Machine Learning: Multi Layer Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University Freiburg AG Maschinelles Lernen

Outline

- multi layer perceptrons (MLP)
- Iearning MLPs
- function minimization: gradient descend & related methods

Neural networks

- single neurons are not able to solve complex tasks (e.g. restricted to linear calculations)
- creating networks by hand is too expensive; we want to learn from data
- nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions

Neural networks

- single neurons are not able to solve complex tasks (e.g. restricted to linear calculations)
- creating networks by hand is too expensive; we want to learn from data
- nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions
- we want to have a generic model that can adapt to some training data
- basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton 1986), also named feed forward networks

Neurons in a multi layer perceptron

standard perceptrons calculate a discontinuous function:

$$\vec{x} \mapsto f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

Neurons in a multi layer perceptron

 standard perceptrons calculate a discontinuous function:

$$\vec{x} \mapsto f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

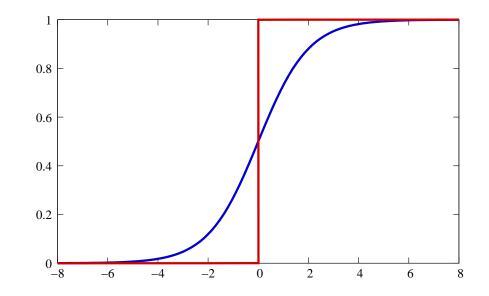
due to technical reasons, neurons in MLPs calculate a smoothed variant of this:

$$\vec{x} \mapsto f_{log}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

with

$$f_{log}(z) = \frac{1}{1 + e^{-z}}$$

 f_{log} is called logistic function



Neurons in a multi layer perceptron

 standard perceptrons calculate a discontinuous function:

$$\vec{x} \mapsto f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

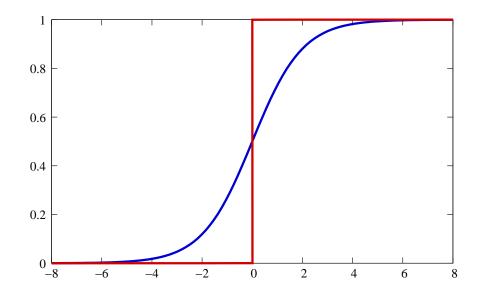
due to technical reasons, neurons in MLPs calculate a smoothed variant of this:

$$\vec{x} \mapsto f_{log}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

with

$$f_{log}(z) = \frac{1}{1 + e^{-z}}$$

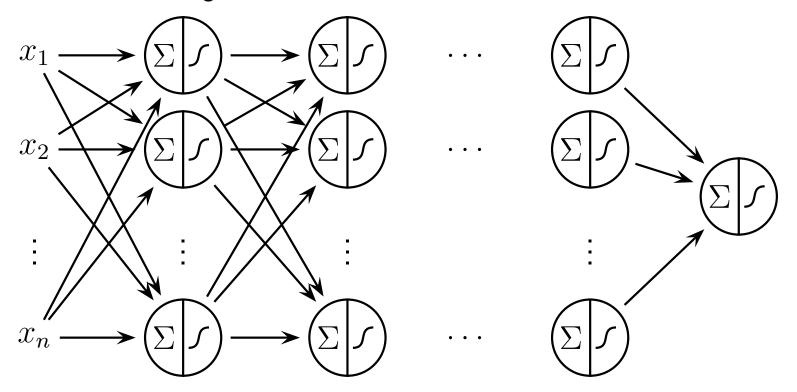
 f_{log} is called logistic function



properties:

- monotonically increasing
- $\lim_{z\to\infty} = 1$
- $\lim_{z \to -\infty} = 0$
- $f_{log}(z) = 1 f_{log}(-z)$
- continuous, differentiable

A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are neurons with logistic activation.



- neurons of i-th layer serve as input features for neurons of i + 1th layer
- very complex functions can be calculated combining many neurons

- Multi layer perceptrons, more formally: A MLP is a finite directed acyclic graph.
 - nodes that are no target of any connection are called input neurons. A MLP that should be applied to input patterns of dimension n must have n input neurons, one for each dimension. Input neurons are typically enumerated as neuron 1, neuron 2, neuron 3, ...
 - nodes that are no source of any connection are called output neurons. A MLP can have more than one output neuron. The number of output neurons depends on the way the target values (desired values) of the training patterns are described.
 - all nodes that are neither input neurons nor output neurons are called hidden neurons.
 - since the graph is acyclic, all neurons can be organized in layers, with the set of input layers being the first layer.

- connections that hop over several layers are called shortcut
- most MLPs have a connection structure with connections from all neurons of one layer to all neurons of the next layer without shortcuts
- all neurons are enumerated
- Succ(i) is the set of all neurons j for which a connection $i \rightarrow j$ exists
- Pred(i) is the set of all neurons j for which a connection $j \rightarrow i$ exists
- all connections are weighted with a real number. The weight of the connection $i \rightarrow j$ is named w_{ji}
- all hidden and output neurons have a bias weight. The bias weight of neuron i is named w_{i0}

- variables for calculation:
 - hidden and output neurons have some variable net_i ("network input")
 - all neurons have some variable a_i ("activation"/"output")

- variables for calculation:
 - hidden and output neurons have some variable net_i ("network input")
 - all neurons have some variable a_i ("activation"/"output")
- > applying a pattern $\vec{x} = (x_1, \dots, x_n)^T$ to the MLP:
 - for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$

- variables for calculation:
 - hidden and output neurons have some variable net_i ("network input")
 - all neurons have some variable a_i ("activation"/"output")
- > applying a pattern $\vec{x} = (x_1, \dots, x_n)^T$ to the MLP:
 - for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$
 - for all hidden and output neurons *i*:
 after the values *a_j* have been calculated for all predecessors *j* ∈ *Pred*(*i*), calculate *net_i* and *a_i* as:

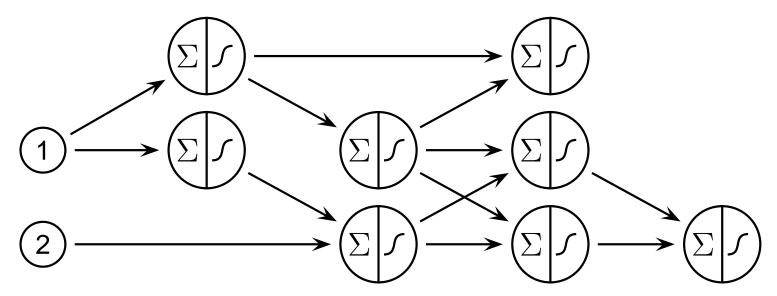
$$net_i \leftarrow w_{i0} + \sum_{j \in Pred(i)} (w_{ij}a_j)$$
$$a_i \leftarrow f_{log}(net_i)$$

(cont.)

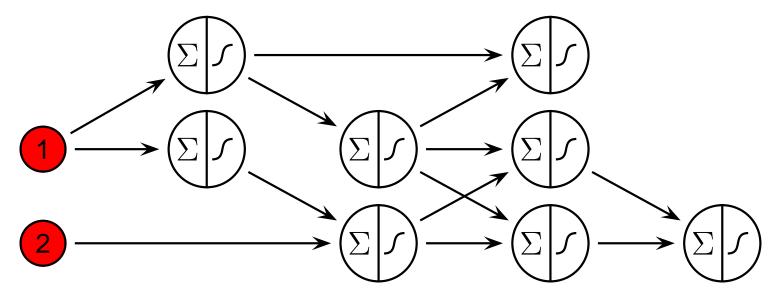
- variables for calculation:
 - hidden and output neurons have some variable net_i ("network input")
 - all neurons have some variable a_i ("activation"/"output")
- > applying a pattern $\vec{x} = (x_1, \dots, x_n)^T$ to the MLP:
 - for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$
 - for all hidden and output neurons i: after the values a_j have been calculated for all predecessors $j \in Pred(i)$, calculate net_i and a_i as:

$$net_i \leftarrow w_{i0} + \sum_{j \in Pred(i)} (w_{ij}a_j)$$
$$a_i \leftarrow f_{log}(net_i)$$

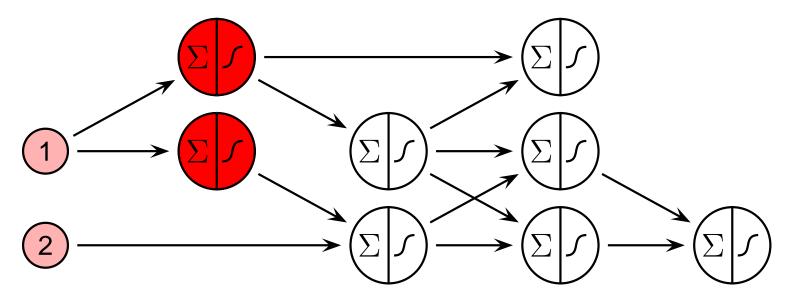
• the network output is given by the a_i of the output neurons



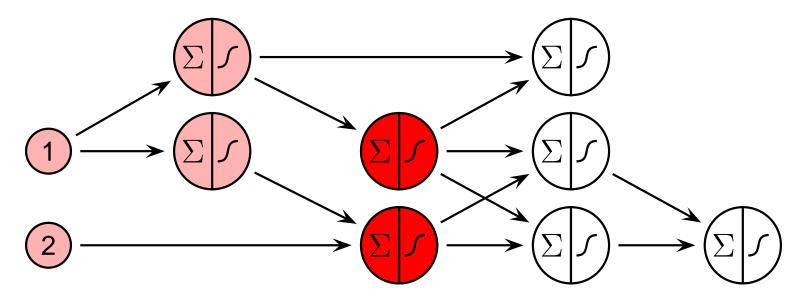
• apply pattern $\vec{x} = (x_1, x_2)^T$



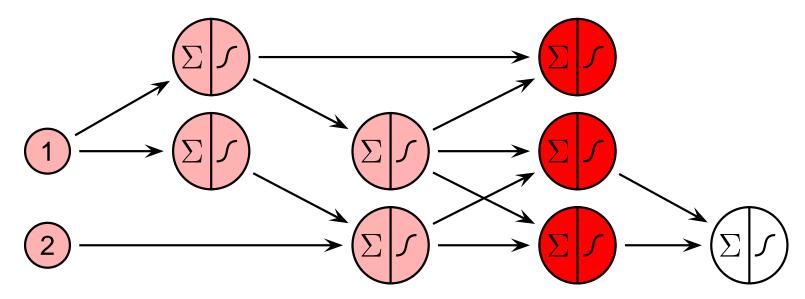
- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$



