

Movement Learning and Control for Robots in Interaction

Dr.-Ing. Michael GiengerHonda Research Institute Europe Carl-Legien-Strasse 3063073 Offenbach am Main

Seminar Talk Machine Learning Lab, University of FreiburgJuly 24th, 2012

The Honda Research Institutes

The Honda Research Institutes

- 3 institutes world-wide
- collaborating with scientific community
- broad research span: material science, genomics, intelligent systems, neuroscience …
- More information: www.honda-ri.com

Honda Research Institute Europe: Core Themes regarding Movement Generation

Skill Learning

- Г Learning by observation
- Physical teaching
- **Explorative learning**
- Г Open-ended skill acquisition

Dynamical Environments

- П Error recovery
- **Decision making** r.
- Short- and long-term П prediction

Movement Representation

- ٠ Movement primitives (MP)
- Г Dynamical systems
- r. Reference frames
- Г **Generalization**

Movement Coordination

- **Transient between MPs for** sequential / parallel behavior
- **Hierarchical organization**
- **Preparatory movements**

Human-Robot Interaction

- Physical, safe interaction
- **Situation binding / context**
- Cooperative tasks
- **Intention recognition**

1. Whole-body movement control

- **≻ Redundant control**
- Task descriptors

2. Movement primitives

- 3. Optimal movements
- 4. Learning from demonstration

Redundant Control concepts

Redundant control: more degrees of freedom than controlled variables

Redundant velocity / acceleration control

(Liegeois, Nakamura, Maciejewski, Siciliano...)

- **Q** Computation of joint displacements according to task- and nullspace motion
- Framework for position controlled robots

Redundant torque control (Khatib, Brock, ...)

- □ Approach using dynamic equations of motion
- □ Computation of joint torques
- Framework for torque controlled robots

Searching (planning) methods (Latombe, Kuffner, Khavraki ...)

- □ Computationally expensive (usually not real-time capable)
- □ Optimal solution can be found
- A-star, dynamic programming, ...

- □ Rigid-body model of robot & environment represented as kinematic tree
- **Parent-child hierarchy: parent influences**
- movement of children
- <mark>்</mark> Basis for all kinematic computation

Kinematic task descriptors

0

2

n movement of a body with respect to another body **a** is defined through the shortest paths to the root node □ for instance: hand-world, hand-heel, object, handhand, camera-object …

Relative position $r_{12} = r_{02} - r_{01}$ Relative velocity $\dot{\boldsymbol{r}}_{12} = \dot{\boldsymbol{r}}_{02} - \dot{\boldsymbol{r}}_{01} + \boldsymbol{\omega}_1 \times \boldsymbol{r}_{12}$ … in joint coordinates

 \rightarrow We can compute the movement of any object with respect to any other object respect to any other object \rightarrow We can express the movement in terms of the joint angles velocities (also acceleration / torque) angles, velocities (also acceleration / torque)

1

- **Dynamic properties like linear and angular momentum can** be formulated using kinematics
- □ Linear projections into joint space can be computed by summing up over robot links

Linear momentum

$$
r_{cog} = \frac{1}{m} \sum_{i=1}^{bodies} m_i r_{cog,i} \qquad \dot{r}_{cog} = \frac{1}{m} \left\{ \sum_{i=1}^{bodies} m_i J_{T,cog,i} \right\} \dot{q} = J_{cog} \dot{q}
$$

Angular momentum

$$
L = \sum_{i=1}^{bodies} m_i r_{cog,i} \times \dot{r}_{cog,i} + I\omega = \left\{ \sum_{i=1}^{bodies} m_i \, \tilde{r}_{cog,i} J_{T,cog,i} + I_i J_{R,i} \right\} \dot{q} = J_{am} \, \dot{q}
$$

Whole-body control

1. Reactive movement control

2. Movement primitives

> How to compute the trajectories?

3. Optimal movements

4. Learning from demonstration

a

Movement Primitives – biological perspective

- Spinal system of frog encodes "force fields"
- Limb movement is summation of force fields
- Motor cortex encodes behavioral relevant movements (defense, prey-catching)• Cortical output combines nearly linearly

Motor primitives in vertebrates and invertebrates

The organization of behavioral repertoire in motor cortex

Movement Primitives – State of the art

Dynamical systems approaches

- (e.g. DMP: Schaal, Peters ...**)**
- \Box autonomous differential equations
- \Box attractor / periodic movements
- \Box Local sensor feedback

Neural approaches (e.g. RNNPB Tani)

- layered recurrent neural network (RNN) representation
- **primitives may be represented as attractors** implicitly inside a RNN.

