes

I (optionally) l parameters controlling the ‘interaction’ between the step
sizes of different variables.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (71)

Mutation

Mutation is realized by adding a random number ∆xi to each of the values xi :

x ′i = xi + ∆xi .

The delta-terms are usually drawn from a zero-centered normal distribution
N (0, σ) with mean µ = 0 and standard deviation σ. In this case, the
probability density function is

p(∆xi) =
1

σ
√

2π
· e−

(∆xi−µ)2

2σ2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

sigma=1
sigma=2

sigma=0.5

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (72)

Mutation (continued)

Regarding the mutation operator, there are two choices to make:

A) whether to use a constant step size σ during the whole evolutionary process
or to use a (self-adapted) variable step size

B) whether to use the same step size σ for all variables xi or to use an
individual σi for each variable xi .

Adapting a Step Size with the 1
5 -rule:

I Rechenberg: ideally, 1/5 of the mutations should be ‘successful’ (fitter
than parents)

I Adapt step size σ every k generations according to measured proportion ps

of successful mutations (0.8 ≤ c ≤ 1):

σ =

σ/c if ps > 1/5
σ · c if ps < 1/5
σ if ps = 1/5.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (73)

Mutation (continued)

Adapting a Step Size using Self-Adaptation:

I In the most simple form include one step-size in the individual:

(x1, . . . , xn, σ)

I σ undergoes same variation as the other values xi

I Important: First mutate σ, then use the new σ′ to produce offsprings

Uncorrelated Mutation with One Step Size:

I Individual (x1, . . . , xn, σ) is mutated
according to

σ′ = σ · eN (0,τ)

x ′i = xi +Ni (0, σ′)

I Two parameters: ‘learning rate’ τ ∝ 1/
√

n
and ‘boundary rule’: σ′ < ε0 ⇒ σ′ = ε0

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (74)

Mutation (continued)

Uncorrelated Mutation with n Step Sizes:

I Observation: fitness landscape can have different slopes in different
directions

I Idea: individual (x1, . . . , xn, σ1, . . . σn) with one individual step size σi for
each dimension xi

I Mutation mechanism:

σ′i = σi · eN (0,τ ′)+Ni (0,τ)

x ′i = xi +Ni (0, σ′i)

I Three parameters:
overall change of mutability:
τ ′ ∝ 1/

√
2n

coordinate-wise change: τ ∝ 1/
√

2
√

n
and ‘boundary rule’: σ′ < ε0 ⇒ σ′ = ε0

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (75)

Mutation (continued)

Correlated Mutation:

I Observation: ellipses in previous scheme were orthogonal to x-axis

I Idea: individual (x1, . . . , xn, σ1, . . . σn, α1, . . . αl) (l = n(n − 1)/2) with
correlated step-sizes using a ‘covariance’ matrix C with

cii = σ2
i

cij,i 6=j = 0 iff i and j are not correlated

cij,i 6=j =
1

2
(σ2

i − σ2
j) tan(2αij) iff i and j are correlated

I Mutation mechanism:

σ′i = σi · eN (0,τ ′)+Ni (0,τ)

α′j = αj +Nj (0, β)

x ′ = x +N (0,C ′)

where ∆x = N (0,C ′) is a vector
drawn from a n-dimensional normal
distribution with covariance matrix C ′.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (76)

Recombination

If recombination is used, the most common theme in ES is to combine two
randomly selected parents that form one offspring. For the parent vectors x and
y , one child z is created:

zi =

{
(xi + yi)/2 intermediary recombination
xi or yi chosen randomly discrete recombination

Usually, discrete recombination is used for the variables representing the
candidate solution and intermediary recombination is used for the
search-strategy part.

The procedure is repeated λ times in order to produce λ offsprings.

Variant: selecting different parents x and y for each variable zi individually
(‘global recombination’).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (77)

Selection

Parent Selection
In ES not biased by fitness values, parents are drawn randomly with uniform
distribution from the population of µ individuals.

Survivor Selection
After creating λ offsprings, µ survivors are selected:

I (µ, λ) selection: µ survivors from the λ offsprings only

I (µ+ λ) selection: µ survivors from the union of parents and offsprings.

In both variants the selection is deterministic and rank based.

