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The Honda Research Institutes

The Honda Research Institutes
• 3 institutes world-wide
• collaborating with scientific community
• broad research span: material science, 

genomics, intelligent systems, 
neuroscience …

• More information: www.honda-ri.com
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Honda Research Institute Europe: Core Themes regard ing 
Movement Generation

� Movement primitives (MP)
� Dynamical systems
� Reference frames
� Generalization

� Learning by observation
� Physical teaching
� Explorative learning
� Open-ended skill 

acquisition

� Error recovery
� Decision making
� Short- and long-term 

prediction

� Transient between MPs for 
sequential / parallel behavior

� Hierarchical organization
� Preparatory movements

� Physical, safe interaction
� Situation binding / context
� Cooperative tasks
� Intention recognition

Movement Coordination

Movement Representation

Human-Robot InteractionDynamical Environments

Skill Learning
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1. Whole-body movement control
� Redundant control

� Task descriptors

3. Optimal movements

4. Learning from demonstration

2. Movement primitives
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Redundant Control concepts

Redundant velocity / acceleration control
(Liegeois, Nakamura, Maciejewski, Siciliano...)

� Computation of joint displacements according to 
task- and nullspace motion

� Framework for position controlled robots

Redundant torque control ( Khatib, Brock, ...)
� Approach using dynamic equations of motion
� Computation of joint torques
� Framework for torque controlled robots

Searching (planning) methods (Latombe, Kuffner, Khavraki ...)
� Computationally expensive (usually not real-time capable)
� Optimal solution can be found
� A-star, dynamic programming, ...

Redundant control: more degrees of 
freedom than controlled variables
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Kinematic rigid body model

Forward kinematics Inverse kinematics

� Rigid-body model of robot & environment 
represented as kinematic tree

� Parent-child hierarchy: parent influences 
movement of children

� Basis for all kinematic computation
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Kinematic task descriptors

Kinematic task descriptors
� movement of a body with respect to another body
� is defined through the shortest paths to the root node
� for instance: hand-world, hand-heel, object, hand-

hand, camera-object …

Relative position

Relative velocity

… in joint coordinates

� We can compute the movement of any object with 
respect to any other object

� We can express the movement in terms of the joint 
angles, velocities (also acceleration / torque)
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Dynamic task descriptors

� Dynamic properties like linear and angular momentum can 
be formulated using kinematics

� Linear projections into joint space can be computed by 
summing up over robot links

Linear momentum

Angular momentum
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Whole-body control

Cooperative
balance control

Whole-body
control

ZMP 
control

Body shift

Linear / angular momentum

Dynamic task
descriptors

Redundant Control approach (Liegeois):

• Velocity control

• End effektor movement described in task space

• Redundant nullspace used to satisfy additional criteria

Kinematic task descriptors

)()( qffx −∆+= ttδ

Inverse
Kinematics
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� How to compute the trajectories?

3. Optimal movements

4. Learning from demonstration

1. Reactive movement control

2. Movement primitives
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Movement Primitives – biological perspective

• Spinal system of frog encodes “force fields”
• Limb movement is summation of force fields

• Motor cortex encodes behavioral relevant 
movements (defense, prey-catching)

• Cortical output combines nearly linearly

E. Bizzi, A. d’Avella, P. Saltiel, and M. Tresch:
Modular Organization of Spinal Motor Systems C. Ethier, L. Brizzi, W. G. Darling, and C. Capaday

Linear Summation of Cat Motor Cortex Outputs

T. Flash and B. Hochner:
Motor primitives in vertebrates and invertebrates

• Reduce the complexity 
of movement generation • Often encode effector 

movements

M. Graziano:
The organization of behavioral repertoire in motor cortex

Attractor dynamics 
Effector movements
Behavioral relevant

high flexibility
good generalization

low complexity

Functional view
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Movement Primitives – State of the art

Probabilistic approaches (e.g. Billard)

� GMM / HMM representations

� movement generated by regression

Dynamical systems approaches 
( e.g. DMP: Schaal, Peters ...)

� autonomous differential equations

� attractor / periodic movements 

� Local sensor feedback

Optimal control approaches (Bellmann, 
Jacobson, Todorov, Popovic ...)

