
Introduction to Neuroinformatics:

Winner-takes-all Networks

Prof. Dr. Martin Riedmiller

University of Osnabrück

Institute of Computer Science and Institute of Cognitive Science

Introduction to Neuroinformatics: Winner-takes-all Networks – p.1/55

Outline

◮ winner-takes-all networks (WTAN), general principle

◮ WTAN for unsupervised learning

◮ k-means clustering

◮ WTAN for classification

◮ WTAN for structure learning

Introduction to Neuroinformatics: Winner-takes-all Networks – p.2/55

Principle task

◮ given: a set of points (patterns) in
R

n, no labels, no target values

Introduction to Neuroinformatics: Winner-takes-all Networks – p.3/55

Principle task

◮ given: a set of points (patterns) in
R

n, no labels, no target values

◮ goal: find some representatives
(points in R

n, prototypes) that are
closest to the patterns

Introduction to Neuroinformatics: Winner-takes-all Networks – p.3/55

Principle task

◮ given: a set of points (patterns) in
R

n, no labels, no target values

◮ goal: find some representatives
(points in R

n, prototypes) that are
closest to the patterns

◮ position of prototypes should
minimize the distance from patterns
to closest prototype

Introduction to Neuroinformatics: Winner-takes-all Networks – p.3/55

Principle task

◮ given: a set of points (patterns) in
R

n, no labels, no target values

◮ goal: find some representatives
(points in R

n, prototypes) that are
closest to the patterns

◮ position of prototypes should
minimize the distance from patterns
to closest prototype

◮ each prototype has an “influence
area”, all points in R

n which are
closer to it than to any other
prototype

Introduction to Neuroinformatics: Winner-takes-all Networks – p.3/55

Principle task

◮ given: a set of points (patterns) in
R

n, no labels, no target values

◮ goal: find some representatives
(points in R

n, prototypes) that are
closest to the patterns

◮ position of prototypes should
minimize the distance from patterns
to closest prototype

◮ each prototype has an “influence
area”, all points in R

n which are
closer to it than to any other
prototype

◮ this principle is called vector
quantization, it is a kind of
clustering

◮ the influence areas are called
Voronoi cells

Introduction to Neuroinformatics: Winner-takes-all Networks – p.3/55

Winner takes all networks

◮ Winner-takes-all networks (WTAN)
are a neural representation of the
idea of vector quantization.

Introduction to Neuroinformatics: Winner-takes-all Networks – p.4/55

Winner takes all networks

◮ Winner-takes-all networks (WTAN)
are a neural representation of the
idea of vector quantization.

◮ two layers: input layer, output layer

◮ weighted connections from each
input neuron to each output neuron,
no bias weights

◮ the i-th output neuron represents
the i-th prototype vector

~w(i) = (wi,1, . . . , wi,n)T

Introduction to Neuroinformatics: Winner-takes-all Networks – p.4/55

Winner takes all networks
(cont.)

◮ network input of i-th output neuron:

neti = ||~x − ~w(i)||2, Euclidean
distance between input pattern and
i-th prototype

||~x − ~w(i)||2 =
〈

~x − ~w(i), ~x − ~w(i)
〉

Introduction to Neuroinformatics: Winner-takes-all Networks – p.5/55

Winner takes all networks
(cont.)

◮ network input of i-th output neuron:

neti = ||~x − ~w(i)||2, Euclidean
distance between input pattern and
i-th prototype

||~x − ~w(i)||2 =
〈

~x − ~w(i), ~x − ~w(i)
〉

◮ activation of i-th neuron:

ai =

{

1 if i = arg minj netj

0 otherwise

winner-takes-all principle,
1-out-of-m coding

Introduction to Neuroinformatics: Winner-takes-all Networks – p.5/55

Winner takes all networks
(cont.)

◮ network input of i-th output neuron:

neti = ||~x − ~w(i)||2, Euclidean
distance between input pattern and
i-th prototype

||~x − ~w(i)||2 =
〈

~x − ~w(i), ~x − ~w(i)
〉

◮ activation of i-th neuron:

ai =

{

1 if i = arg minj netj

0 otherwise

winner-takes-all principle,
1-out-of-m coding

◮ applying a pattern ~x the WTAN

determines the prototype ~w(i) with
the smallest distance to ~x

Introduction to Neuroinformatics: Winner-takes-all Networks – p.5/55

Winner takes all networks
(cont.)

◮ example:

prototypes: ~w(1) =

1

2

−1

, ~w(2) =

−3

−2

0

, ~w(3) =

0

2

4

pattern: ~x =

−1

2

1

Introduction to Neuroinformatics: Winner-takes-all Networks – p.6/55

Winner takes all networks
(cont.)

◮ example:

prototypes: ~w(1) =

1

2

−1

, ~w(2) =

−3

−2

0

, ~w(3) =

0

2

4

pattern: ~x =

−1

2

1

squared distances:

||~x − ~w(1)||2 = 8

||~x − ~w(2)||2 = 21

||~x − ~w(3)||2 = 10

Introduction to Neuroinformatics: Winner-takes-all Networks – p.6/55

Winner takes all networks
(cont.)