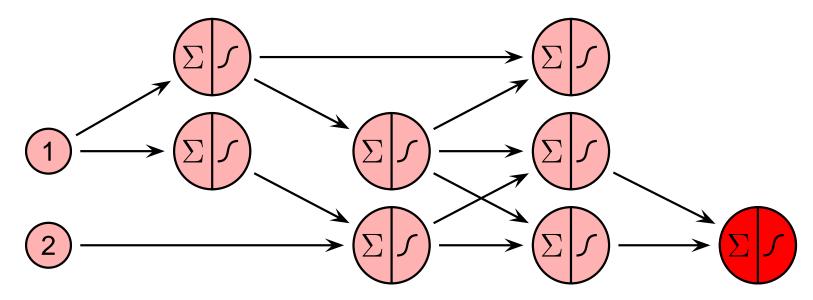
- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations:



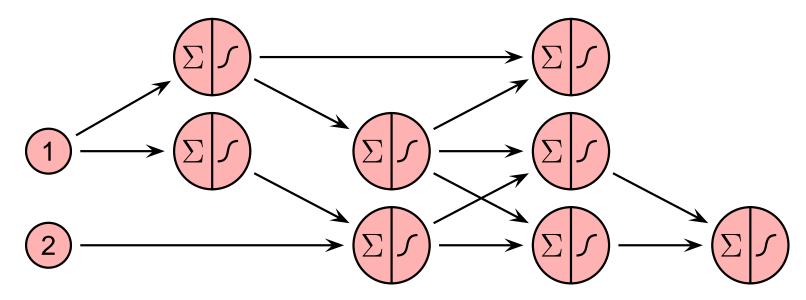
- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations: step



- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations: step by



- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations: step by step



- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations: step by step
- read the network output from both output neurons

(cont.)

algorithm (forward pass):

Require: pattern \vec{x} , MLP, enumeration of all neurons in topological order **Ensure:** calculate output of MLP

1: for all input neurons i do

2: set
$$a_i \leftarrow x_i$$

- 3: end for
- 4: for all hidden and output neurons i in topological order do

5: set
$$net_i \leftarrow w_{i0} + \sum_{j \in Pred(i)} w_{ij}a_j$$

6: set
$$a_i \leftarrow f_{log}(net_i)$$

7: end for

- 8: for all output neurons i do
- 9: assemble a_i in output vector \vec{y}
- 10: **end for**

11: return \vec{y}

variant:

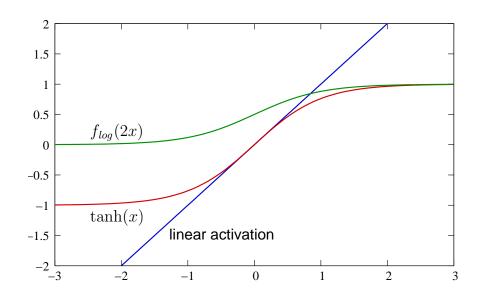
Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used:

• neurons with tanh activation function:

$$a_i = \tanh(net_i) = \frac{e_i^{net} - e^{-net_i}}{e_i^{net} + e^{-net_i}}$$

• neurons with linear activation:

$$a_i = net_i$$



variant:

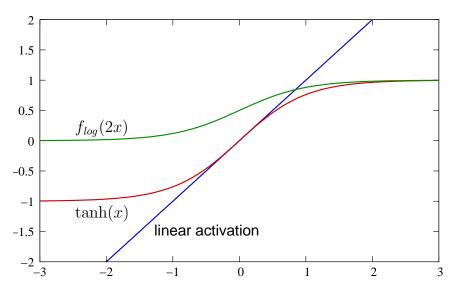
Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used:

• neurons with tanh activation function:

$$a_i = \tanh(net_i) = \frac{e_i^{net} - e^{-net_i}}{e_i^{net} + e^{-net_i}}$$

• neurons with linear activation:

$$a_i = net_i$$



- the calculation of the network output is similar to the case of logistic activation except the relationship between *net_i* and *a_i* is different.
- the activation function is a local property of each neuron.

(cont.)

- typical network topologies:
 - for regression: output neurons with linear activation
 - for classification: output neurons with logistic/tanh activation
 - all hidden neurons with logistic activation
 - layered layout:

input layer – first hidden layer – second hidden layer – ... – output layer with connection from each neuron in layer i with each neuron in layer i+1, no shortcut connections

(cont.)

- typical network topologies:
 - for regression: output neurons with linear activation
 - for classification: output neurons with logistic/tanh activation
 - all hidden neurons with logistic activation
 - layered layout:

input layer – first hidden layer – second hidden layer – ... – output layer with connection from each neuron in layer i with each neuron in layer i+1, no shortcut connections

Lemma:

Any boolean function can be realized by a MLP with one hidden layer. Any bounded continuous function can be approximated with arbitrary precision by a MLP with one hidden layer.

Proof: was given by Cybenko (1989). Idea: partition input space in small cells

MLP Training

- ▶ given training data: $\mathcal{D} = \{(\vec{x}^{(1)}, \vec{d}^{(1)}), \dots, (\vec{x}^{(p)}, \vec{d}^{(p)})\}$ where $\vec{d}^{(i)}$ is the desired output (real number for regression, class label 0 or 1 for classification)
- given topology of a MLP
- task: adapt weights of the MLP

MLP Training (cont.)

idea: minimize an error term

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

with $y(\vec{x}; \vec{w})$: network output for input pattern \vec{x} and weight vector \vec{w} , $||\vec{u}||^2$ squared length of vector \vec{u} : $||\vec{u}||^2 = \sum_{j=1}^{\dim(\vec{u})} (u_j)^2$

MLP Training (cont.)

idea: minimize an error term

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

with $y(\vec{x}; \vec{w})$: network output for input pattern \vec{x} and weight vector \vec{w} , $||\vec{u}||^2$ squared length of vector \vec{u} : $||\vec{u}||^2 = \sum_{j=1}^{\dim(\vec{u})} (u_j)^2$

learning means: calculating weights for which the error becomes minimal

$$\underset{\vec{w}}{\textit{minimize }} E(\vec{w}; \mathcal{D})$$

MLP Training (cont.)

idea: minimize an error term

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

with $y(\vec{x}; \vec{w})$: network output for input pattern \vec{x} and weight vector \vec{w} , $||\vec{u}||^2$ squared length of vector \vec{u} : $||\vec{u}||^2 = \sum_{j=1}^{\dim(\vec{u})} (u_j)^2$

learning means: calculating weights for which the error becomes minimal

$$\underset{\vec{w}}{\textit{minimize }} E(\vec{w}; \mathcal{D})$$

interpret E just as a mathematical function depending on \vec{w} and forget about its semantics, then we are faced with a problem of mathematical optimization

Optimization theory

discusses mathematical problems of the form:

$$\underset{\vec{u}}{minimize} \ f(\vec{u})$$

 \vec{u} can be any vector of suitable size. But which one solves this task and how can we calculate it?

Optimization theory

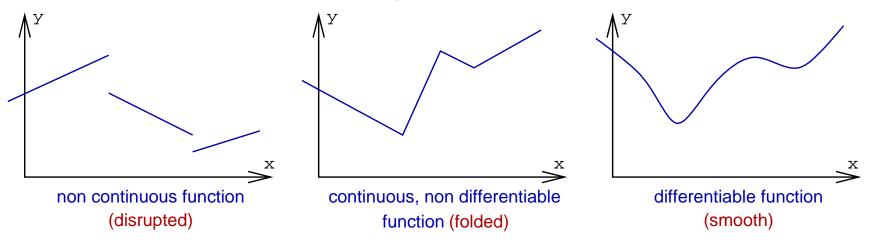
discusses mathematical problems of the form:

```
\underset{\vec{u}}{minimize} \ f(\vec{u})
```

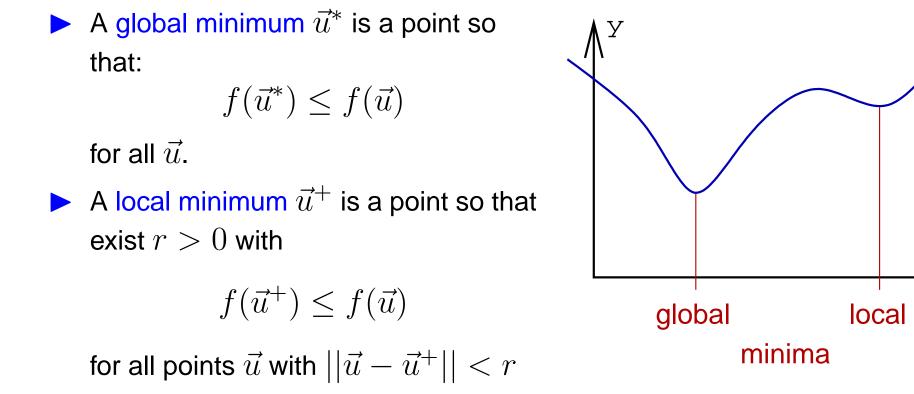
 \vec{u} can be any vector of suitable size. But which one solves this task and how can we calculate it?

some simplifications:

here we consider only functions f which are continuous and differentiable



Optimization theory (cont.)



х

Optimization theory

(cont.)

> analytical way to find a minimum: For a local minimum \vec{u}^+ , the gradient of f becomes zero:

$$\frac{\partial f}{\partial u_i}(\vec{u}^+) = 0 \quad \text{ for all } i$$

Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression)

Optimization theory (cont.)

- analytical way to find a minimum: For a local minimum \vec{u}^+ , the gradient of f becomes zero:

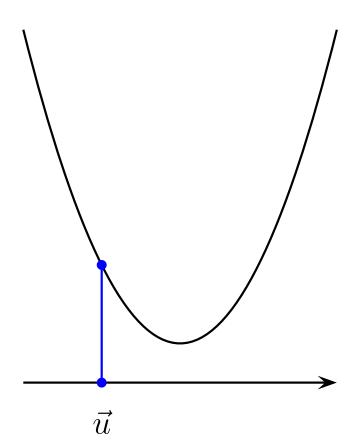
$$\frac{\partial f}{\partial u_i}(\vec{u}^+) = 0 \quad \text{ for all } i$$

Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression)

but: there are also other points for which $\frac{\partial f}{\partial u_i} = 0$, and resolving these equations is often not possible

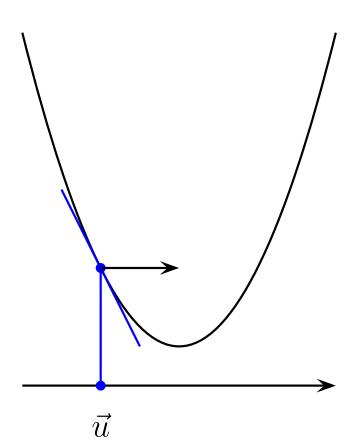
Optimization theory (cont.)

numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

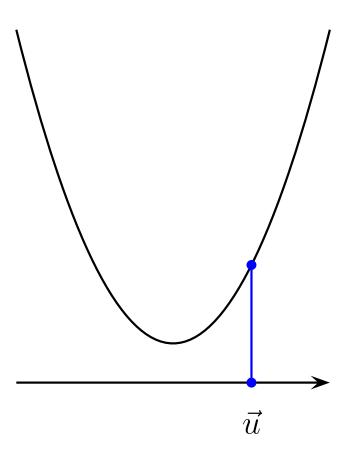


numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

slope is negative (descending), go right!