Practical Considerations:
(µ, λ) selection is often preferred for the following reasons:

1. replaces all parents, thus able to leave local optima,

2. its better suited to follow non-stationary (moving) optima,

3. in (µ+ λ) better candidate solutions dominate better search strategies.

Usually, selection pressure in ES is very high. Common setting: λ = 7 · µ

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (78)

Genetic Programming

Genetic Programming (GP) was developed in the 1990’s. Early names: J. Koza.
GA: combinatorial optimization. GP: typically machine learning tasks like
classification, prediction, etc.

Genetic Programming:

Represtation: Tree structures

Recombination: Exchange of subtrees

Mutation: Random change in tree

Parent selection: Fitness proportional

Survivor selection: Generational

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (79)

Example: Evolve Decision Rule (Classifier) for the Credit Risk Problem

Task: given past experience (examples), learn a classifier

f : X1 × . . .× Xn 7→ {good, bad}

that classifies (new) examples according to their attributes’ values.

Idea: evolutionary search in space of all possible classifiers (hypothesis space).

Individuals: represent classifiers (candidate models).

I IF formula THEN good ELSE bad

Fitness: classification accuracy (training data, validation set) of one particular
individual (candidate classifier).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (80)

Representation

Genotype: (parse) trees (e.g. for representing the formula)

Three types of nodes: root node, branch node and leaf (node).

root

branch branch

leaf leaf leaf leaf

Note: no fixed ‘size’ in GP! Individuals with different size in same population.

Specification of how to represent the individuals by defining the syntax of the
trees (or syntax of equivalent symbolic expression).

Syntax definition is usually done by defining a function set (used in branches)
and a terminal set (used at leafs).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (81)

Examle: Representing an Arithmetic Formula

+

· −

2 π + /

x 3 y 5

Function set: symbols or functions (+,−, ·, /,=, exp)
Terminal set: numbers (e.g. R)

Inorder depth-first tree traversal (expand left child, parent, right child, versus
postorder: l child, r child, parent and preorder: parent, l child, r child) yields the
represented expression: ((2 · π) + ((x + 3)− (y/5))

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (82)

Examle: Representing a Logical Formula

→

∧ ∨

x true ∧ x

y z

Inorder depth-first tree traversal: (x ∧ true)→ (y ∧ z) ∨ x
(obviously, this implication is not true!)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (83)

Examle: Representing an Executable Programm

i = 1;
While (i < 20) {

i = i + 1
}

;

= While

i 1 < =

i 20 i +

i 1

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (84)

Mutation

Whereas GA and ES apply both, recombination and mutation in two
consecutive steps to offsprings, GP usually applies either mutation OR
recombination to form an offspring (with probabilistic operator selection).

Standard procedure: randomly select a node and replace the subtree starting at
that node by a random generated subtree.

parent +

· −

2 π + /

x 3 y 5

offspring +

· −

2 π + 7

x 3

Thus, mutation in GP has two parameters:

I the probability of choosing mutation over recombination

I the probability of choosing the internal node where to place the random
generated subtree

In GP, it’s common practice to use a very low, but positive ‘mutation rate’.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (85)

Recombination

In subtree crossover two parents exchange two subtrees starting at two
randomly selected nodes.

parent 1 +

· −

2 π + /

x 3 y 5

parent 2 ·

− y

5 z

child 1 +

· −

2 π + z

x 3

child 2 ·

− y

5 /

y 5

When applying this binary operator, the depth of the trees may change.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (86)

Selection

GP often uses very large population sizes of several thousand individuals.

Parent Selection
Fitness proportional selection is most widely used.

A sometimes used variant is over-selection, where the very best individuals of a
population (e.g. the 16% best individuals) have an even (unproportionally)
larger probability of being selected.

Survivor Selection
Historically, Genetic Programming was proposed with a generational strategy
with no elitism, where the number of produced offsprings matches the
population size.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (87)

Initialization

Initialization is quite important in Genetic Programming and usually more
complex than in ES and GA.

A common strategy is the ‘ramped half-and-half’ method: Given a maximum
initial depth Dmax create each individual according to one of the two following
strategies (chosen with equal probability):

I Full method: Every branch of the tree has full depth. The contents of each
node are chosen from the appropriate set, either the terminal set or the
function set.