◮ example:

prototypes: ~w(1) =

1

2

−1

, ~w(2) =

−3

−2

0

, ~w(3) =

0

2

4

pattern: ~x =

−1

2

1

squared distances:

||~x − ~w(1)||2 = 8

||~x − ~w(2)||2 = 21

||~x − ~w(3)||2 = 10

winner is first prototype, network output is (1, 0, 0)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.6/55

Vector quantization:
unsupervised case

◮ given: training patterns D = {~x(1), . . . , ~x(p)}, number of prototypes m

◮ task: find m prototypes that represent the training set optimally

Introduction to Neuroinformatics: Winner-takes-all Networks – p.7/55

Vector quantization:
unsupervised case

◮ given: training patterns D = {~x(1), . . . , ~x(p)}, number of prototypes m

◮ task: find m prototypes that represent the training set optimally

◮ idea: learning by pushing the prototypes towards the patterns

Introduction to Neuroinformatics: Winner-takes-all Networks – p.7/55

Vector quantization:
unsupervised case

◮ given: training patterns D = {~x(1), . . . , ~x(p)}, number of prototypes m

◮ task: find m prototypes that represent the training set optimally

◮ idea: learning by pushing the prototypes towards the patterns

◮ (naive) VQ algorithm:

1: loop
2: for all ~x ∈ D do
3: calculate closest prototype j

4: push ~w(j) towards ~x: ~w(j) ← ~w(j) + ǫ(~x − ~w(j))
5: end for
6: end loop

ǫ > 0 is the learning rate, decreasing

Introduction to Neuroinformatics: Winner-takes-all Networks – p.7/55

Vector quantization:
unsupervised case (cont.)

◮ analyzing the VQ algorithm update rule:

~w(j) ← ~w(j) + ǫ(~x − ~w(j))

resembles a gradient descent update rule if we interpret −(~x − ~w(j)) as the
gradient of an error function that we want to minimize

Introduction to Neuroinformatics: Winner-takes-all Networks – p.8/55

Vector quantization:
unsupervised case (cont.)

◮ analyzing the VQ algorithm update rule:

~w(j) ← ~w(j) + ǫ(~x − ~w(j))

resembles a gradient descent update rule if we interpret −(~x − ~w(j)) as the
gradient of an error function that we want to minimize

◮ by integration with respect to ~w(j) we get:

e(~x; ~w(j)) =
1

2
||~x − ~w(j)||2

(→ check that for this function the gradient is −(~x − ~w(j)))

Introduction to Neuroinformatics: Winner-takes-all Networks – p.8/55

Vector quantization:
unsupervised case (cont.)

◮ analyzing the VQ algorithm update rule:

~w(j) ← ~w(j) + ǫ(~x − ~w(j))

resembles a gradient descent update rule if we interpret −(~x − ~w(j)) as the
gradient of an error function that we want to minimize

◮ by integration with respect to ~w(j) we get:

e(~x; ~w(j)) =
1

2
||~x − ~w(j)||2

(→ check that for this function the gradient is −(~x − ~w(j)))

◮ by periodically applying all training patterns VQ realizes a learning by pattern
gradient descent approach

Introduction to Neuroinformatics: Winner-takes-all Networks – p.8/55

Vector quantization:
unsupervised case (cont.)

◮ the corresponding learning by epoch approach would minimize the error
term:

E(D; {~w(1), . . . , ~w(m)}) =

p
∑

i=1

e(~x(i); ~w(closest(i)))

=
1

2

p
∑

i=1

||~x(i) − ~w(closest(i))||2

(problem in detail: what happens on boundaries of Voronoi cells?)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.9/55

Vector quantization:
unsupervised case (cont.)

◮ the corresponding learning by epoch approach would minimize the error
term:

E(D; {~w(1), . . . , ~w(m)}) =

p
∑

i=1

e(~x(i); ~w(closest(i)))

=
1

2

p
∑

i=1

||~x(i) − ~w(closest(i))||2

(problem in detail: what happens on boundaries of Voronoi cells?)

◮ hence, VQ performs stochastic gradient descent minimizing the quantization

error E(D; {~w(1), . . . , ~w(m)}).

Introduction to Neuroinformatics: Winner-takes-all Networks – p.9/55

Vector quantization:
unsupervised case (cont.)

◮ practical problems of “vanilla” VQ for unsupervised learning:

• result heavily depends on initial prototypes

• easily gets stuck in local minima of E

• some prototypes are never moved/do not represent any pattern

• prototypes may be located half-way between several clusters

• the number of prototypes must be defined in advance

• an appropriate learning rate/decrease of learning rate is difficult to find

⇒ several modifications to improve learning

Introduction to Neuroinformatics: Winner-takes-all Networks – p.10/55

k-means: speeding up VQ

◮ observation: assume the assignment from patterns to prototypes is fix: h(i).
Then the error becomes:

E(D; {~w(1), . . . , ~w(m)}) =
1

2

p
∑

i=1

||~x(i) − ~w(h(i))||2

In this case we can analytically find the minimum:

~w(j) =
1

|{i|h(i) = j}|

∑

i|h(i)=j

~x(i)

i.e. the mean of the patterns solves the problem

◮ we can replace gradient descent by analytical calculations

Introduction to Neuroinformatics: Winner-takes-all Networks – p.11/55

k-means: speeding up VQ
(cont.)

◮ k-means algorithm:

1: repeat
2: for all ~x(i) ∈ D do
3: calculate closest prototype h(i)
4: end for
5: for all prototypes ~w(j) do
6: calculate mean of assigned patterns ~w(j) ← 1

|{i|h(i)=j}|
∑

i|h(i)=j ~x(i)

7: end for
8: until assignments did not change

Introduction to Neuroinformatics: Winner-takes-all Networks – p.12/55

k-means: speeding up VQ
(cont.)