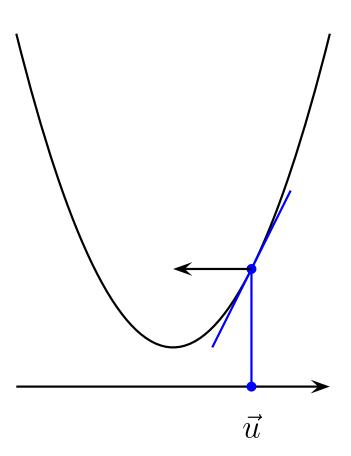


numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?



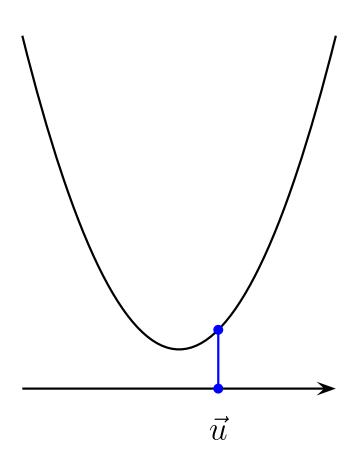
numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

slope is positive (ascending), go left!



numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

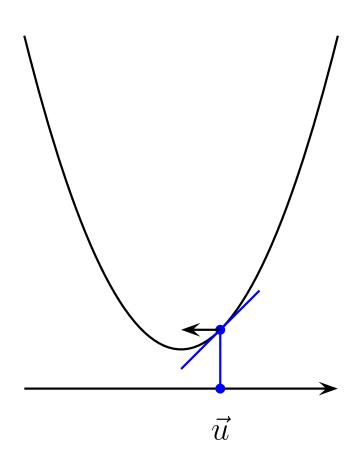
Which is the best stepwidth?



numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

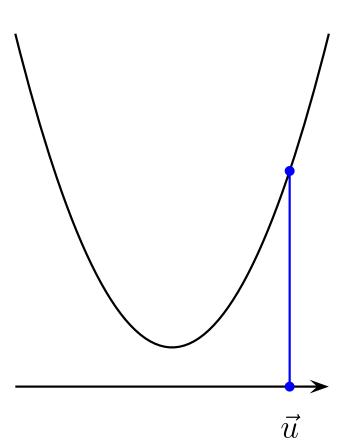
Which is the best stepwidth?

slope is small, small step!



numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

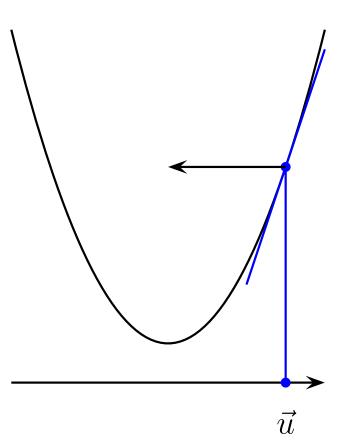
Which is the best stepwidth?



numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

Which is the best stepwidth?

slope is large, large step!



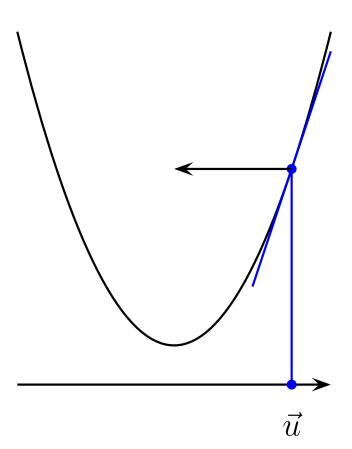
numerical way to find a minimum, searching: assume we are starting at a point *u*. Which is the best direction to search for a point *v* with *f*(*v*) < *f*(*u*) ?

Which is the best stepwidth?

general principle:

$$v_i \leftarrow u_i - \epsilon \frac{\partial f}{\partial u_i}$$

 $\epsilon > 0$ is called learning rate



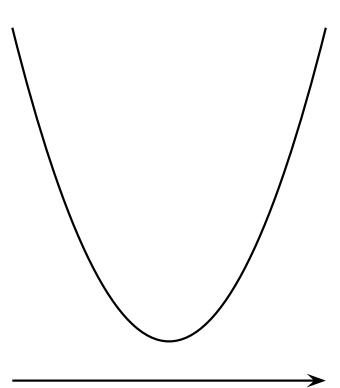
Gradient descent approach:

Require: mathematical function f, learning rate $\epsilon > 0$

Ensure: returned vector is close to a local minimum of f

- 1: choose an initial point \vec{u}
- 2: while $||gradf(\vec{u})||$ not close to 0 do
- 3: $\vec{u} \leftarrow \vec{u} \epsilon \cdot gradf(\vec{u})$
- 4: end while
- 5: return \vec{u}
- open questions:
 - how to choose initial \vec{u}
 - how to choose ϵ
 - does this algorithm really converge?

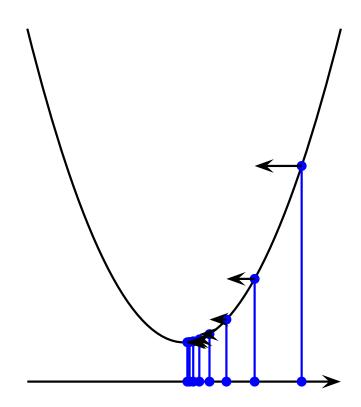
(cont.)



(cont.)

- choice of ϵ

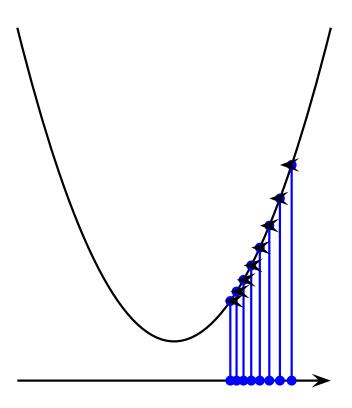
1. case small ϵ : convergence



(cont.)

• choice of ϵ

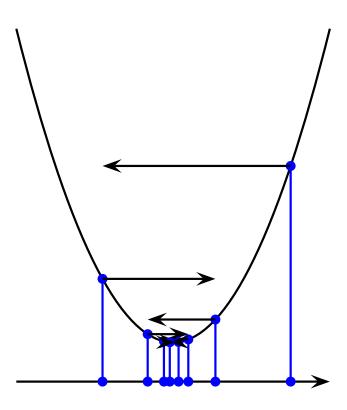
2. case very small ϵ : convergence, but it may take very long



(cont.)

- choice of ϵ

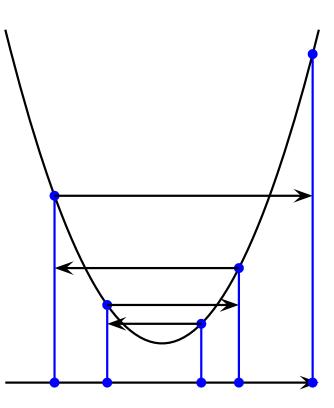
3. case medium size ϵ : convergence



(cont.)

- choice of ϵ

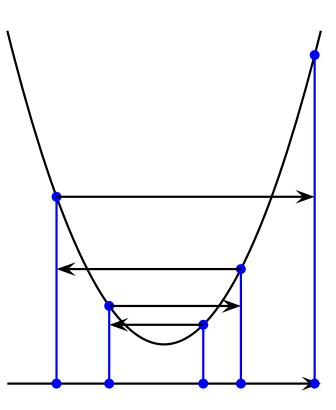
4. case large ϵ : divergence



(cont.)

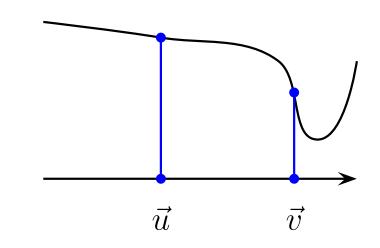
- choice of ϵ

- is crucial. Only small ϵ guarantee convergence.
- for small ϵ , learning may take very long
- depends on the scaling of f: an optimal learning rate for f may lead to divergence for $2\cdot f$



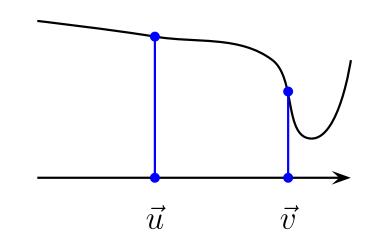
some more problems with gradient descent:

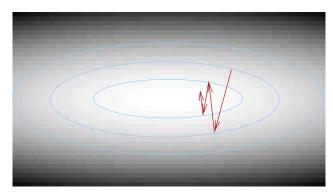
• flat spots and steep valleys: need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum



some more problems with gradient descent:

• flat spots and steep valleys: need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum





• zig-zagging:

in higher dimensions: ϵ is not appropriate for all dimensions

conclusion:

pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ϵ is annoying. Approaching the minimum is time consuming.

conclusion:

pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ϵ is annoying. Approaching the minimum is time consuming.

- heuristics to overcome problems of gradient descent:
 - gradient descent with momentum
 - individual lerning rates for each dimension
 - adaptive learning rates
 - decoupling steplength from partial derivates

(cont.)

gradient descent with momentum

idea: make updates smoother by carrying forward the latest update.

- 1: choose an initial point \vec{u}
- 2: set $\vec{\Delta} \leftarrow \vec{0}$ (stepwidth)
- 3: while $|| grad f(\vec{u}) ||$ not close to 0 do
- 4: $\vec{\Delta} \leftarrow -\epsilon \cdot gradf(\vec{u}) + \mu \vec{\Delta}$
- 5: $\vec{u} \leftarrow \vec{u} + \vec{\Delta}$
- 6: end while
- 7: return \vec{u}

 $\mu\geq 0, \mu<1$ is an additional parameter that has to be adjusted by hand. For $\mu=0$ we get vanilla gradient descent.

