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Neural Networks

◮ The human brain has approximately 1011 neurons

◮ Switching time 0.001s (computer≈ 10−10s)

◮ Connections per neuron: 104 − 105

◮ 0.1s for face recognition

◮ I.e. at most 100 computation steps

◮ parallelism

◮ additionally: robustness, distributedness

◮ ML aspects: use biology as an inspiration for artificial neural models and
algorithms; do not try to explain biology: technically imitate and exploit
capabilities
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Biological Neurons

◮ Dentrites input information to the cell

◮ Neuron fires (has action potential) if a certain threshold for the voltage is
exceeded

◮ Output of information by axon

◮ The axon is connected to dentrites of other cells via synapses

◮ Learning corresponds to adaptation of the efficiency of synapse, of the
synaptical weight

AXON

dendrites

SYNAPSES

soma
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Historical ups and downs
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Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants
of a former, more simple model (McCulloch/Pitts neurons, 1942):

• inputs are weighted

• weights are real numbers (positive and negative)

• no special inhibitory inputs
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Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants
of a former, more simple model (McCulloch/Pitts neurons, 1942):

• inputs are weighted

• weights are real numbers (positive and negative)

• no special inhibitory inputs

◮ a percpetron with n inputs is described by a weight vector

~w = (w1, . . . , wn)
T ∈ R

n and a threshold θ ∈ R. It calculates the
following function:

(x1, . . . , xn)
T 7→ y =

{

1 if x1w1 + x2w2 + · · ·+ xnwn ≥ θ

0 if x1w1 + x2w2 + · · ·+ xnwn < θ
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Perceptrons: adaptive neurons
(cont.)

◮ for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs
the following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi)) = fstep(w0 + 〈~w, ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0
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Perceptrons: adaptive neurons
(cont.)

◮ for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs
the following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi)) = fstep(w0 + 〈~w, ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0

x1

xn

1

yΣ

w1

wn

w0

...
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Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space
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Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w
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Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

• points with w0 + 〈~w, ~x〉 > 0 are
above the hyperplane
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Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

• points with w0 + 〈~w, ~x〉 > 0 are
above the hyperplane

• points with w0 + 〈~w, ~x〉 < 0 are
below the hyperplane

• perceptrons partition the input space
into two halfspaces along a
hyperplane
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halfspace
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lower
halfspace
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Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification
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Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

• a set of input patterns P ⊆ R
n, called the set of positive examples

• another set of input patternsN ⊆ R
n, called the set of negative

examples
task:

• generate a perceptron that yields 1 for all patterns from P and 0 for all
patterns fromN
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Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

• a set of input patterns P ⊆ R
n, called the set of positive examples

• another set of input patternsN ⊆ R
n, called the set of negative

examples
task:

• generate a perceptron that yields 1 for all patterns from P and 0 for all
patterns fromN

◮ obviously, there are cases in which the learning task is unsolvable, e.g.
P ∩N 6= ∅
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Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.
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Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N
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Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w, ~x〉+ w0)|~x ∈ N}. Then:

〈~w, ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N
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Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w, ~x〉+ w0)|~x ∈ N}. Then:

〈~w, ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N

Thus, the perceptron (~w,w0 +
ε
2
) proves the lemma.
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Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error?
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Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

Machine Learning: Perceptrons – p. 10



Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.
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Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0
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Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
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Geometric intepretation: modifying ~w
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Perceptron learning algorithm

Require: positive training patterns P and a negative training examplesN
Ensure: if exists, a perceptron is learned that classifies all patterns accurately
1: initialize weight vector ~w and bias weight w0 arbitrarily
2: while exist misclassified pattern ~x ∈ P ∪N do
3: if ~x ∈ P then
4: ~w ← ~w + ~x

5: w0 ← w0 + 1
6: else
7: ~w ← ~w − ~x

8: w0 ← w0 − 1
9: end if

10: end while
11: return ~w and w0
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Perceptron learning algorithm:
example

N = {(1, 0)T , (1, 1)T}, P = {(0, 1)T}

→ exercise
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Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.
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Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.
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Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.
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Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.

Proof:
for simplification we will add the bias weight to the weight vector, i.e.

~w = (w0, w1, . . . , wn)
T , and 1 to all patterns, i.e. ~x = (1, x1, . . . , xn)

T .

We will denote with ~w(t) the weight vector in the t-th iteration of perceptron

learning and with ~x(t) the pattern used in the t-th iteration.
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Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi
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Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉
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Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉

Euclidean norm:
||~w||2 = 〈~w, ~w〉 =

∑n

i=1 wi wi

Machine Learning: Perceptrons – p. 14



Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉

Euclidean norm:
||~w||2 = 〈~w, ~w〉 =

∑n

i=1 wi wi

Angle between two vectors:

cos∡(~x, ~y) = 〈~x,~y〉
||~x|| · ||~y||
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Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.
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Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
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Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns
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Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns
Hence,

〈

~w∗, ~w(t+1)
〉

≥
〈

~w∗, ~w(0)
〉

+ (t+ 1)δ
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Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:
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Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence,