◮ Lemma (convergence):
The k-means algorithm always converges within finite time. The quantization
error E decreases during learning until the algorithm has found a local
minimum of E.

Introduction to Neuroinformatics: Winner-takes-all Networks – p.13/55

k-means: speeding up VQ
(cont.)

◮ Lemma (convergence):
The k-means algorithm always converges within finite time. The quantization
error E decreases during learning until the algorithm has found a local
minimum of E.

Proof:
We have already seen that the mean is the optimal position for a prototype
representing a fixed set of patterns. This argument applys to all Voronoi
cells, i.e. the optimal place for a prototype representing all patterns within the
cell is the mean of the patterns. Hence, moving prototypes to the mean
decreases E. Since the number of possible partitionings of the pattern set is
finite and E decreases, the algorithm stops after a finite numer of iterations.
Finally, the prototypes are in the optimal place with respect to the resulting
partitioning.

Introduction to Neuroinformatics: Winner-takes-all Networks – p.13/55

VQ and k-means

◮ both approaches minimize the quantization error E

◮ both approaches get stuck in local optima

◮ k-means is a batch mode type algorithm

◮ VQ is a stochastic gradient descent approach

◮ k-means is much faster than VQ and does not need a learning rate

◮ typically, k-means is used when all patterns are given in advance,
VQ is used when patterns continuously arrive over time, e.g. for online
processing of an incoming data stream.

Introduction to Neuroinformatics: Winner-takes-all Networks – p.14/55

Neural Gas

◮ common problem with VQ: some
prototypes are unused while others
represent several clusters

◮ principle “only update the closest
prototyp” fails, results depend
heavily on initialization

Introduction to Neuroinformatics: Winner-takes-all Networks – p.15/55

Neural Gas

◮ common problem with VQ: some
prototypes are unused while others
represent several clusters

◮ principle “only update the closest
prototyp” fails, results depend
heavily on initialization

◮ what we need: first, prototypes
must be moved into the interesting
area, then they should concentrate
on clusters within the interesting
area

Introduction to Neuroinformatics: Winner-takes-all Networks – p.15/55

Neural Gas

◮ common problem with VQ: some
prototypes are unused while others
represent several clusters

◮ principle “only update the closest
prototyp” fails, results depend
heavily on initialization

◮ what we need: first, prototypes
must be moved into the interesting
area, then they should concentrate
on clusters within the interesting
area

Introduction to Neuroinformatics: Winner-takes-all Networks – p.15/55

Neural Gas

◮ common problem with VQ: some
prototypes are unused while others
represent several clusters

◮ principle “only update the closest
prototyp” fails, results depend
heavily on initialization

◮ what we need: first, prototypes
must be moved into the interesting
area, then they should concentrate
on clusters within the interesting
area

Introduction to Neuroinformatics: Winner-takes-all Networks – p.15/55

Neural Gas

◮ common problem with VQ: some
prototypes are unused while others
represent several clusters

◮ principle “only update the closest
prototyp” fails, results depend
heavily on initialization

◮ what we need: first, prototypes
must be moved into the interesting
area, then they should concentrate
on clusters within the interesting
area

◮ Neural gas (Martinetz&Schulten 1991)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.15/55

Neural gas
(cont.)

◮ idea: always move all prototypes depending on the ranking of distances

1: loop
2: for all ~x ∈ D do
3: for all prototypes ~w(j) do
4: calculate squared distance dj ← ||~x − ~w(j)||2

5: end for
6: sort d1, . . . , dm in ascending order
7: let be rj rank within sorted list of distances

8: for all prototypes ~w(j) do

9: push ~w(j) towards ~x: ~w(j) ← ~w(j) + ǫe−
rj−1

λ (~x − ~w(j))
10: end for
11: end for
12: end loop

ǫ > 0 is the learning rate, decreasing, λ > 0 parameter, decreasing

Introduction to Neuroinformatics: Winner-takes-all Networks – p.16/55

Neural gas
(cont.)

◮ example:

~w(1) = (1, 2,−1)T ,

~w(2) = (−3,−2, 0)T ,

~w(3) = (0, 2, 4)T

~x = (−1, 2, 1)T

Introduction to Neuroinformatics: Winner-takes-all Networks – p.17/55

Neural gas
(cont.)

◮ example:

~w(1) = (1, 2,−1)T ,

~w(2) = (−3,−2, 0)T ,

~w(3) = (0, 2, 4)T

~x = (−1, 2, 1)T

squared distances:

||~x − ~w(1)||2 = 8

||~x − ~w(2)||2 = 21

||~x − ~w(3)||2 = 10

ranking: r1 = 1, r2 = 3, r3 = 2

Introduction to Neuroinformatics: Winner-takes-all Networks – p.17/55

Neural gas
(cont.)

◮ example:

~w(1) = (1, 2,−1)T ,

~w(2) = (−3,−2, 0)T ,

~w(3) = (0, 2, 4)T

~x = (−1, 2, 1)T

squared distances:

||~x − ~w(1)||2 = 8

||~x − ~w(2)||2 = 21

||~x − ~w(3)||2 = 10

ranking: r1 = 1, r2 = 3, r3 = 2

updates (ǫ = 0.1, λ = 1):

~w(1) ← ~w(1)+0.1 ·e−
0
1 (~x− ~w(1))

= (0.8, 2,−0.8)T

~w(2) ← ~w(2)+0.1 ·e−
2
1 (~x− ~w(2))

= (−2.97,−1.95, 0.01)T

~w(3) ← ~w(3)+0.1 ·e−
1
1 (~x− ~w(3))

= (−0.04, 1.85, 3.89)T

Introduction to Neuroinformatics: Winner-takes-all Networks – p.17/55

Neural gas
(cont.)