� future prediction & anticipation

� local approaches are feasible for real-time
� computer graphics, now starting in robotics

Neural approaches (e.g. RNNPB Tani)
� layered recurrent neural network (RNN) 

representation
� primitives may be represented as attractors 

implicitly inside a RNN.
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Task-level attractor system

Attractor
dynamics

Whole body
control

Task space

Attractors
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Movement primitives – our approach

Joint space
representation

Task space
representation

Attractor
representation

Robot embodiment, 
full description of 

movement
capabilities

Low-dimensional task
space description

Movement primitives: 
time-sparse, low-
dimensional task
space description

Abstraction of embodiment Loss of „arbitrary“
movement capabilities

Generalization

Attractor dynamicsWhole body control

Movement primitives

• Attractor points similar to motor 
behaviour created by Movement 
Primitives

• Attractors are formulated in task-
coordinates (hand positions, gaze 
direction, grasp angle …)

• Attractors may be composed of 
different sets of variables

• Whole body motion is used to track
trajectories

2
1
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3. Optimal movements
� Attractor-based movement optimization: Anticipate a future

time horizon

1. Reactive movement control

4. Learning from demonstration

2. Movement primitives
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Optimal attractor sequences
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Cost function

• Reaching the target
• Joint limit avoidance
• Collision avoidance
• Postural similarity

...

• Minimal path length
• Speed at a certain point

...

Gradient-based
optimization
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Attractor
dynamics

Whole body
control

Formulation of trajectories as 
sequence of attractors

M. Toussaint, M. Gienger, Ch. Goerick: Optimization 
of sequential attractor-based movement for 
compact behaviour generation, Humanoids 2007
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Movement description: a set of weighted criteria

Joint limit avoidance

Collision avoidance

Target precision

Length of the movement
in joint space

Similarity to teachers
movement

Others: Speed, energy efficiency, dynamics …
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4. Lerning from demonstration
� Transfer skills from a human tutor

� Acquire a model of the movement

� Generalize observations towards a goal

3. Optimal movements

1. Reactive movement control

Collaboration with CoR-Lab, 
Uni Bielefeld

2. Movement primitives
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Imitation Learning – our focus

Intention imitation

Understanding the goal of the demonstrator and 
possibly finding other ways to achieve it

Goal-directed imitation

Infering the goal of the movement (e.g. object handling / 
manipulation)

� learning of goal-directed object movement skills

� representing it independent from a concrete situation

� imitating it in novel situations using adaptation methods
� Interaction supports learning and imitation

Gesture imitation

„Replaying“ of demonstrators movements without
understanding (e.g. gestures, dancing etc.)
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• Dynamic Movement Primitives 
(DMPs) represent discrete or 
rhythmic movements

• Generalization by inherent 
robustness of DMPs wrt. spatial 
and temporal perturbations

generalization binding

State of the art in robotics

Images from: Humanoid Robots Lab, University of Freiburg

Representation

observation new situation

[Calinon and Billard 2008]

probabilistic dynamical systems symbolic

[Ijspeert et al. 2003] [Nicolescu and Matari ć 2006]

• Movement representation with 
Gaussian Mixture Models

• Generalization by exploiting 
variance of multiple 
demonstrated movements

• Problem of movement learning 
shaped into the problem of 
learning a state chart structure

• Generalization by learning the 
skill as a coordination of 
predefined complex behaviors



24.07.2012 21

Concept: Variance-based imitation

• Exploiting the statistics of a number of demonstrations

• Inter-trial variance as an importance measure:

– Low variance � important for the task

– High variance � less important for the task

• Movement may be different in less important parts �
Improve other criteria: collisions, energy …

Variance

Adapted movement

Mean movement

Obstacle

Target
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Imitation learning framework

Data acquisition

Stereo vision system

Projection into task 
spaces

Representation

Probabilistic encoding 
with Gaussian Mixture 
Models

Reproduction

Initialization of 
attractor dynamics

Preprocessing

Dynamic Time Warping

Optimization

Optimization of 
attractor dynamics wrt. 
global cost function

Observation
phase

Representation
phase

Reproduction
phase

M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, "Task-level
Imitation Learning using Variance-based Movement Optimization," in Proc. 
IEEE International Conference on Robotics and Automation, 2009. 
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Preprocessing

� Inter-trial variance from multiple demonstrations serves as 
importance measure

� Problem: different demonstrations may have different temporal 
properties � inappropriate variance information