I Grow method: The construction of the tree is started at its root, in each
node the contents are chosen stochastically from the union of the function
set and terminal set (in depth d = Dmax from the terminal set only).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (88)

Bloat

A practical problem of GP comes with the varying size of the individuals’
representation. In practice, without appropriate countermeasures, the average
tree size usually grows during the evolutionary process (‘survival of the fattest’).

Possible countermeasures:

I Introduce a maximum size (depth) and immediately reject larger children.

I Parsimony Pressure: penalty term in fitness function reducing the fitness
of larger individuals.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (89)

Neuroevolution

Started in the late 1990’s and is still a very active research topic.
Typical area of application: control of dynamical systems, solving reinforcement
learning tasks.

Neuroevolution:

Representation: (Recurrent) Neural Networks

Recombination: Exchange of weights or whole subnets

Mutation: Random change in weights and / or structure of net

Parent selection: No specific, often fitness proportional

Survivor selection: No specific, often Steady-State

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (90)

Representation

Genotype: Recurrent (optional) neural networks. Actual encoding (structured)
differs among algorithms (we discuss NEAT).

hidden layer(s)

input layer

output layer

∑

w ji

w kj

neuron nj

weights

Take-away message NN: 1. Inputs are processed, an output is calculated.
2. Outputs may depend on previous outputs (recurrency). 3. Local processing
unit is simple (weighted sum of inputs, non-linear ‘activation’ function).

Two variants regarding what’s subject to evolution:

I network structure is predefined, only weights are modified

I similar to GP, weights and structure are subject to evolution

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (91)

Representation (continued)

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Output

Node 5
Hidden

In 1
Out 4
Weight 0.7

Enabled
Innov 1

In 2
Out 4
Weight−0.5

DISABLED
Innov 2

In 3
Out 4
Weight 0.5

Enabled
Innov 3

In 2
Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4
Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

Figure 3.1: A NEAT genotype to phenotype mapping example. A genotype is depicted that produces the
shown phenotype. There are 3 input nodes, one hidden, one output node, and seven connection definitions,
one of which is recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2
and 4) is not expressed in the phenotype. In order to allow complexification, genome length is unbounded.

adding a floating point number chosen from a uniform distribution of positive and negative values.
Structural mutations, which form the basis of complexification, occur in two ways (Figure 3.2).
Each mutation expands the size of the genome by adding genes. In the add connection mutation,
a single new connection gene is added connecting two previously unconnected nodes. In the add
node mutation, an existing connection is split and the new node placed where the old connection
used to be. The old connection is disabled and two new connections are added to the genome.
The connection between the first node in the chain and the new node is given a weight of one,
and the connection between the new node and the last node in the chain is given the same weight
as the connection being split. Splitting the connection in this way introduces a nonlinearity (i.e.
sigmoid function) where there was none before. Because the new node is immediately integrated
into the network, its effect on fitness can be evaluated right away. Preexisting network structure is
not destroyed and performs the same function, while the new structure provides an opportunity to
elaborate on the original behaviors.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying
sizes will result, sometimes with different connections at the same positions. Crossover must be
able to recombine networks with differing topologies, which can be difficult (Radcliffe 1993). The
next section explains how NEAT approaches this problem.

35

From: Kenneth O. Stanley, Efficient Evolution of Neural Networks through

Complexification, PhD Thesis, The University of Texas at Austin, 2004

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (92)

Representation (continued)

Phenotype: how is the net actually used?

Controller

Environment

at

Sensors
st

I measurement of the present state is applied to the neural net’s input layer

I the net processes an output signal that is then used as the next action

I thus, the size of the input layer is predetermined by the measurement’s
(state signal’s) dimension, the output layer matches the action’s size

Note: nets are not adapted during testing / application

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (93)

Representation (continued)

Neural networks are usually trained using a gradient-descent learning algorithm
called ‘back-propagation’.

Why is evolving neural networks interesting?