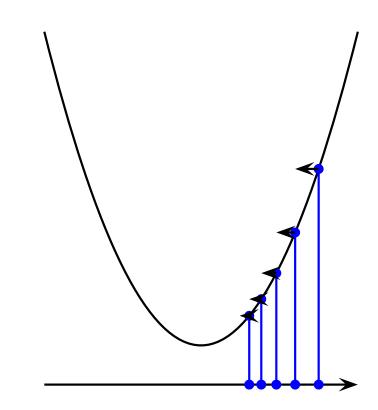
(cont.)

- advantages of momentum:
 - smoothes zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging

/

(cont.)

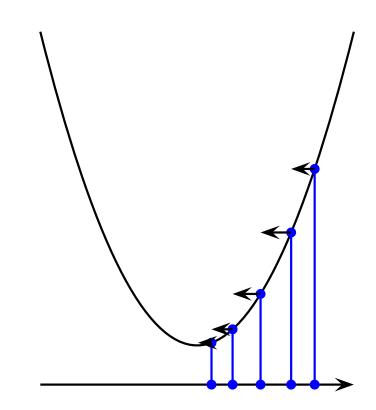
- advantages of momentum:
 - smoothes zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging



vanilla gradient descent

(cont.)

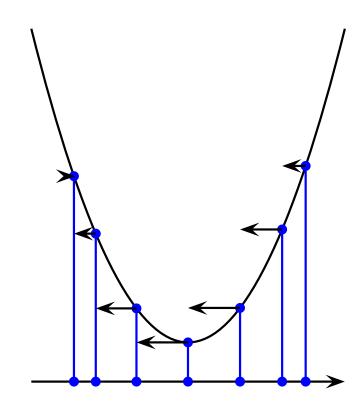
- advantages of momentum:
 - smoothes zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging



gradient descent with momentum

(cont.)

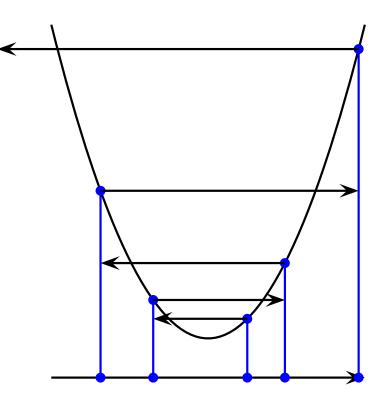
- advantages of momentum:
 - smoothes zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging



gradient descent with strong momentum

advantages of momentum:

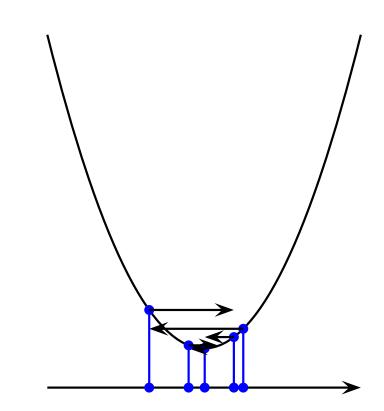
- smoothes zig-zagging
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging



vanilla gradient descent

(cont.)

- advantages of momentum:
 - smoothes zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantage:
 - additional parameter μ
 - may cause additional zig-zagging



gradient descent with momentum

(cont.)

- adaptive learning rate idea:
 - make learning rate individual for each dimension and adaptive
 - if signs of partial derivative change, reduce learning rate
 - if signs of partial derivative don't change, increase learning rate
- algorithm: Super-SAB (Tollenare 1990)

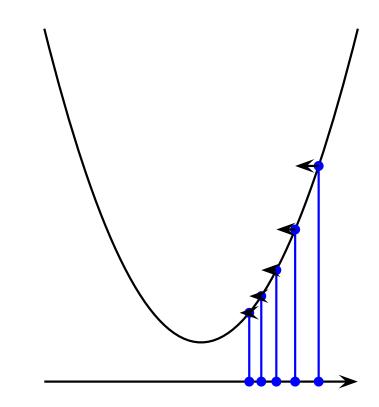
- 1: choose an initial point \vec{u} 2: set initial learning rate $\vec{\epsilon}$ 3: set former gradient $\vec{\gamma} \leftarrow \vec{0}$ 4: while $||grad f(\vec{u})||$ not close to 0 do calculate gradient $\vec{q} \leftarrow grad f(\vec{u})$ 5: for all dimensions i do 6. 7: $\epsilon_i \leftarrow \begin{cases} \eta^+ \epsilon_i & \text{if } g_i \cdot \gamma_i > 0 \\ \eta^- \epsilon_i & \text{if } g_i \cdot \gamma_i < 0 \\ \epsilon_i & \text{otherwise} \end{cases}$ 8: $u_i \leftarrow u_i - \epsilon_i g_i$ end for <u>g</u>. 10: $\vec{\gamma} \leftarrow \vec{q}$
- 11: end while
- 12: return \vec{u}

 $\eta^+ \ge 1, \eta^- \le 1$ are additional parameters that have to be adjusted by hand. For $\eta^+ = \eta^- = 1$ we get vanilla gradient descent.

- advantages of Super-SAB and related approaches:
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantages:
 - steplength still depends on partial derivatives

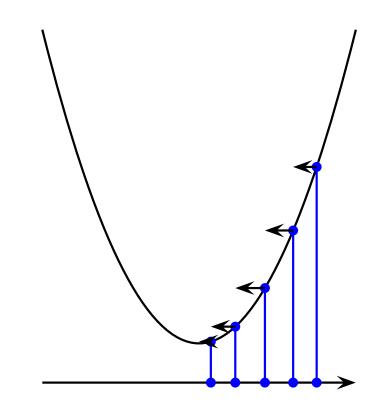
/

- advantages of Super-SAB and related approaches:
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantages:
 - steplength still depends on partial derivatives



vanilla gradient descent

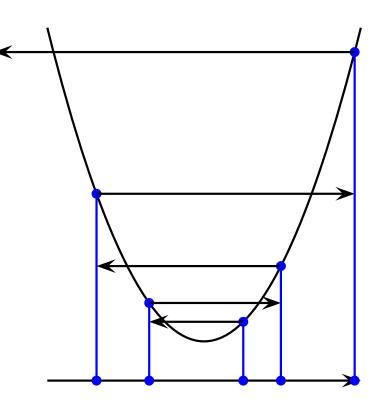
- advantages of Super-SAB and related approaches:
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantages:
 - steplength still depends on partial derivatives



SuperSAB

(cont.)

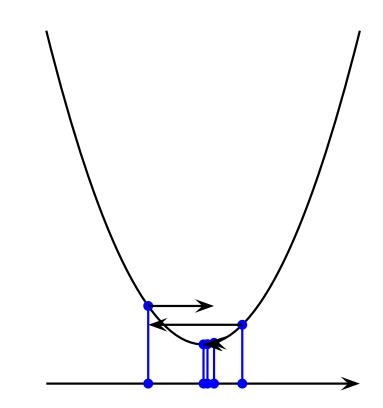
- advantages of Super-SAB and related approaches:
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantages:
 - steplength still depends on partial derivatives



vanilla gradient descent

(cont.)

- advantages of Super-SAB and related approaches:
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change
- disadavantages:
 - steplength still depends on partial derivatives



SuperSAB

(cont.)

- make steplength independent of partial derivatives idea:
 - use explicit steplength parameters, one for each dimension
 - if signs of partial derivative change, reduce steplength
 - if signs of partial derivative don't change, increase steplegth
- algorithm: RProp (Riedmiller&Braun, 1993)

1: choose an initial point \vec{u} 2: set initial steplength Δ 3: set former gradient $\vec{\gamma} \leftarrow \vec{0}$ 4: while $||grad f(\vec{u})||$ not close to 0 do calculate gradient $\vec{q} \leftarrow gradf(\vec{u})$ 5: 6: for all dimensions i do 7: $\Delta_i \leftarrow \begin{cases} \eta^+ \Delta_i & \text{if } g_i \cdot \gamma_i > 0\\ \eta^- \Delta_i & \text{if } g_i \cdot \gamma_i < 0\\ \Delta_i & \text{otherwise} \end{cases}$ 8: $u_i \leftarrow \begin{cases} u_i + \Delta_i & \text{if } g_i < 0 \\ u_i - \Delta_i & \text{if } g_i > 0 \\ u_i & \text{otherwise} \end{cases}$ 9: end for

10: $\vec{\gamma} \leftarrow \vec{g}$

11: end while

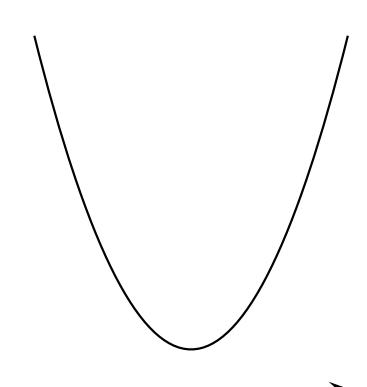
12: return \vec{u}

 $\eta^+ \ge 1, \eta^- \le 1$ are additional parameters that have to be adjusted by hand. For MLPs, good heuristics exist for parameter settings: $\eta^+ = 1.2, \eta^- = 0.5$, initial $\Delta_i = 0.1$

(cont.)

advantages of Rprop

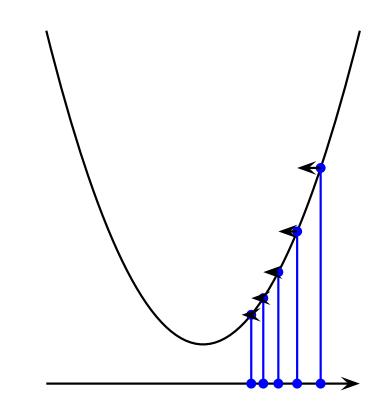
- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length



(cont.)

advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length

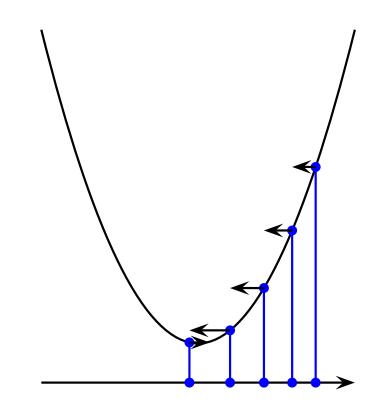


vanilla gradient descent

(cont.)

advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length

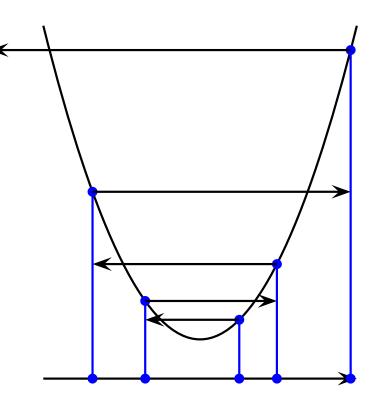


Rprop

(cont.)

advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length

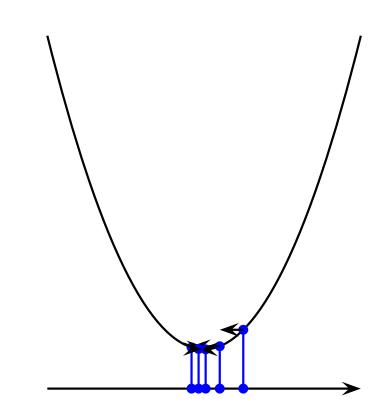


vanilla gradient descent

(cont.)

advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length



Rprop

Newton

line search

(cont.)