◮ the factor e−
rj−1

λ

λ controls how much prototypes with rank≥ 2 are moved towards ~x

large λ ⇒ all prototypes are moved considerably
small λ ⇒ only low rank prototypes are moved considerably

λ=10

λ=0.1
λ=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Introduction to Neuroinformatics: Winner-takes-all Networks – p.18/55

Neural gas
(cont.)

◮ parameter λ (connectivity): typically start with large value and decrease over
time

◮ parameter ǫ (learning rate): same as for VQ, decrease over time

Introduction to Neuroinformatics: Winner-takes-all Networks – p.19/55

Neural gas
(cont.)

◮ parameter λ (connectivity): typically start with large value and decrease over
time

◮ parameter ǫ (learning rate): same as for VQ, decrease over time

◮ error function:

E(D; {~w(1), . . . , ~w(m)}) =
1

2

p
∑

i=1

m
∑

j=1

e−
rj(i)−1

λ ||~x(i) − ~w(j)||2

converges to error function of VQ for λ → 0

◮ a batch learning algorithm (similar to k-means) exists

Introduction to Neuroinformatics: Winner-takes-all Networks – p.19/55

Learning vector quantization: classification

◮ VQ can be extended for classification tasks
⇒ Learning vector quantization (LVQ)

◮ main idea: each prototype is provided with a class label

• patterns attract prototypes of the same class

• patterns repel prototypes of other class

Introduction to Neuroinformatics: Winner-takes-all Networks – p.20/55

Learning vector quantization: classification

◮ VQ can be extended for classification tasks
⇒ Learning vector quantization (LVQ)

◮ main idea: each prototype is provided with a class label

• patterns attract prototypes of the same class

• patterns repel prototypes of other class

1: loop
2: for all (~x, d) ∈ D do
3: calculate closest prototype j

4: if d = class label of prototype j then

5: ~w(j) ← ~w(j) + ǫ(~x − ~w(j))
6: else

7: ~w(j) ← ~w(j) − ǫ(~x − ~w(j))
8: endif
9: end for
10: end loop

Introduction to Neuroinformatics: Winner-takes-all Networks – p.20/55

Learning vector quantization: classification
(cont.)

◮ what is the error function that is minimized with this algorithm?

◮ simple example: one pattern, two prototypes: ~w(1) of same class, ~w(2) of
different class

pattern
(other class)

E(w(1))

w(1)w(2)

E(w(1), w(2))

w(1)

w(2)

strange error function, discontinuous at boundaries of Voronoi cells, not
bounded below, becomes small if closest prototype is of wrong class but far
away

Introduction to Neuroinformatics: Winner-takes-all Networks – p.21/55

Generalized LVQ

◮ we cannot simply interpret vanilla LVQ as stochastic minimization of an error
function, but we can try to design an error function:

• for correct classification it must yield a minimum

• wrong classification must be penalized

• function must be differentiable

• each pattern should contribute additively

Introduction to Neuroinformatics: Winner-takes-all Networks – p.22/55

Generalized LVQ

◮ we cannot simply interpret vanilla LVQ as stochastic minimization of an error
function, but we can try to design an error function:

• for correct classification it must yield a minimum

• wrong classification must be penalized

• function must be differentiable

• each pattern should contribute additively

◮ generic form:

E(D; {~w(1), . . . , ~w(m)}) =

p
∑

i=1

e((~x(i), d(i)); {~w(1), . . . , ~w(m)})

with e: a differentiable error term for a single pattern

Introduction to Neuroinformatics: Winner-takes-all Networks – p.22/55

Generalized LVQ
(cont.)

◮ attempt with step function:

e((~x, d); {~w(1), . . . , ~w(m)}) =

{

1 if δ+ > δ−

0 if δ+ < δ−

δ+: squared distance of ~x to closest prototype of same class
δ−: squared distance of ~x to closest prototype of other class

problem: error term is not differentiable, even not continuous

Introduction to Neuroinformatics: Winner-takes-all Networks – p.23/55

Generalized LVQ
(cont.)

◮ attempt with step function:

e((~x, d); {~w(1), . . . , ~w(m)}) =

{

1 if δ+ > δ−

0 if δ+ < δ−

δ+: squared distance of ~x to closest prototype of same class
δ−: squared distance of ~x to closest prototype of other class

problem: error term is not differentiable, even not continuous

◮ idea: relax step function, use logistic function as approximation instead:

e((~x, d); {~w(1), . . . , ~w(m)}) = flog

(

δ+ − δ−

δ+ + δ−

)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.23/55

Generalized LVQ
(cont.)

◮ example: one pattern, two prototypes: ~w(1) of same class, ~w(2) of different
class

 0.25

 0.35

 0.45

 0.55

 0.65

 0.75

 0

 0

w(1)

w(2)

 0

 0

w(1)

w(2)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.24/55

Generalized LVQ
(cont.)

◮ example: one pattern, two prototypes: ~w(1) of same class, ~w(2) of different
class

 0.25

 0.35

 0.45

 0.55

 0.65

 0.75

 0

 0

w(1)

w(2)

 0

 0

w(1)

w(2)

◮ error function is continuous and differentiable, except:

• on the boundaries of Voronoi cells it is continuous but non-differentiable
(same as with all other prototype based approaches)

• if δ+ = δ− = 0 the error term is undefined. Possible solution: add a
very small positive number to the denominator of δ+−δ−

δ++δ−

Introduction to Neuroinformatics: Winner-takes-all Networks – p.24/55

Generalized LVQ
(cont.)