� Therefore: Dynamic Time Warping for temporal alignment

S. Calinon and F. Guenter and A. Billard:
On Learning, Representing and Generalizing a Task in a Humanoid Robot,
IEEE Transactions on Systems, Man and Cybernetics, Part B. Special issue
on robot learning by observation, demonstration and imitation", 2007
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Temporal alignment of trajectories

Dynamic Time Warping (DTW) - temporal alignment

1. Calculate distance 
matrix

2. Recursive search of 
the minimal path

3. Indices of the minimal 
path define the 
transformation of one 
signal to match the 
other
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Probabilistic representation of movements

Gaussian Mixture Models

• Input: temporally aligned
demonstrations

• Expectation Maximization training
• Bayesian Information Criterion

based heuristic for estimating
the number of Gaussians

Parameters πk, µk, Σk of all 
multivariate Gaussian 
components k define the GMM
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Reproduction

Gaussian Mixture Regression (GMR)
� Extraction of the generalized (mean) movement and the according inter-trial 

variance information
� Any dimension(s) of the encoded movement data can serve as an input 

(here: the time dimension)
� Values of the remaining dimensions of the task space are interpolated, 

depending on the information encoded in the GMM

S. Calinon and F. Guenter and A. Billard:
On Learning, Representing and Generalizing a Task in a Humanoid Robot,
IEEE Transactions on Systems, Man and Cybernetics, Part B. Special issue
on robot learning by observation, demonstration and imitation", 2007
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Reproduction

Next step:
� Initialization of the attractor dynamics [Toussaint, Gienger et al., 2007]
� Attractors are defined in the task space and are initialized with the mean 

movement of the GMR

We are not done!
� Attractor points do not necessarily reside on the actual trajectory
� Additional criteria not yet regarded
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Optimization-based movement imitation

• Similarity of demonstrated movement is one out of several criteria
• Criterion weighted with variance

� Imitation is „strong“ in phases with low variance, weak“ in phases
with high variance

� Robot‘s limitations are considered

Variance of 
observations

Teacher‘s mean
movement

Robot‘s
movement

System imitates teacher as good as 
possible, but respects limitations
such as collisions, joint limits, etc.

Collision avoidance

Target precision

Joint limit avoidance

Movement curvature

Optimization
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System architecture

� Simple table scenario: human 
teaches robot to stack or put objects

� Interactive scenario – teacher 
interacts with robot to learn & 
imitate

� Pre-defined preparatory movements 
– combined with learnt ones

M. Mühlig, M. Gienger, and J. J. Steil, "Human-Robot Interaction for
Learning and Adaptation of Object Movements," in Proc. IEEE 
International Conference on Intelligent Robots and Systems, 2010. 

M. Gienger, M. Mühlig, and J. J. Steil, "Imitating Object Movement Skills with
Robots – A Task-Level Approach Exploiting Generalization and Invariance," in 
Proc. IEEE International Conference on Intelligent Robots and Systems, 2010. 
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Human-robot interaction

• Tutor’s kinematics modeled (average size human)
• 3D skin color blobs acquired by vision system
• Blobs assigned to hands and head of the model
• Posture estimated using inverse kinematics

Tutor model

Movement segmentation

• Coherent hand-object movement is important
• Movement segmentation:

• Hand is close to object
• Hand and object have same velocity

• Start & stop thresholds avoid oscillations

Attention system

• Each object is associated with a saliency
• Saliency decays over time, and increases by 

making the object interesting to the robot
• by shaking it
• by pointing to it

• Robot tracks interesting objects

• Fusion of sensor data to 
a 3D scene

• System’s mental image 
of the scene

• Basis for all subsequent 
processing

3D object memory
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Imitating in different styles

Adapting the body schema allows to
� create movements with different end effectors
� create movement one-handed or bi-manual
� deal consistently with collision avoidance etc.

� Movement is learnt independent of robot’s 
embodiment � in object coordinates

� Changing the topology of the model allows to 
generate the movement in different styles

Object 2Object 1
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Conclusions

Summary

� Whole body movement control

� Movement primitives

� Optimization of movement

� Imitation learning

Interesting future questions

� Relation of action and effects � the basis for inference

� Intuitive learning in interaction

� Integration of sensory modalities

� …
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Thank you very much for your attention!