Newton's method:

approximate f by a second-order Taylor polynomial:

$$f(\vec{u} + \vec{\Delta}) \approx f(\vec{u}) + gradf(\vec{u}) \cdot \vec{\Delta} + \frac{1}{2} \vec{\Delta}^T H(\vec{u}) \vec{\Delta}$$

with $H(\vec{u})$ the Hessian of f at \vec{u} , the matrix of second order partial derivatives.

(cont.)

Newton's method:

approximate f by a second-order Taylor polynomial:

$$f(\vec{u} + \vec{\Delta}) \approx f(\vec{u}) + gradf(\vec{u}) \cdot \vec{\Delta} + \frac{1}{2}\vec{\Delta}^T H(\vec{u})\vec{\Delta}$$

with $H(\vec{u})$ the Hessian of f at \vec{u} , the matrix of second order partial derivatives.

Zeroing the gradient of approximation with respect to $\vec{\Delta}$:

$$\vec{0} \approx (gradf(\vec{u}))^T + H(\vec{u})\vec{\Delta}$$

Hence:

$$\vec{\Delta} \approx -(H(\vec{u}))^{-1} (gradf(\vec{u}))^T$$

(cont.)

Newton's method:

approximate f by a second-order Taylor polynomial:

$$f(\vec{u} + \vec{\Delta}) \approx f(\vec{u}) + gradf(\vec{u}) \cdot \vec{\Delta} + \frac{1}{2}\vec{\Delta}^T H(\vec{u})\vec{\Delta}$$

with $H(\vec{u})$ the Hessian of f at \vec{u} , the matrix of second order partial derivatives.

Zeroing the gradient of approximation with respect to $\vec{\Delta}$:

$$\vec{0} \approx (gradf(\vec{u}))^T + H(\vec{u})\vec{\Delta}$$

Hence:

$$\vec{\Delta} \approx -(H(\vec{u}))^{-1} (gradf(\vec{u}))^T$$

- advantages: no learning rate, no parameters, quick convergence
- disadvantages: calculation of H and H^{-1} very time consuming in high dimensional spaces

(cont.)

Quickprop (Fahlmann, 1988)

- like Newton's method, but replaces H by a diagonal matrix containing only the diagonal entries of H.
- hence, calculating the inverse is simplified
- replaces second order derivatives by approximations (difference ratios)

(cont.)

Quickprop (Fahlmann, 1988)

- like Newton's method, but replaces H by a diagonal matrix containing only the diagonal entries of H.
- hence, calculating the inverse is simplified
- replaces second order derivatives by approximations (difference ratios)
- update rule:

$$\Delta w_i^t := \frac{-g_i^t}{g_i^t - g_i^{t-1}} \left(w_i^t - w_i^{t-1} \right)$$

where $g_i^t = grad f$ at time t.

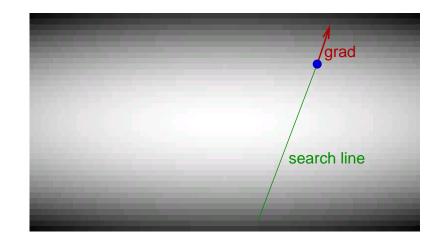
- advantages: no learning rate, no parameters, quick convergence in many cases
- disadvantages: sometimes unstable

Beyond gradient descent (cont.)

line search algorithms:

two nested loops:

- outer loop: determine serach direction from gradient
- inner loop: determine minimizing point on the line defined by current search position and search direction
- inner loop can be realized by any minimization algorithm for one-dimensional tasks
- advantage: inner loop algorithm may be more complex algorithm, e.g. Newton



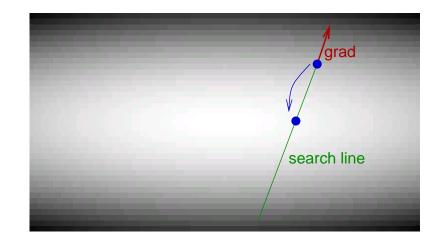
problem: time consuming for high-dimensional spaces

Beyond gradient descent (cont.)

line search algorithms:

two nested loops:

- outer loop: determine serach direction from gradient
- inner loop: determine minimizing point on the line defined by current search position and search direction
- inner loop can be realized by any minimization algorithm for one-dimensional tasks
- advantage: inner loop algorithm may be more complex algorithm, e.g.
 Newton



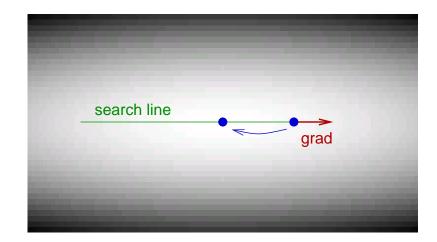
 problem: time consuming for high-dimensional spaces

Beyond gradient descent (cont.)

line search algorithms:

two nested loops:

- outer loop: determine serach direction from gradient
- inner loop: determine minimizing point on the line defined by current search position and search direction
- inner loop can be realized by any minimization algorithm for one-dimensional tasks
- advantage: inner loop algorithm may be more complex algorithm, e.g.
 Newton



 problem: time consuming for high-dimensional spaces

Summary: optimization theory

several algorithms to solve problems of the form:

 $\underset{\vec{u}}{minimize} \ f(\vec{u})$

- gradient descent gives the main idea
- Rprop plays major role in context of MLPs
- dozens of variants and alternatives exist

Back to MLP Training

training an MLP means solving:

$$\underset{\vec{w}}{\textit{minimize }} E(\vec{w}; \mathcal{D})$$

for given network topology and training data ${\cal D}$

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

Back to MLP Training

training an MLP means solving:

$$\underset{\vec{w}}{\textit{minimize }} E(\vec{w}; \mathcal{D})$$

for given network topology and training data $\ensuremath{\mathcal{D}}$

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of E?

Calculating partial derivatives

- ► the calculation of the network output of a MLP is done step-by-step: neuron i uses the output of neurons $j \in Pred(i)$ as arguments, calculates some output which serves as argument for all neurons $j \in Succ(i)$.
- apply the chain rule!

$$E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} \left(\frac{1}{2} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2\right)$$

introducing $e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} ||y(\vec{x}; \vec{w}) - \vec{d}||^2$ we can write:

the error term

$$E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} \left(\frac{1}{2} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2\right)$$

introducing $e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} ||y(\vec{x}; \vec{w}) - \vec{d}||^2$ we can write:

$$E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)})$$

applying the rule for sums:

$$E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} \left(\frac{1}{2} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2\right)$$

introducing $e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} ||y(\vec{x}; \vec{w}) - \vec{d}||^2$ we can write:

$$E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)})$$

applying the rule for sums:

$$\frac{\partial E(\vec{w}; \mathcal{D})}{\partial w_{kl}} = \sum_{i=1}^{p} \frac{\partial e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)})}{\partial w_{kl}}$$

we can calculate the derivatives for each training pattern individally and sum up

- > individual error terms for a pattern \vec{x}, \vec{d} simplifications in notation:
 - omitting dependencies from \vec{x} and \vec{d}
 - $y(\vec{w}) = (y_1, \ldots, y_m)^T$ network output (when applying input pattern \vec{x})

individual error term:

$$e(\vec{w}) = \frac{1}{2} ||y(\vec{x}; \vec{w}) - \vec{d}||^2 = \frac{1}{2} \sum_{j=1}^{m} (y_j - d_j)^2$$

by direct calculation:

$$\frac{\partial e}{\partial y_j} = (y_j - d_j)$$

 y_j is the activation of a certain output neuron, say a_i Hence:

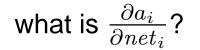
$$\frac{\partial e}{\partial a_i} = \frac{\partial e}{\partial y_j} = (a_i - d_j)$$

- calculations within a neuron i

assume we already know $\frac{\partial e}{\partial a_i}$

observation: *e* depends indirectly from a_i and a_i depends on net_i \Rightarrow apply chain rule

∂e _	∂e	∂a_i
$\overline{\partial net_i}$ –	$\overline{\partial a_i}$	$\overline{\partial net_i}$



∂a_i	 $\partial f_{act}(net_i)$
∂net_i	 ∂net_i

$$\frac{\partial a_i}{\partial net_i} = \frac{\partial f_{act}(net_i)}{\partial net_i}$$

• linear activation:
$$f_{act}(net_i) = net_i$$

 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = 1$

$$\frac{\partial a_i}{\partial net_i} = \frac{\partial f_{act}(net_i)}{\partial net_i}$$

• linear activation:
$$f_{act}(net_i) = net_i$$

 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = 1$
• logistic activation: $f_{act}(net_i) = \frac{1}{1+e^{-net_i}}$
 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = \frac{e^{-net_i}}{(1+e^{-net_i})^2} = f_{log}(net_i) \cdot (1 - f_{log}(net_i))$

$$\frac{\partial a_i}{\partial net_i} = \frac{\partial f_{act}(net_i)}{\partial net_i}$$