◮ update rule for GLVQ: calculate the partial derivatives

e((~x, d); {~w(1), . . . , ~w(m)}) = flog

(

δ+ − δ−

δ+ + δ−

)

denote with ~w(+) the closest prototype of class d and ~w(−) the closest
prototype of other class

Introduction to Neuroinformatics: Winner-takes-all Networks – p.25/55

Generalized LVQ
(cont.)

◮ update rule for GLVQ: calculate the partial derivatives

e((~x, d); {~w(1), . . . , ~w(m)}) = flog

(

δ+ − δ−

δ+ + δ−

)

denote with ~w(+) the closest prototype of class d and ~w(−) the closest
prototype of other class

∂e

∂w
(+)
i

= f ′
log

(

δ+ − δ−

δ+ + δ−

)

·

∂δ+

∂w
(+)
i

· (δ+ + δ−) − (δ+ − δ−) · ∂δ+

∂w
(+)
i

(δ+ + δ−)2

∂δ+

∂w
(+)
i

= −(xi − w
(+)
i)

f ′
log(z) = flog(z)(1 − flog(z))

Introduction to Neuroinformatics: Winner-takes-all Networks – p.25/55

Generalized LVQ
(cont.)

∂e

∂w
(−)
i

= f ′
log

(

δ+ − δ−

δ+ + δ−

)

·
− ∂δ−

∂w
(−)
i

· (δ+ + δ−) − (δ+ − δ−) · ∂δ−

∂w
(−)
i

(δ+ + δ−)2

∂δ−

∂w
(−)
i

= −(xi − w
(−)
i)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.26/55

Generalized LVQ
(cont.)

∂e

∂w
(−)
i

= f ′
log

(

δ+ − δ−

δ+ + δ−

)

·
− ∂δ−

∂w
(−)
i

· (δ+ + δ−) − (δ+ − δ−) · ∂δ−

∂w
(−)
i

(δ+ + δ−)2

∂δ−

∂w
(−)
i

= −(xi − w
(−)
i)

gradient descent update (negative gradient):

~w(+) ← ~w(+) + ǫf ′
log

(

δ+ − δ−

δ+ + δ−

)

2δ−

(δ+ + δ−)2
(~x − ~w(+))

~w(−) ← ~w(−) − ǫf ′
log

(

δ+ − δ−

δ+ + δ−

)

2δ+

(δ+ + δ−)2
(~x − ~w(−))

ǫ: learning rate
Introduction to Neuroinformatics: Winner-takes-all Networks – p.26/55

Generalized LVQ
(cont.)

◮ Generalized LVQ (GLVQ) (Sato&Yamada 1995)

◮ even more general generic form that allows a wide variety of error functions.
The presented one is the form most frequently used

Introduction to Neuroinformatics: Winner-takes-all Networks – p.27/55

Relevance learning

◮ results of LVQ/GLVQ heavily depend on scaling of the data and the distance
function used

◮ euclidean distance prefers circular Voronoi cells

works well for round clusters but not well for elongated clusters = round
clusters after rescaling

Introduction to Neuroinformatics: Winner-takes-all Networks – p.28/55

Relevance learning
(cont.)

◮ Relevance learning: adapt the distance measure during learning
(Bojer, Hammer, Schunk, Tluk von Toschanowitz 2001)

◮ idea: introduce weights for each dimension

||~z||2~r =
d

∑

i=1

(riz
2
i)

~r is the vector of relevances, ri ≥ 0,
∑n

i=1 r2
i = 1

◮ the larger ri, the more important the i-th dimension becomes

vectors of
length 1vectors of

length 1

vectors of
length 1

r1 = r2 = 1√
2

r1 = 1√
5
, r2 = 2√

5
r1 = 1√

10
, r2 = 3√

10

Introduction to Neuroinformatics: Winner-takes-all Networks – p.29/55

Relevance learning
(cont.)

◮ relevance learning: update relevance vector ~r by gradient descent:

ri ← max{0, ri − ǫr

∂e((~x, d); {~w(1), . . . , ~w(m)})

∂ri

}

ǫr > 0 is learning rate, decreasing.
ǫr 6= ǫ !

to meet the condition
∑d

i=1 r2
i = 1, we have to rescale ~r after each update:

~r ←
1

√

∑d

i=1 r2
i

~r

◮ we get two interleaved gradient descent processes:

• updating the prototype positions using learning rate ǫ

• updating the relevance vector ~r using learning rate ǫr

Introduction to Neuroinformatics: Winner-takes-all Networks – p.30/55

Relevance learning
(cont.)

◮ relevance learning can be combined with any supervised WTAN approach:

• RLVQ: relevance learning combined with LVQ

• GRLVQ: relevance learning combined with GLVQ

Introduction to Neuroinformatics: Winner-takes-all Networks – p.31/55

Structure learning

◮ using VQ we find a set of representatives for all patterns

◮ we lose information about neighborhood between patterns/prototypes

⇒ structure learning: learn prototypes and the spatial neighborhood
between prototypes

Introduction to Neuroinformatics: Winner-takes-all Networks – p.32/55

Structure learning
(cont.)