Machine Learning: Perceptrons – p. 16



Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence, x(t) not

correctly classified, then if ~x(t) ∈ P :
〈

~w(t), ~x(t)
〉

< 0, if

~x(t) ∈ N :
〈

~w(t), ~x(t)
〉

≥ 0. Therefore: ±
〈

~w(t), ~x(t)
〉

≤ 0. Dropping it makes
expression larger.
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Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~w(t), ~x(t)
〉

+ ||~x(t)||2

≤ ||~w(t)||2 + ε

with ε := max{||~x||2|~x ∈ P ∪N}
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Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~w(t), ~x(t)
〉

+ ||~x(t)||2

≤ ||~w(t)||2 + ε

with ε := max{||~x||2|~x ∈ P ∪N}
Hence,

||~w(t+1)||2 ≤ ||~w(0)||2 + (t+ 1)ε
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Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||
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Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||

≥

〈

~w∗, ~w(0)
〉

+ (t+ 1)δ

||~w∗|| ·
√

||~w(0)||2 + (t+ 1)ε
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Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||

≥

〈

~w∗, ~w(0)
〉

+ (t+ 1)δ

||~w∗|| ·
√

||~w(0)||2 + (t+ 1)ε
−→
t→∞

∞

Since cos∡(~w∗, ~w(t+1)) ≤ 1, t must be bounded above. �
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Perceptron learning algorithm:
convergence

◮ Lemma (worst case running time):
If the given problem is solvable, perceptron learning terminates after at most

(n+ 1)22(n+1) log(n+1) iterations.
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◮ Exponential running time is a problem of the perceptron learning algorithm.

There are algorithms that solve the problem with complexity O(n
7

2 )
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Perceptron learning algorithm:
cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task is
not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide
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Perceptron learning algorithm:
cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task is
not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide

◮ Lemma:
Starting the perceptron learning algorithm with weight vector ~0 on an
unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, Perceptrons
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Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)
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Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)

Assume, a solution ~w∗ exists. Then:

〈

~w∗, ~x(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}
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Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)

Assume, a solution ~w∗ exists. Then:

〈

~w∗, ~x(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}

Hence,
〈

~w∗, ~x(t+1) + · · ·+ ~x(t+q)
〉

≥ 0
〈

~w∗, ~x(t+q+1) + · · ·+ ~x(t+k)
〉

< 0 contradiction!
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Perceptron learning algorithm:
Pocket algorithm

◮ how can we determine a “good”
perceptron if the given task cannot
be solved perfectly?

◮ “good” in the sense of: perceptron
makes minimal number of errors
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Perceptron learning algorithm:
Pocket algorithm

◮ how can we determine a “good”
perceptron if the given task cannot
be solved perfectly?

◮ “good” in the sense of: perceptron
makes minimal number of errors

◮ Perceptron learning: the number of
errors does not decrease
monotonically during learning

◮ Idea: memorise the best weight
vector that has occured so far!
⇒ Pocket algorithm
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Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}
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Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons
are computationally more powerful
(cf. McCullough/Pitts neurons)

◮ let’s try to find a network with two
perceptrons that can solve the XOR
problem:

• first step: find a perceptron that

classifies three patterns
accurately, e.g. w0 = −0.5,
w1 = w2 = 1 classifies
(0, 0)T , (0, 1)T , (1, 0)T but fails

on (1, 1)T
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Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons
are computationally more powerful
(cf. McCullough/Pitts neurons)

◮ let’s try to find a network with two
perceptrons that can solve the XOR
problem:

• first step: find a perceptron that

classifies three patterns
accurately, e.g. w0 = −0.5,
w1 = w2 = 1 classifies
(0, 0)T , (0, 1)T , (1, 0)T but fails

on (1, 1)T

• second step: find a perceptron
that uses the output of the first
perceptron as additional input.
Hence, training patterns are:
N = {(0, 0, 0), (1, 1, 1)},
P = {(0, 1, 1), (1, 0, 1)}.
perceptron learning yields:
v0 = −1, v1 = v2 = −1,
v3 = 2
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Perceptron networks
(cont.)

XOR-network:
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1

y

Σ

Σ
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−0.5

−1
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Perceptron networks
(cont.)

XOR-network:
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Geometric interpretation:
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Perceptron networks
(cont.)

XOR-network:
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Perceptron networks
(cont.)

XOR-network:
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Geometric interpretation:

partitioning of second perceptron, assuming
first perceptron yields 0
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Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

partitioning of second perceptron, assuming
first perceptron yields 1

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24



Perceptron networks
(cont.)

XOR-network:
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x2
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Geometric interpretation:

combining both
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Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features
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Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features

• if features are complex enough,
everything can be classified

• if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)
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Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features

• if features are complex enough,
everything can be classified

• if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)

◮ important idea: create features
instead of learning from raw data
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Summary

◮ Perceptrons are simple neurons with limited representation capabilites:
linear seperable functions only

◮ simple but provably working learning algorithm

◮ networks of perceptrons can overcome limitations

◮ working in feature space may help to overcome limited representation
capability
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