• linear activation:
$$f_{act}(net_i) = net_i$$

 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = 1$
• logistic activation: $f_{act}(net_i) = \frac{1}{1+e^{-net_i}}$
 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = \frac{e^{-net_i}}{(1+e^{-net_i})^2} = f_{log}(net_i) \cdot (1 - f_{log}(net_i))$
• tanh activation: $f_{act}(net_i) = \tanh(net_i)$
 $\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = 1 - (\tanh(net_i))^2$

from neuron to neuron

assume we already know $\frac{\partial e}{\partial \operatorname{net}_j}$ for all $j \in \operatorname{Succ}(i)$

observation: *e* depends indirectly from net_j of successor neurons and net_j depends on $a_i \Rightarrow$ apply chain rule

from neuron to neuron

assume we already know $\frac{\partial e}{\partial \operatorname{net}_j}$ for all $j \in \operatorname{Succ}(i)$

observation: *e* depends indirectly from net_j of successor neurons and net_j depends on $a_i \Rightarrow$ apply chain rule

$$\frac{\partial e}{\partial a_i} = \sum_{j \in Succ(i)} \left(\frac{\partial e}{\partial net_j} \cdot \frac{\partial net_j}{\partial a_i} \right)$$

from neuron to neuron

assume we already know $\frac{\partial e}{\partial \operatorname{net}_j}$ for all $j \in \operatorname{Succ}(i)$

observation: *e* depends indirectly from net_j of successor neurons and net_j depends on $a_i \Rightarrow$ apply chain rule

$$\frac{\partial e}{\partial a_i} = \sum_{j \in Succ(i)} \left(\frac{\partial e}{\partial net_j} \cdot \frac{\partial net_j}{\partial a_i} \right)$$

and:

$$net_j = w_{ji}a_i + \dots$$

hence:

$$\frac{\partial net_j}{\partial a_i} = w_{ji}$$

the weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron *i* and neuron *j* is predecessor of *i* observation: *e* depends indirectly from net_i and net_i depends on w_{ij} \Rightarrow apply chain rule

the weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron *i* and neuron *j* is predecessor of *i* observation: *e* depends indirectly from net_i and net_i depends on w_{ij} \Rightarrow apply chain rule

∂e _	∂e	∂net_i
$\overline{\partial w_{ij}}$ -	$\overline{\partial net_i}$	$\overline{\partial w_{ij}}$

the weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron *i* and neuron *j* is predecessor of *i* observation: *e* depends indirectly from net_i and net_i depends on w_{ij} \Rightarrow apply chain rule

∂e _	∂e	∂net_i
$\overline{\partial w_{ij}}$ -	$\overline{\partial net_i}$	$\overline{\partial w_{ij}}$

and:

$$net_i = w_{ij}a_j + \dots$$

hence:

$$\frac{\partial net_i}{\partial w_{ij}} = a_j$$

bias weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron i

observation: *e* depends indirectly from net_i and net_i depends on w_{i0} \Rightarrow apply chain rule

bias weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron i

observation: *e* depends indirectly from net_i and net_i depends on w_{i0} \Rightarrow apply chain rule

∂e _	∂e	∂net_i
$\overline{\partial w_{i0}}$ -	$\overline{\partial net_i}$	$\overline{\partial w_{i0}}$

bias weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron i

observation: *e* depends indirectly from net_i and net_i depends on w_{i0} \Rightarrow apply chain rule

∂e _	∂e	∂net_i
$\overline{\partial w_{i0}}$ -	$\overline{\partial net_i}$	$\overline{\partial w_{i0}}$

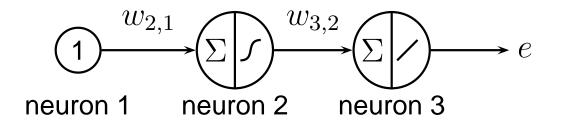
and:

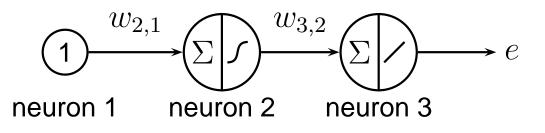
$$net_i = w_{i0} + \dots$$

hence:

$$\frac{\partial net_i}{\partial w_{i0}} = 1$$

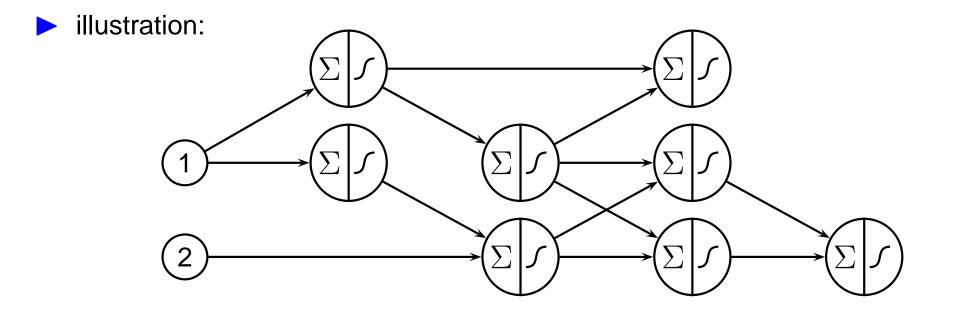
a simple example:

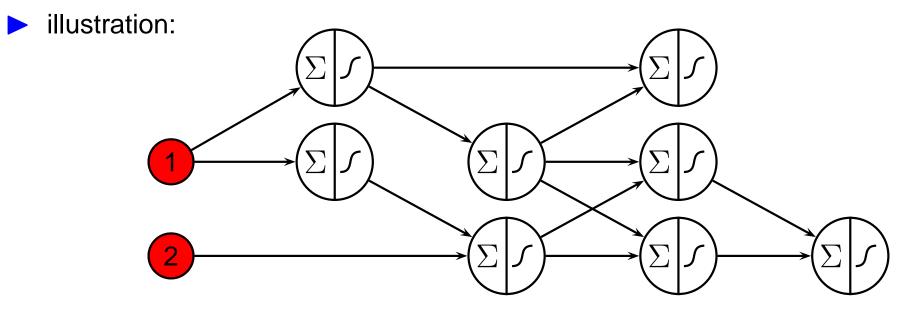




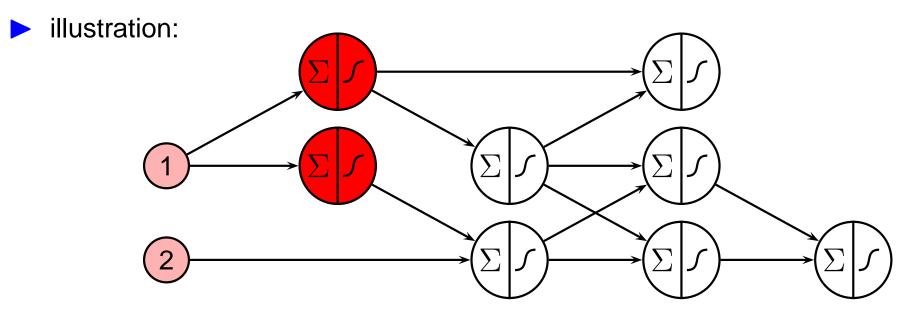
$$\begin{aligned} \frac{\partial e}{\partial a_3} &= a_3 - d_1 \\ \frac{\partial e}{\partial net_3} &= \frac{\partial e}{\partial a_3} \cdot \frac{\partial a_3}{\partial net_3} = \frac{\partial e}{\partial a_3} \cdot 1 \\ \frac{\partial e}{\partial a_2} &= \sum_{j \in Succ(2)} \left(\frac{\partial e}{\partial net_j} \cdot \frac{\partial net_j}{\partial a_2} \right) = \frac{\partial e}{\partial net_3} \cdot w_{3,2} \\ \frac{\partial e}{\partial net_2} &= \frac{\partial e}{\partial a_2} \cdot \frac{\partial a_2}{\partial net_2} = \frac{\partial e}{\partial a_2} \cdot a_2 (1 - a_2) \\ \frac{\partial e}{\partial w_{3,2}} &= \frac{\partial e}{\partial net_3} \cdot \frac{\partial net_3}{\partial w_{3,2}} = \frac{\partial e}{\partial net_3} \cdot a_2 \\ \frac{\partial e}{\partial w_{2,1}} &= \frac{\partial e}{\partial net_2} \cdot \frac{\partial net_2}{\partial w_{2,1}} = \frac{\partial e}{\partial net_3} \cdot a_1 \\ \frac{\partial e}{\partial w_{3,0}} &= \frac{\partial e}{\partial net_3} \cdot \frac{\partial net_3}{\partial w_{3,0}} = \frac{\partial e}{\partial net_3} \cdot 1 \\ \frac{\partial e}{\partial w_{2,0}} &= \frac{\partial e}{\partial net_2} \cdot \frac{\partial net_2}{\partial w_{2,0}} = \frac{\partial e}{\partial net_2} \cdot 1 \end{aligned}$$

- calculating the partial derivatives:
 - starting at the output neurons
 - neuron by neuron, go from output to input
 - finally calculate the partial derivatives with respect to the weights
- Backpropagation

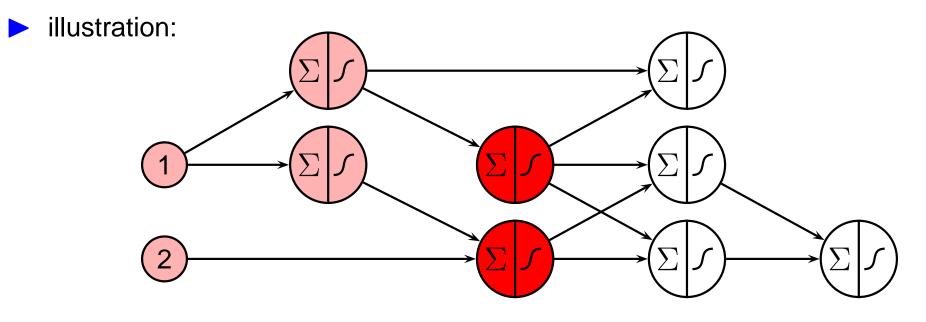




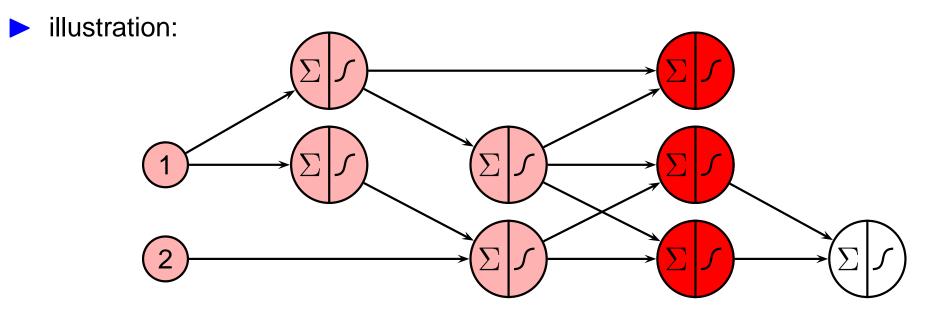
• apply pattern $\vec{x} = (x_1, x_2)^T$