◮ add neighborhood relationship of prototypes

• set of edges C ⊆ P × P (P : set of prototypes, C set of edges)

(1,2)

(1,3)

(4,5)

(2,5)

(5,6)

(3,4)

~w(1)

~w(2)

~w(3)

~w(4)

~w(5)

~w(6)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.33/55

Structure learning
(cont.)

◮ add neighborhood relationship of prototypes

• set of edges C ⊆ P × P (P : set of prototypes, C set of edges)

(1,2)

(1,3)

(4,5)

(2,5)

(5,6)

(3,4)

~w(1)

~w(2)

~w(3)

~w(4)

~w(5)

~w(6)

• typical neighborhood structures:

ring

chain

2−dim. rectangular grid 2−dim. hexagonal grid

Introduction to Neuroinformatics: Winner-takes-all Networks – p.33/55

Structure learning
(cont.)

◮ direct and indirect neighborhood of prototypes

(1,2)

(1,3)

(4,5)

(2,5)

(5,6)

(3,4)

~w(1)

~w(2)

~w(3)

~w(4)

~w(5)

~w(6)

neighborhood distance δ between two protoypes: count the number of edges
on the shortest path between both prototypes. e.g.:

Introduction to Neuroinformatics: Winner-takes-all Networks – p.34/55

Structure learning
(cont.)

◮ direct and indirect neighborhood of prototypes

(1,2)

(1,3)

(4,5)

(2,5)

(5,6)

(3,4)

~w(1)

~w(2)

~w(3)

~w(4)

~w(5)

~w(6)

neighborhood distance δ between two protoypes: count the number of edges
on the shortest path between both prototypes. e.g.:

δ(~w(1), ~w(2)) = 1

δ(~w(1), ~w(4)) = 2

δ(~w(1), ~w(5)) = 2

δ(~w(2), ~w(3)) = 2

δ(~w(1), ~w(1)) = 0

Introduction to Neuroinformatics: Winner-takes-all Networks – p.34/55

Self organizing maps

◮ unsupervised learning with a given topology

◮ self organizing maps (SOM), Kohonen maps (Kohonen 1982)

1: start with given topology
2: loop
3: for all ~x ∈ D do
4: calculate closest prototype k

5: for all prototypes ~w(j) do

6: ~w(j) ← ~w(j) + ǫe−
δ(j,k)

λ (~x − ~w(j))
7: end for
8: end for
9: end loop

ǫ > 0 is the learning rate, decreasing, λ > 0 parameter, decreasing

in (6) it is possible to replace e−
δ(j,k)

λ by any positive, decreasing function

Introduction to Neuroinformatics: Winner-takes-all Networks – p.35/55

Self organizing maps
(cont.)

◮ comparison: SOM and Neural gas

• both approaches push all prototypes depending on their distance to the
winning prototype, but:

• SOM uses the neighborhood distance δ on the predefined topology

• Neural gas uses the Euclidean distance || · || of the prototype vectors

5 4 3

2

10

2 3

4

5

1
6

neighborhood distance ranking of Euclidean distance

Introduction to Neuroinformatics: Winner-takes-all Networks – p.36/55

Self organizing maps
(cont.)

◮ Neural gas adapts better to the data

◮ SOM forces the prototypes in a predefined structure

◮ SOM can be understood as embedding a structure into a pattern space

◮ dimension of structure may differ from dimension of pattern space

Introduction to Neuroinformatics: Winner-takes-all Networks – p.37/55

Growing neural gas

◮ SOM: topology does not adapt to the data

◮ Neural gas: uses ranks but does not create a topology

Introduction to Neuroinformatics: Winner-takes-all Networks – p.38/55

Growing neural gas

◮ SOM: topology does not adapt to the data

◮ Neural gas: uses ranks but does not create a topology

⇒ Growing Neural Gas (Fritzke 1994) combines both

• creates topology data dependent

• adds and prunes prototypes

• bottom-up approach: start with two prototypes and add new prototypes
periodically

Introduction to Neuroinformatics: Winner-takes-all Networks – p.38/55

Growing neural gas
(cont.)

◮ moving closest and second closest prototype towards pattern

closest

2nd closest

Introduction to Neuroinformatics: Winner-takes-all Networks – p.39/55

Growing neural gas
(cont.)

◮ moving closest and second closest prototype towards pattern

2nd closest

closest

Introduction to Neuroinformatics: Winner-takes-all Networks – p.39/55

Growing neural gas
(cont.)

◮ moving closest and second closest prototype towards pattern

◮ strengthen connection between closest prototypes, weaken connections
between closest prototypes and prototypes far away

weakening

strengthening

2nd closest

closest

Introduction to Neuroinformatics: Winner-takes-all Networks – p.39/55

Growing neural gas
(cont.)

◮ moving closest and second closest prototype towards pattern

◮ strengthen connection between closest prototypes, weaken connections
between closest prototypes and prototypes far away

◮ prune weak connections, prune isolated protoypes

pruning

Introduction to Neuroinformatics: Winner-takes-all Networks – p.39/55

Growing neural gas
(cont.)

◮ moving closest and second closest prototype towards pattern

◮ strengthen connection between closest prototypes, weaken connections
between closest prototypes and prototypes far away

◮ prune weak connections, prune isolated protoypes

Introduction to Neuroinformatics: Winner-takes-all Networks – p.39/55

Growing neural gas
(cont.)

◮ adding prototypes:

• every prototype is assigned with a (local) quantization error

• adding protoypes makes sense in areas of large quantization error

Introduction to Neuroinformatics: Winner-takes-all Networks – p.40/55

Growing neural gas
(cont.)