I First, we can not use traditional training algorithms (backpropagation),
since controlling a dynamical system is not a supervised learning but a
reinforcement learning task

I Nevertheless, we would like to use neural networks, since they have nice
properties; especially recurrent nets are interesting for controlling
dynamical systems (memory, attracting states, hysteresis)

I But, unfortunately, combining classical training methods from
reinforcement learning with traditional ‘training’ of neural networks is
known to be problematic (e.g unstable, divergent)

Thus, using a ‘black-box’ search algorithm instead of an alternative ‘learning’
algorithm is worth trying.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (94)

Evaluation

The individuals are tested on (dynamical) systems.

Evaluation of whole ‘episodes’, the individual’s fitness reflects its performance.

I no credit assignment, no evaluation of particular ‘decisions’ (actions)

Problem with probabilistic (real-world) systems:

I either repeat the test several times and use the average of the results in
order to get a good estimate of the fitness and minimize the variance

I or test only one time and treat fitness itself as a value generated by a
random process (e.g. retest all individuals in the next generation)

Further problems arise when different starting states are possible and should be
considered for the evaluation.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (95)

Mutation

Three types of mutation that are chosen randomly:

1. Random change of weights

2. Addition of a connection between randomly selected neurons

3. Addition of a hidden neuron

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 3.2: The two types of structural mutation in NEAT. Both types, adding a connection and adding a
node, are illustrated with the genes above their phenotypes. The top number in each genome is the innovation
number of that gene. The bottom two numbers denote the two nodes connected by that gene. The weight of
the connection, also encoded in the gene, is not shown. The symbol DIS means that the gene is disabled, and
therefore not expressed in the network. The figure shows how connection genes are appended to the genome
when a new connection and a new node is added to the network. Assuming the depicted mutations occurred
one after the other, the genes would be assigned increasing innovation numbers as the figure illustrates,
thereby allowing NEAT to keep an implicit history of the origin of every gene in the population.

3.2 Tracking Genes through Historical Markings

It turns out that the historical origin of each gene can be used to tell us exactly which genes match
up between any individuals in the population. Two genes with the same historical origin represent
the same structure (although possibly with different weights), since they were both derived from the
same ancestral gene at some point in the past. Thus, all a system needs to do is to keep track of the
historical origin of every gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene ap-
pears (through structural mutation), a global innovation number is incremented and assigned to that
gene. The innovation numbers thus represent a chronology of every gene in the system. As an
example, let us say the two mutations in Figure 3.2 occurred one after another in the system. The
new connection gene created in the first mutation is assigned the number 7, and the two new con-
nection genes added during the new node mutation are assigned the numbers 8 and 9. In the future,
whenever these genomes cross over, the offspring will inherit the same innovation numbers on each
gene. Thus, the historical origin of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation

36

From: Kenneth O. Stanley, Efficient Evolution of Neural Networks through

Complexification, PhD Thesis, The University of Texas at Austin, 2004

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (96)

Recombination

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>6

5−>4

5−>4

1−>5

1−>5

6−>4

6−>4

1−>6

1−>6

1−>61−>5

5−>6

5−>6

3−>5

3−>5

3−>56−>4

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5

5

5

6

5

5

8

8

7

7

10

10

108

6

6

9

9

97

3

3

3

disjointdisjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

1

1

1
2

2

2
3

3

3

5

5

5

6

4

4

6

4

Figure 3.3: Matching up genomes for different network topologies using innovation numbers. Al-
though Parent 1 and Parent 2 look different, their innovation numbers (shown at the top of each gene) tell
us that several of their genes match up even without topological analysis. A new structure that combines
the overlapping parts of the two parents as well as their different parts can be created in crossover. In this
case, equal fitnesses are assumed, so each disjoint and excess gene is inherited from either parent randomly.
Otherwise the genes would be inherited from the more fit parent. The disabled genes may become enabled
again in future generations: There is a preset chance that an inherited gene is enabled if it is disabled in either
parent.

numbers in the same generation if it occurs by chance more than once. However, by keeping a
list of the innovations that occurred in the current generation, it is possible to ensure that when the
same structure arises more than once through independent mutations in the same generation, each
identical mutation is assigned the same innovation number. Extensive experimentation established
that resetting the list every generation as opposed to keeping a growing list of mutations throughout
evolution is sufficient to prevent innovation numbers from exploding.

Through innovation numbers, the system now knows exactly which genes match up with

37

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (97)

Methods

NEAT - NeuroEvolution of Augmented Topologies

I evolves weights and structure

I grows nets: starts with fully-connected nets with just an input and an
output layer (sizes predetermined by problem) and no hidden layers.