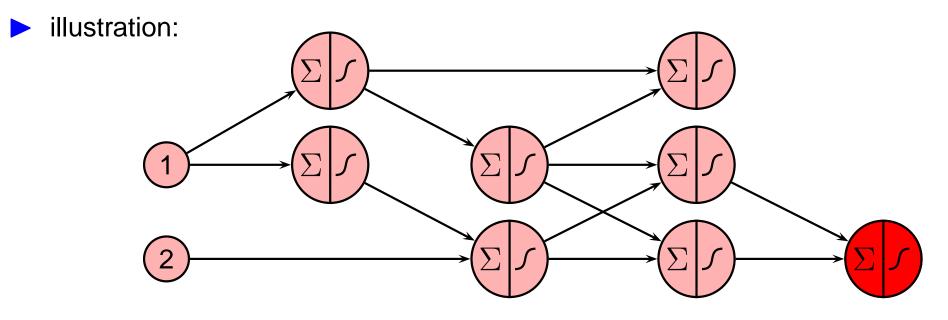
- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations:



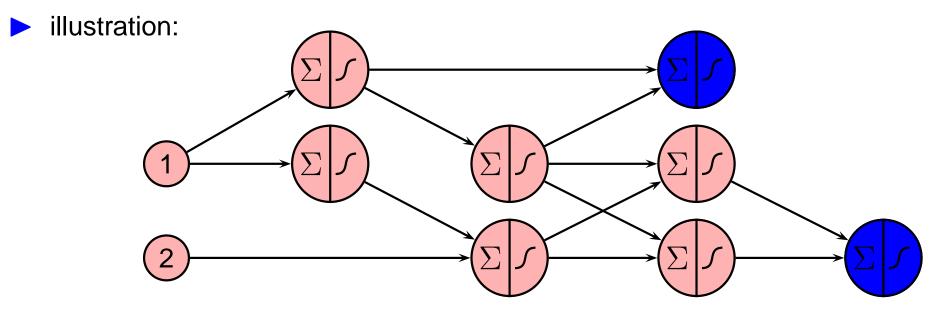
- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step



- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by

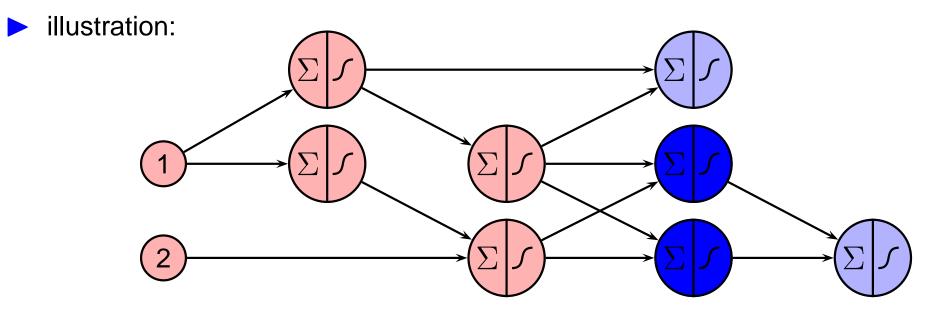


- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step

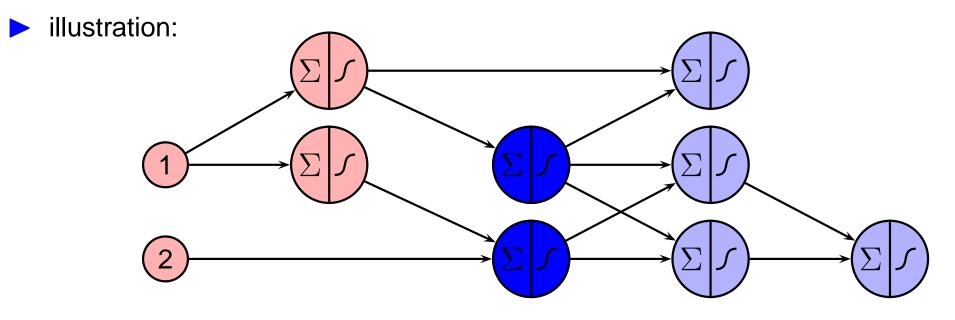


• apply pattern $\vec{x} = (x_1, x_2)^T$

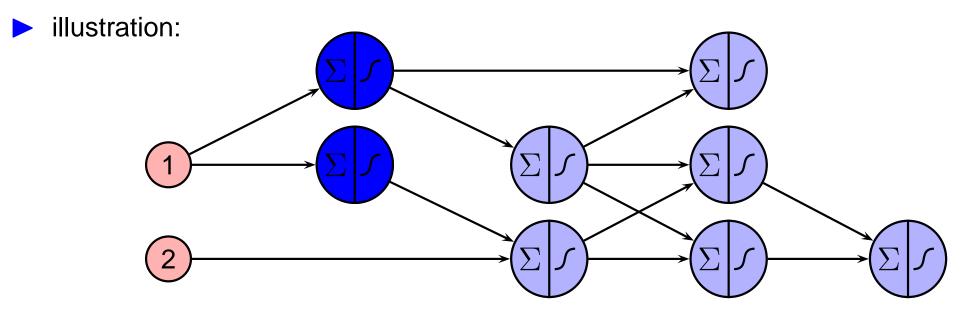
- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons



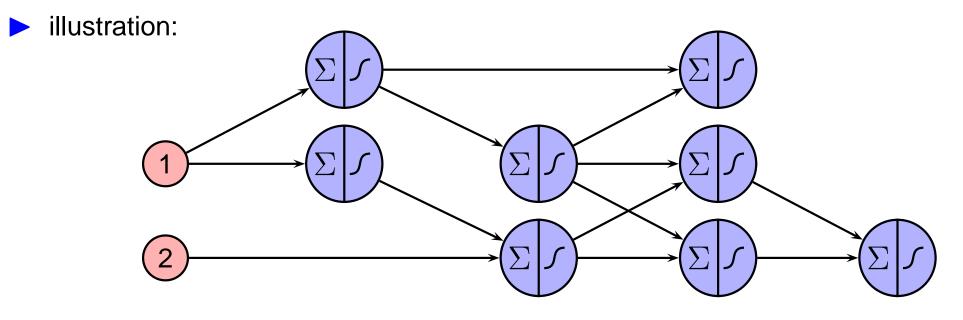
- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons
- propagate backward error: step



- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons
- propagate backward error: step by



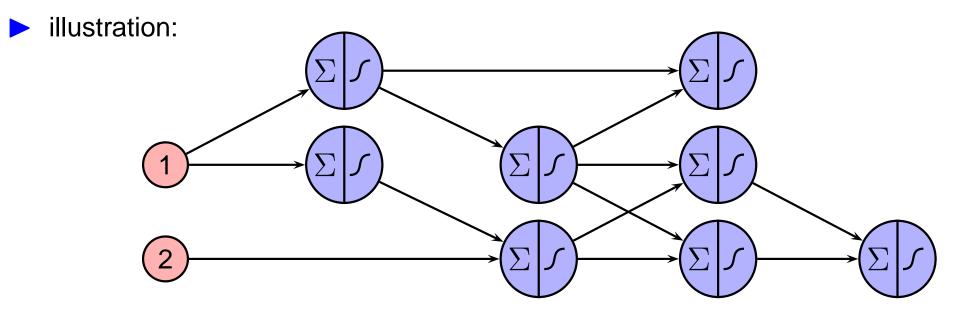
- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons
- propagate backward error: step by step



• apply pattern $\vec{x} = (x_1, x_2)^T$

- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons
- propagate backward error: step by step

• calculate
$$\frac{\partial e}{\partial w_{ji}}$$



• apply pattern $\vec{x} = (x_1, x_2)^T$

- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial net_i}$ for output neurons
- propagate backward error: step by step
- calculate $\frac{\partial e}{\partial w_{ji}}$
- repeat for all patterns and sum up

Back to MLP Training

- bringing together building blocks of MLP learning:
 - we can calculate $\frac{\partial E}{\partial w_{ij}}$
 - we have discussed methods to minimize a differentiable mathematical function

Back to MLP Training

- bringing together building blocks of MLP learning:
 - we can calculate $\frac{\partial E}{\partial w_{ii}}$
 - we have discussed methods to minimize a differentiable mathematical function
- combining them yields a learning algorithm for MLPs:
 - (standard) backpropagation = gradient descent combined with calculating $\frac{\partial E}{\partial w_{ij}}$ for MLPs
 - backpropagation with momentum = gradient descent with moment combined with calculating $\frac{\partial E}{\partial w_{ij}}$ for MLPs
 - Quickprop
 - Rprop
 - ...

Back to MLP Training (cont.)

- generic MLP learning algorithm:
 - 1: choose an initial weight vector \vec{w}
 - 2: intialize minimization approach
 - 3: while error did not converge do
 - 4: for all $(\vec{x}, \vec{d}) \in \mathcal{D}$ do
 - 5: apply \vec{x} to network and calculate the network output

6: calculate
$$\frac{\partial e(\vec{x})}{\partial w_{ij}}$$
 for all weights

7: end for

8: calculate $\frac{\partial E(\mathcal{D})}{\partial w_{ij}}$ for all weights suming over all training patterns

9: perform one update step of the minimization approach

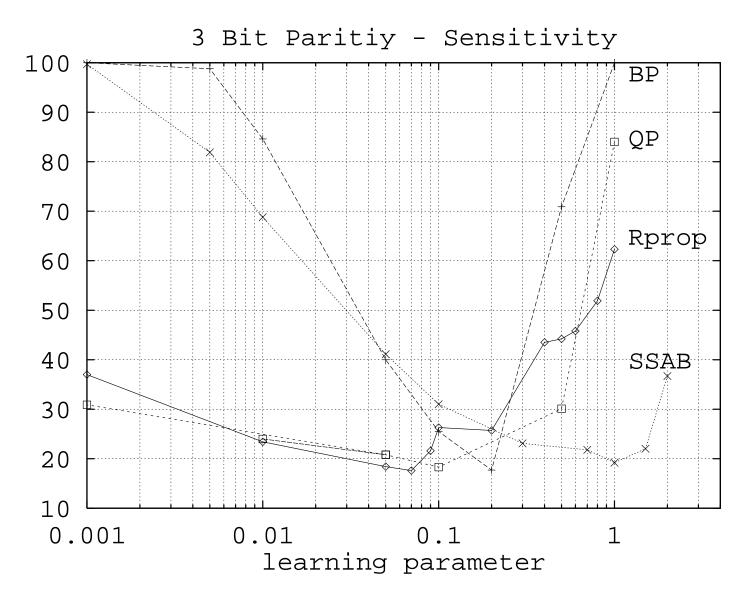
10: end while

learning by epoch: all training patterns are considered for one update step of function minimization

Back to MLP Training (cont.)