◮ adding prototypes:

• every prototype is assigned with a (local) quantization error

• adding protoypes makes sense in areas of large quantization error

medium
total
error

small total error

large total quantization error

Introduction to Neuroinformatics: Winner-takes-all Networks – p.40/55

Growing neural gas
(cont.)

◮ adding prototypes:

• every prototype is assigned with a (local) quantization error

• adding protoypes makes sense in areas of large quantization error

• a prototype is added halfway between prototype with largest error and
adjacent prototype with second largest error

Introduction to Neuroinformatics: Winner-takes-all Networks – p.40/55

Growing neural gas
(cont.)

◮ bringing together these ideas yields the Growing neural gas algorithm

◮ variables:

• set of prototypes P , prototype vectors are denoted ~w(i)

• set of connections C : C ⊆ P × P

• age function that assigns to each edge in C a number: age : C → N0

• local error functions L that assign to each prototype a real number:
L : P → R

• some parameters of the algorithm: learning rates ǫ1 ≥ ǫ2 > 0,maximal
age amax ∈ N, real numbers α, β: 0 ≤ α, β ≤ 1

Introduction to Neuroinformatics: Winner-takes-all Networks – p.41/55

Growing neural gas
(cont.)

◮ main loop

Require: |P | = 2, C = ∅, L(1) = L(2) = 0
1: loop
2: for all patterns ~x ∈ D do
3: determine closest prototype s1 to ~x and second closest prototype s2

4: update weight vector s1: ~w(s1) ← ~w(s1) + ǫ1(~x − ~w(s1))

5: update weight vector s2: ~w(s2) ← ~w(s2) + ǫ2(~x − ~w(s2))
6: call procedure update edge(s1, s2)
7: call procedure update age(s1)

8: update local error of s1: L(s1) ← L(s1) + ||~x − ~w(s1)||2

9: call procedure decay local error()
10: end for
11: sometimes call procedure add prototype()
12: end loop

Introduction to Neuroinformatics: Winner-takes-all Networks – p.42/55

Growing neural gas
(cont.)

◮ procedure update edge(s1, s2)

1: create edge from s1 to s2 if it does not exist: C ← C ∪ {(s1, s2)}
2: reset age of connection age(s1, s2) ← 0

◮ procedure update age(s1)

1: for all i ∈ P |(s1, i) ∈ C do
2: increment age of connections: age(s1, i) ← age(s1, i) + 1
3: if age(s1, i) > amax then
4: remove edge: C ← C \ {(s1, i)}
5: if prototype i has become isolated then
6: remove prototype i: P ← P \ {i}
7: end if
8: end if
9: end for

Introduction to Neuroinformatics: Winner-takes-all Networks – p.43/55

Growing neural gas
(cont.)

◮ procedure decay local error()

1: for all p ∈ P do
2: decrease local error: L(p) ← (1 − β)L(p)
3: end for

Introduction to Neuroinformatics: Winner-takes-all Networks – p.44/55

Growing neural gas
(cont.)

◮ procedure add prototype()

1: determine prototype with largest local error: p1 ← arg maxp∈P L(p)

2: determine adjacent prototype of p1 with largest local error:
p2 ← arg maxp|(p,p1)∈C L(p)

3: create new prototype q with prototype vector ~w(q): P ← P ∪ {q}
4: set new prototype vector halfway between p1 and p2:

~w(q) ← 1
2
(~w(p1) + ~w(p2))

5: replace link between p1 and p2 by links between q and p1, p2:
C ← (C \ {(p1, p2)}) ∪ {(p1, q), (p2, q)}

6: update local error: L(p1) ← (1 − α)L(p1)
7: update local error: L(p2) ← (1 − α)L(p2)

8: update local error: L(q) ← 1
2
(L(p1) + L(p2))

Introduction to Neuroinformatics: Winner-takes-all Networks – p.45/55

Growing neural gas
(cont.)

◮ there is not much theory on GNG

◮ we can presume that

• an error term exists which is minimized as long as no prototypes are
created or removed

• a batch algorithm can be built which works somehow similar to GNG and
that may simplify calculations, especially the calculation of local errors

◮ varying the model size opens all problems of flexible models: overfitting,
model selection, theoretical problems

◮ adjusting the parameters of GNG may need much experience

◮ nonetheless, GNG can be used successfully in practice

Introduction to Neuroinformatics: Winner-takes-all Networks – p.46/55

Survey of methods

◮ table of WTAN methods discussed in this lecture:

method type error function? batch learning method?

VQ unsupervised exists k-means

NG unsupervised exists similar to k-means

LVQ supervised not sensefull no

GLVQ supervised exists no

SOM structure learning
(fixed topology)

exists similar to k-means

GNG structure learning
(flexible topology)

maybe maybe

each of the supervised methods can be combined with relevance learning to
adapt the distance measure (e.g. RLVQ, GRLVQ)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.47/55

Survey of methods
(cont.)

◮ area of ongoing research activities

Introduction to Neuroinformatics: Winner-takes-all Networks – p.48/55

Survey of methods
(cont.)

◮ area of ongoing research activities

◮ many other methods and variants exist like

• neural gas for supervised learning

• approaches that add and prune prototypes

• approaches that can be used to learn sequential data (e.g. timeseries)

• approaches that converge quicker/are more robust w.r.t. intitialization

• prototype individual learning rate (OLVQ)

• heuristics to control the learning rate

Introduction to Neuroinformatics: Winner-takes-all Networks – p.48/55

Survey of methods
(cont.)