Probabilistic approaches (e.g. Billard)

- GMM / HMM representations
- movement generated by regression

Optimal control approaches (Bellmann,

- Jacobson, Todorov, Popovic ...)
- \Box future prediction & anticipation
- \Box local approaches are feasible for real-time
- \Box computer graphics, now starting in robotics

Task-level attractor system

Movement primitives – our approach

- Attractors may be composed of
different sets of variables different sets of variables
- Whole body motion is used to track trajectories

1. Reactive movement control

2. Movement primitives

3. Optimal movements

- Attractor-based movement optimization: Anticipate a future time horizon

4. Learning from demonstration

Optimal attractor sequences

Movement description: a set of weighted criteria

Collision avoidance

$$
Q(q) = \sum_{i}^{pairs} g_p(d_{p,i}) + g_c(d_{p,i}, d_{c,i})
$$

Target precision

Joint limit avoidance

Length of the movement in joint space

Similarity to teachersmovement

$$
\frac{|\phi(q_T) - \hat{x}|^2}{\frac{1}{2} \sum_{i=1}^{\text{dof}} w_i (q_i - q_{0,i})^2}
$$

$$
\sum_{t=1}^{T} (q_t - q_{t-1})^T W(q_t - q_{t-1})
$$

$$
c_{im}(t) = (\phi(\mathbf{q}_t) - \hat{\boldsymbol{\mu}}_t)^2 \cdot \mathbf{w}_t
$$

Others: Speed, energy efficiency, dynamics …

1. Reactive movement control

2. Movement primitives

3. Optimal movements

4. Lerning from demonstration
Collaboration wit

- \blacktriangleright \triangleright Transfer skills from a human tutor
- **►** Acquire a model of the movement
- Generalize observations towards a goal

Collaboration with CoR-Lab, Uni Bielefeld

Imitation Learning – our focus

Gesture imitation

"Replaying" of demonstrators movements without understanding (e.g. gestures, dancing etc.)

Goal-directed imitation

Infering the goal of the movement (e.g. object handling / manipulation)

- **Bottle** hand Glass hand
	- 1760. **learning** of goal-directed object movement skills Ø **a representing** it independent from a concrete situation **imitating** it in novel situations using adaptation methods Ø **Interaction** supports learning and imitation

Intention imitation

Understanding the goal of the demonstrator and
possibly finding other ways to achieve it possibly finding other ways to achieve it

State of the art in robotics

- Movement representation with Gaussian Mixture Models
- Generalization by exploiting variance of multiple demonstrated movements

probabilistic

generalization

- Dynamic Movement Primitives (DMPs) represent discrete or rhythmic movements
- Generalization by inherent robustness of DMPs wrt. spatial and temporal perturbations

dynamical systems symbolic

- Problem of movement learning shaped into the problem of learning a state chart structure
- Generalization by learning the skill as a coordination of predefined complex behaviors

observation

binding Representation

n \blacksquare n \blacksquare

- •Exploiting the statistics of a number of demonstrations
- • Inter-trial variance as an importance measure:
	- Low variance \rightarrow important for the task
	- High variance \rightarrow less important for the task
remark may be different in less important no
- •Movement may be different in less important parts \rightarrow Improve other criteria: collisions, energy …

Imitation learning framework

M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, "Task-levelImitation Learning using Variance-based Movement Optimization," in Proc. IEEE International Conference on Robotics and Automation, 2009.