I uses ‘innovation numbers’ and protects new genes

I uses sub-species and fitness sharing

I open source libraries in C++, C#, Java, Python, Delphi, Matlab,...:
http://www.cs.ucf.edu/˜kstanley/neat.html

Other Approaches to Neuroevolution:

I SANE and ESP: (older) alternative methods from same group (Risto
Miikkulainen)

I ENS3: another method of about the same age from Frank Pasemann

I EANT(2): newer methods from Siebel & Sommer, outperforming NEAT
(at least on some tasks)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (98)

Section 4: Applications

I Jetz Nozzle Optimization

I Gait Pattern Optimization

I Applications of Neuroevolution

I Artificial Life

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (99)

Evolution Strategies: Jet Nozzle Experiment (Schwefel)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (100)

Parameter Optimization: Gait-Optimization (Röfer)

Thomas Röfer. Evolutionary Gait-Optimization Using a Fitness Function Based on Proprioception. LNCS, Springer, 2005

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (101)

Neuroevolution: Pole Balancing (One Example)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

M
et
er
s

Meters

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

M
et
er
s

Meters

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
et
er
s

Meters

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
et
er
s

Meters

Gomez, Miikukulainen, 2-D Pole
Balancing With Recurrent Evolutionary
Networks, ICANN, 1998

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (102)

Neuroevolution: Lab of Frank Pasemann

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (103)

Neuroevolution: NERO

I Open Source Computer Game build on rtNEAT (by Ken Stanley)

I Started in 2003, first release 2005

I ‘Train’ (evolve) an army of AI-soldiers by setting objectves (modifying the
fitness function) and creating training situations (modifying the
environment)

I http://www.nerogame.org/ (Windows, Linux, Mac)

Other game based on NEAT: Galactic Arms Race

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (104)

Artificial Life

Karl Sims, http://www.karlsims.com/

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Applications (105)

Section 5: Discussion

I Summary

I No-Free-Lunch Theorem

I Bottom Line

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Discussion (106)

Summary

I Evolutionary Algorithms offers a whole tool box of different methods and
representations

I We have discussed Genetic Algorithms (binary), Evolution Strategies
(real-valued), Genetic Programming (Trees) and Neuroevolution (ANN)

I These methods have been applied very successfully to both combinatorial
optimization and classical machine learning problems

I EA is a black box search method and can be tried when there is no better,
domain specific method available

80’s view of EA
performance
(after Goldberg)

problem tailored
method

random search

evolutionary
algorithm

range of problems

pe
rfo

rm
an

ce
 o

f m
et

ho
d

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Discussion (107)

No-Free-Lunch Theorem

Question: Is an evolutionary algorithm really better than random search (or any
other comparable method)?

No-Free-Lunch Theorem by Wolpert and Macready:

I if we average over the space of all possible problems

I then all nonrevisiting2 black box algorithms will exhibit the same
performance.

So, no specific black box algorithm is better than any other black box
algorithm ‘in the general case’.

Thus, the 80’s view (hope) of EA’s performance just isn’t right.

2Nonrevisiting means the algorithm does not visit and test the same point in the search space
twice (can be realized in EAs using a memory of examined individuals).

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Discussion (108)

Bottom Line

Where to use EAs
I EA’s are a solid choice in situations where

I EA’s are just good enough to do the job — easy to set-up, good results
I there’s no domain specific better (e.g. gradient-based) method available.

I You could use an EA as a black box method for a first try on a new
problem just to get a first impression before you start further analyzing it.

I EA’s are often used as a Meta-Optimization of the parameters of an
(‘inner’) machine learning algorithm.

Performance of EAs

I You can improve your EA’s performance and circumvent the
No-Free-Lunch Theorem by introducing domain specific knowledge

I This comes at the cost of a worsened performance on other problems.

Setting up EAs

I Good parameters depend on the problem and representation at hand.

I Finding good parameters for an EA is often more an art than a science.

I Build on experience and start with the rules of thumb given in the slides.

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Discussion (109)

Dr. Sascha Lange Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Discussion (110)

	Motivation
	Framework
	Representations
	Applications
	Discussion