◮ area of ongoing research activities

◮ many other methods and variants exist like

• neural gas for supervised learning

• approaches that add and prune prototypes

• approaches that can be used to learn sequential data (e.g. timeseries)

• approaches that converge quicker/are more robust w.r.t. intitialization

• prototype individual learning rate (OLVQ)

• heuristics to control the learning rate

◮ prototypes are also often called codebook vectors. The set of prototypes is
called a codebook

Introduction to Neuroinformatics: Winner-takes-all Networks – p.48/55

Survey of methods
(cont.)

◮ area of ongoing research activities

◮ many other methods and variants exist like

• neural gas for supervised learning

• approaches that add and prune prototypes

• approaches that can be used to learn sequential data (e.g. timeseries)

• approaches that converge quicker/are more robust w.r.t. intitialization

• prototype individual learning rate (OLVQ)

• heuristics to control the learning rate

◮ prototypes are also often called codebook vectors. The set of prototypes is
called a codebook

◮ Important: results of prototype based methods depend heavily on scaling of
data and on the distance measure used. Be aware of it!

Introduction to Neuroinformatics: Winner-takes-all Networks – p.48/55

Application examples

◮ color quantization

◮ similarity of objects

◮ motor maps

Introduction to Neuroinformatics: Winner-takes-all Networks – p.49/55

Application examples
(cont.)

◮ color quantization: given a picture, find a small number of representative
colors within the picture

◮ each pixel yields one 3-dim. pattern (RGB color values)

original image
reduced color (16 different colors)

using k-means

Introduction to Neuroinformatics: Winner-takes-all Networks – p.50/55

Application examples
(cont.)

original image reduced color (16 different colors)

◮ application domains

• satellite image analysis

• image and video compression

Introduction to Neuroinformatics: Winner-takes-all Networks – p.51/55

Application examples
(cont.)

◮ similarities of objects: given a set of objects described by numeric vectors,
e.g. the countries of the world described by economical, cultural and political
figures. Find a grouping of theses countries and a neighborhood relationship
(concerning the economical, political and cultural situation, not the
geographical position)

◮ train a SOM on these data

◮ if you want to determine how similar different countries are:

• look for the closest prototype for each country

• determine the neighborhood distance of the prototypes

◮ similar applications: document retrievel (similarity of text documents, images,
etc.)

◮ more examples can be found of Kohonen’s website: http://www.cis.hut.fi/

Introduction to Neuroinformatics: Winner-takes-all Networks – p.52/55

Application examples
(cont.)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.53/55

Application examples
(cont.)

Introduction to Neuroinformatics: Winner-takes-all Networks – p.54/55

Application examples
(cont.)

◮ motor maps: a map that refers to the cofigurations of a robot

?

end
config.

start
config.

Introduction to Neuroinformatics: Winner-takes-all Networks – p.55/55

Application examples
(cont.)

◮ motor maps: a map that refers to the cofigurations of a robot

?

end
config.

start
config.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

obstacle

Introduction to Neuroinformatics: Winner-takes-all Networks – p.55/55

Application examples
(cont.)

◮ motor maps: a map that refers to the cofigurations of a robot

end
config.

start
config.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

obstacle

Introduction to Neuroinformatics: Winner-takes-all Networks – p.55/55

Application examples
(cont.)

◮ motor maps: a map that refers to the cofigurations of a robot

end
config.

start
config.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

obstacle

Introduction to Neuroinformatics: Winner-takes-all Networks – p.55/55

Application examples
(cont.)

◮ motor maps: a map that refers to the cofigurations of a robot

end
config.

start
config.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

obstacle

shortest path through motor map without collision

simplification of
path planning,
working in finite
SOM grid instead
of infinite space of
configurations

Introduction to Neuroinformatics: Winner-takes-all Networks – p.55/55

Last Slide

Introduction to Neuroinformatics: Winner-takes-all Networks – p.56/55

	Outline
	Principle task
	Winner takes all networks
	Winner takes all networks\(cont.)
	Winner takes all networks\(cont.)
	Vector quantization:\ unsupervised case
	Vector quantization:\ unsupervised case (cont.)
	Vector quantization:\ unsupervised case (cont.)
	Vector quantization:\ unsupervised case (cont.)
	k-means: speeding up VQ
	k-means: speeding up VQ\(cont.)
	k-means: speeding up VQ\(cont.)
	VQ and k-means
	Neural Gas
	Neural gas\(cont.)
	Neural gas\(cont.)
	Neural gas\(cont.)
	Neural gas\(cont.)
	Learning vector quantization: classification
	Learning vector quantization: classification\(cont.)
	Generalized LVQ
	Generalized LVQ\(cont.)
	Generalized LVQ\(cont.)
	Generalized LVQ\(cont.)
	Generalized LVQ\(cont.)
	Generalized LVQ\(cont.)
	Relevance learning
	Relevance learning\(cont.)
	Relevance learning\(cont.)
	Relevance learning\(cont.)
	Structure learning
	Structure learning\(cont.)
	Structure learning\(cont.)
	Self organizing maps
	Self organizing maps\(cont.)
	Self organizing maps\(cont.)
	Growing neural gas
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Growing neural gas\(cont.)
	Survey of methods
	Survey of methods\(cont.)
	Application examples
	Application examples\(cont.)
	Application examples\(cont.)
	Application examples\(cont.)
	Application examples\(cont.)
	Application examples\(cont.)
	Application examples\(cont.)
	Last Slide