- \Box Inter-trial variance from multiple demonstrations serves as importance measure
- \Box Problem: different demonstrations may have different temporal properties → inappropriate variance information
Therefase: Duramia Time Warning for temperal
- \Box Therefore: Dynamic Time Warping for temporal alignment

On Learning, Representing and Generalizing a Task in a Humanoid Robot, IEEE Transactions on Systems, Man and Cybernetics, Part B. Special issueon robot learning by observation, demonstration and imitation", 2007

Dynamic Time Warping (DTW) - temporal alignment

- 1. Calculate distance matrix
- 2. Recursive search of the minimal path
- 3. Indices of the minimal path define the transformation of one signal to match the other

Gaussian Mixture Models

$$
p(\mathbf{x}_i) = \sum_{k=1}^K p(k)p(\mathbf{x}_i|k)
$$
\nParameters π_k , μ_k , Σ_k of all multivariate Gaussian components *k* define the GMM components *k* define the GMM

\n
$$
p(k) = \pi_k
$$
\n
$$
p(\mathbf{x}_i|k) = \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)
$$
\n
$$
= \frac{1}{\sqrt{(2\pi)^D \cdot |\boldsymbol{\Sigma}_k|}} \cdot e^{-\frac{1}{2}((\mathbf{x}_i - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k))}
$$

- • Input: temporally aligneddemonstrations
- •Expectation Maximization training
- • Bayesian Information Criterion based heuristic for estimatingthe number of Gaussians

Gaussian Mixture Regression (GMR)

- \Box Extraction of the generalized (mean) movement and the according inter-trial variance information
- \Box Any dimension(s) of the encoded movement data can serve as an input (here: the time dimension)
- \Box Values of the remaining dimensions of the task space are interpolated, depending on the information encoded in the GMM

S. Calinon and F. Guenter and A. Billard: On Learning, Representing and Generalizing a Task in a Humanoid Robot, IEEE Transactions on Systems, Man and Cybernetics, Part B. Special issueon robot learning by observation, demonstration and imitation", 2007

Next step:

- \Box Initialization of the attractor dynamics [Toussaint, Gienger et al., 2007]
- \Box Attractors are defined in the task space and are initialized with the mean movement of the GMR

We are not done!

- \Box Attractor points do not necessarily reside on the actual trajectory
- \Box Additional criteria not yet regarded

- Similarity of demonstrated movement is one out of several criteria
• Criterion weighted with variance
- Criterion weighted with variance
- \rightarrow Imitation is "strong" in phases with low variance, weak" in phases with high variance with high variance
- \rightarrow Robot's limitations are considered

System architecture

- **□ Simple table scenario: human** teaches robot to stack or put objects
- **□** Interactive scenario teacher interacts with robot to learn & imitate
- **n** Pre-defined preparatory movements
	- combined with learnt ones

M. Mühlig, M. Gienger, and J. J. Steil, "Human-Robot Interaction forLearning and Adaptation of Object Movements," in Proc. IEEE International Conference on Intelligent Robots and Systems, 2010.

M. Gienger, M. Mühlig, and J. J. Steil, "Imitating Object Movement Skills with Robots – A Task-Level Approach Exploiting Generalization and Invariance," in Proc. IEEE International Conference on Intelligent Robots and Systems, 2010.

Human-robot interaction

3D object memory

- Fusion of sensor data to a 3D scene
- System's mental image of the scene
- Basis for all subsequent processing

Tutor model

- Tutor's kinematics modeled (average size human)
- 3D skin color blobs acquired by vision system
- Blobs assigned to hands and head of the model
- Posture estimated using inverse kinematics

Attention system

- Each object is associated with a saliency
- Saliency decays over time, and increases by \bullet making the object interesting to the robot
	- by shaking it
	- by pointing to it
- Robot tracks interesting objects

Movement segmentation

- Coherent hand-object movement is important
- Movement segmentation:
	- Hand is close to object
	- Hand and object have same velocity
- Start & stop thresholds avoid oscillations

Imitating in different styles

Adapting the body schema allows to

- \rightarrow create movements with different end effectors
 \rightarrow create movement one-handed or hi-manual
- \rightarrow create movement one-handed or bi-manual
 \rightarrow deal consistently with collision avoidance et
- \rightarrow deal consistently with collision avoidance etc.

Conclusions

Summary

- \Box Whole body movement control
- \Box Movement primitives
	- Optimization of movement
		- Imitation learning

Interesting future questions

 \Box Relation of action and effects \rightarrow the basis for inference

❏

- $\textcolor{orange}\blacksquare$ Intuitive learning in interaction
- $\textcolor{orange}\blacksquare$ Integration of sensory modalities

…

Thank you very much for your attention!