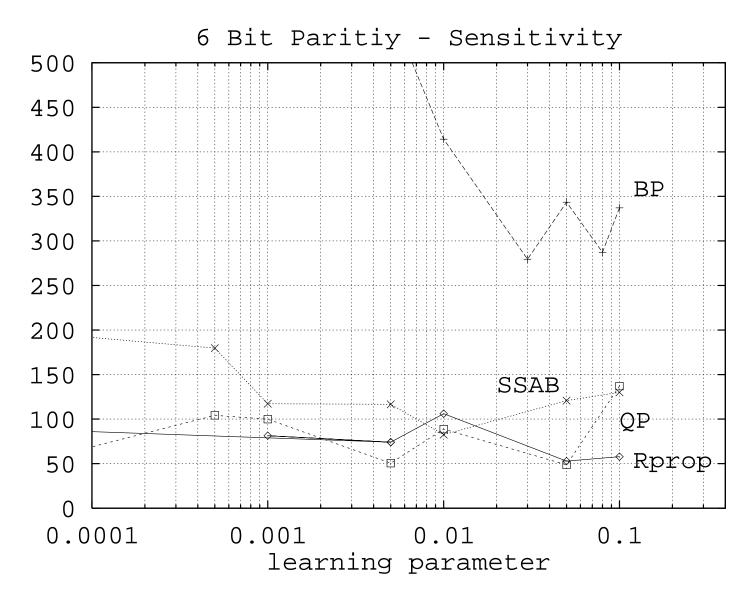
- generic MLP learning algorithm:
 - 1: choose an initial weight vector \vec{w}
 - 2: intialize minimization approach
 - 3: while error did not converge do
 - 4: for all $(\vec{x}, \vec{d}) \in \mathcal{D}$ do
 - 5: apply \vec{x} to network and calculate the network output
 - 6: calculate $\frac{\partial e(\vec{x})}{\partial w_{ij}}$ for all weights
 - 7: perform one update step of the minimization approach
 - 8: end for
 - 9: end while
- learning by pattern: only one training patterns is considered for one update step of function minimization (only works with vanilla gradient descent!)

Lernverhalten und Parameterwahl - 3 Bit Parity

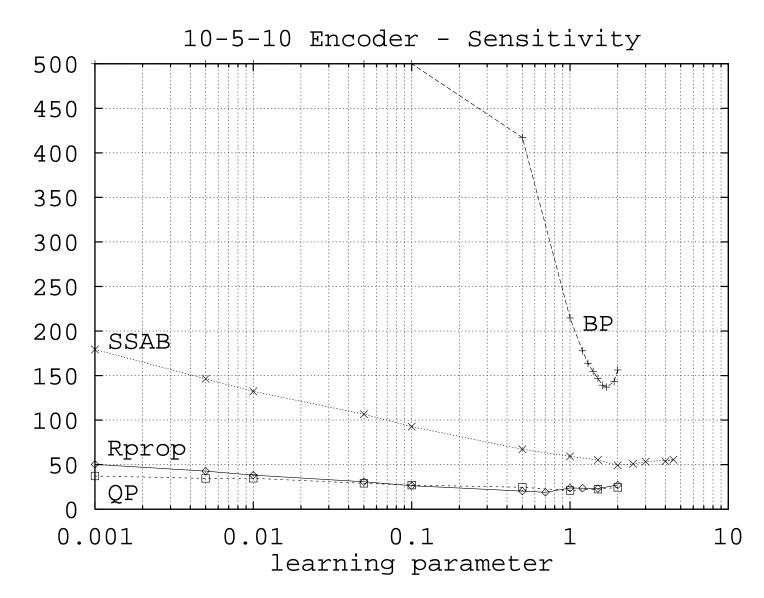


Machine Learning: Multi Layer Perceptrons - p.52/61

Lernverhalten und Parameterwahl - 6 Bit Parity

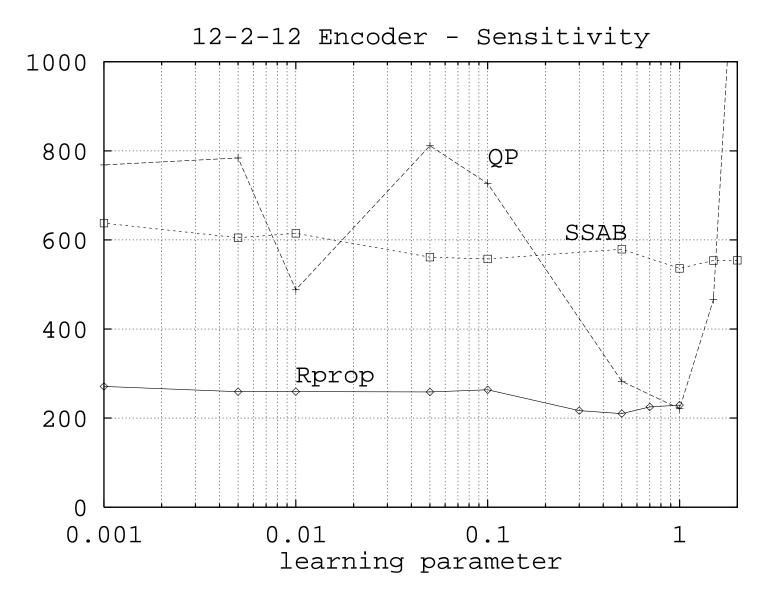


Lernverhalten und Parameterwahl - 10 Encoder



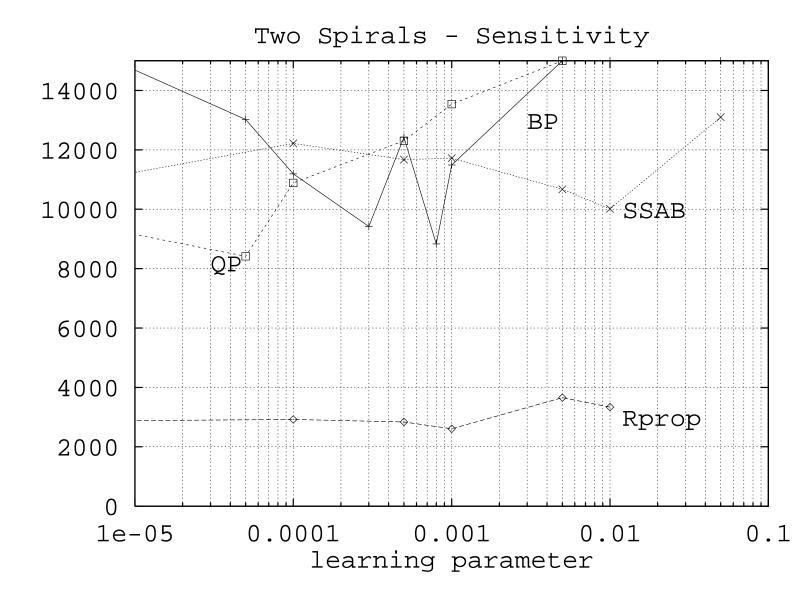
Machine Learning: Multi Layer Perceptrons - p.54/61

Lernverhalten und Parameterwahl - 12 Encoder



Machine Learning: Multi Layer Perceptrons – p.55/61

Lernverhalten und Parameterwahl - 'two sprials'



Real-world examples: sales rate prediction

- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day
- it is sold in 110 000 sales outlets in Germany, differing in a lot of facets

Real-world examples: sales rate prediction

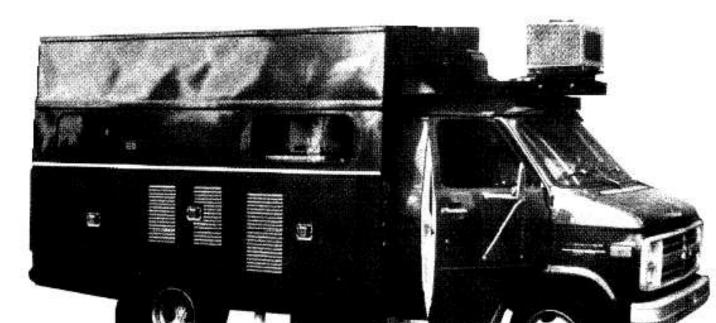
- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day
- it is sold in 110 000 sales outlets in Germany, differing in a lot of facets
- problem: how many copies are sold in which sales outlet?

Real-world examples: sales rate prediction

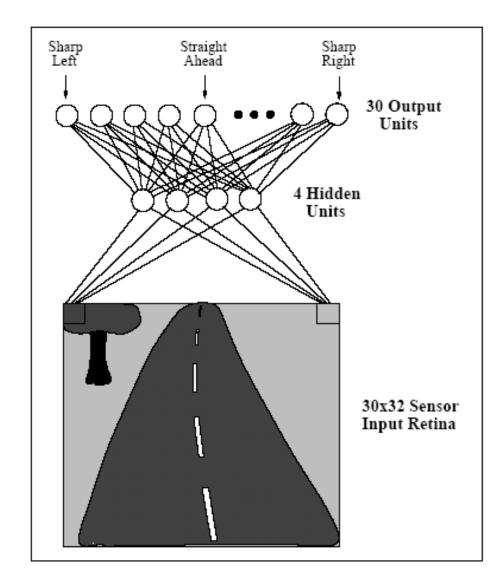
- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day
- it is sold in 110 000 sales outlets in Germany, differing in a lot of facets
- problem: how many copies are sold in which sales outlet?
- neural approach: train a neural network for each sales outlet, neural network predicts next week's sales rates
- system in use since mid of 1990s

Examples: Alvinn (Dean, Pommerleau, 1992)

- autonomous vehicle driven by a multi-layer perceptron
- input: raw camera image
- output: steering wheel angle
- generation of training data by a human driver
- drives up to 90 km/h
- 15 frames per second



Alvinn MLP structure



Alvinn Training aspects

- training data must be 'diverse'
- training data should be balanced (otherwise e.g. a bias towards steering left might exist)
- if human driver makes errors, the training data contains errors
- if human driver makes no errors, no information about how to do corrections is available
- generation of artificial training data by shifting and rotating images

Summary

- MLPs are broadly applicable ML models
- continuous features, continuos outputs
- suited for regression and classification
- learning is based on a general principle: gradient descent on an error function
- powerful learning algorithms exist
- \blacktriangleright likely to overfit \Rightarrow regularisation methods