
Machine Learning:

Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University Freiburg

AG Maschinelles Lernen

Machine Learning: Perceptrons – p. 1

Neural Networks

◮ The human brain has approximately 1011 neurons

◮ Switching time 0.001s (computer≈ 10−10s)

◮ Connections per neuron: 104 − 105

◮ 0.1s for face recognition

◮ I.e. at most 100 computation steps

◮ parallelism

◮ additionally: robustness, distributedness

◮ ML aspects: use biology as an inspiration for artificial neural models and
algorithms; do not try to explain biology: technically imitate and exploit
capabilities

Machine Learning: Perceptrons – p. 2

Biological Neurons

◮ Dentrites input information to the cell

◮ Neuron fires (has action potential) if a certain threshold for the voltage is
exceeded

◮ Output of information by axon

◮ The axon is connected to dentrites of other cells via synapses

◮ Learning corresponds to adaptation of the efficiency of synapse, of the
synaptical weight

AXON

dendrites

SYNAPSES

soma

Machine Learning: Perceptrons – p. 3

Historical ups and downs

1950 1960 1970 1980 1990 2000

19
42

ar
tifi

cia
l n

eu
ro

ns
(M

cC
ull

oc
h/

Pitts
)

19
49

Heb
bia

n
lea

rn
ing

(H
eb

b)

19
58

Ros
en

bla
tt

pe
rc

ep
tro

n
(R

os
en

bla
tt)

19
60

Ada
lin

e/
M

Ada
lin

e
(W

idr
ow

/H
of

f)

19
60

Le
rn

m
at

rix
(S

te
inb

uc
h)

19
69

“p
er

ce
pt

ro
ns

” (M
ins

ky
/P

ap
er

t)

19
70

ev
olu

tio
na

ry
alg

or
ith

m
s (R

ec
he

nb
er

g)

19
72

se
lf-

or
ga

niz
ing

m
ap

s (K
oh

on
en

)

19
82

Hop
fie

ld
ne

tw
or

ks
(H

op
fie

ld)

19
86

Bac
kp

ro
pa

ga
tio

n
(o

rig
. 19

74
)

19
92

Bay
es

inf
er

en
ce

co
m

pu
ta

tio
na

l le
ar

nin
g

th
eo

ry

su
pp

or
t v

ec
to

r m
ac

hin
es

Boo
sti

ng

Machine Learning: Perceptrons – p. 4

Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants
of a former, more simple model (McCulloch/Pitts neurons, 1942):

• inputs are weighted

• weights are real numbers (positive and negative)

• no special inhibitory inputs

Machine Learning: Perceptrons – p. 5

Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants
of a former, more simple model (McCulloch/Pitts neurons, 1942):

• inputs are weighted

• weights are real numbers (positive and negative)

• no special inhibitory inputs

◮ a percpetron with n inputs is described by a weight vector

~w = (w1, . . . , wn)
T ∈ R

n and a threshold θ ∈ R. It calculates the
following function:

(x1, . . . , xn)
T 7→ y =

{

1 if x1w1 + x2w2 + · · ·+ xnwn ≥ θ

0 if x1w1 + x2w2 + · · ·+ xnwn < θ

Machine Learning: Perceptrons – p. 5

Perceptrons: adaptive neurons
(cont.)

◮ for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs
the following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi)) = fstep(w0 + 〈~w, ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0

Machine Learning: Perceptrons – p. 6

Perceptrons: adaptive neurons
(cont.)

◮ for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs
the following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi)) = fstep(w0 + 〈~w, ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0

x1

xn

1

yΣ

w1

wn

w0

...

Machine Learning: Perceptrons – p. 6

Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

Machine Learning: Perceptrons – p. 7

Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

Machine Learning: Perceptrons – p. 7

Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

• points with w0 + 〈~w, ~x〉 > 0 are
above the hyperplane

Machine Learning: Perceptrons – p. 7

Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

• points with w0 + 〈~w, ~x〉 > 0 are
above the hyperplane

• points with w0 + 〈~w, ~x〉 < 0 are
below the hyperplane

Machine Learning: Perceptrons – p. 7

Perceptrons: adaptive neurons
(cont.)

geometric interpretation of a
perceptron:

• input patterns (x1, . . . , xn) are
points in n-dimensional space

• points with w0 + 〈~w, ~x〉 = 0 are on
a hyperplane defined by w0 and ~w

• points with w0 + 〈~w, ~x〉 > 0 are
above the hyperplane

• points with w0 + 〈~w, ~x〉 < 0 are
below the hyperplane

• perceptrons partition the input space
into two halfspaces along a
hyperplane

x2

x1

halfspace
upper

lower
halfspace

hyperplane

x2

x3

x1

lower
halfspace

hyperplane

upper
halfspace

Machine Learning: Perceptrons – p. 7

Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification

Machine Learning: Perceptrons – p. 8

Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

• a set of input patterns P ⊆ R
n, called the set of positive examples

• another set of input patternsN ⊆ R
n, called the set of negative

examples
task:

• generate a perceptron that yields 1 for all patterns from P and 0 for all
patterns fromN

Machine Learning: Perceptrons – p. 8

Perceptron learning problem

◮ perceptrons can automatically adapt to example data⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

• a set of input patterns P ⊆ R
n, called the set of positive examples

• another set of input patternsN ⊆ R
n, called the set of negative

examples
task:

• generate a perceptron that yields 1 for all patterns from P and 0 for all
patterns fromN

◮ obviously, there are cases in which the learning task is unsolvable, e.g.
P ∩N 6= ∅

Machine Learning: Perceptrons – p. 8

Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Machine Learning: Perceptrons – p. 9

Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Machine Learning: Perceptrons – p. 9

Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w, ~x〉+ w0)|~x ∈ N}. Then:

〈~w, ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N

Machine Learning: Perceptrons – p. 9

Perceptron learning problem
(cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately and
no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w, ~x〉 6= 0 for all training patterns.

Proof:
Let (~w,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w, ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w, ~x〉+ w0)|~x ∈ N}. Then:

〈~w, ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N

Thus, the perceptron (~w,w0 +
ε
2
) proves the lemma.

Machine Learning: Perceptrons – p. 9

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error?

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: modifying ~w

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

w

Geometric intepretation: modifying ~w

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm:
idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w, ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error? – we need to
increase 〈~w, ~x〉+ w0

• increase w0

• if xi > 0, increase wi

• if xi < 0 (’negative influence’),
decrease wi

◮ perceptron learning algorithm: add ~x
to ~w, add 1 to w0 in this case. Errors
on negative patterns: analogously.

x2

x3

x1

w

Geometric intepretation: modifying ~w

Machine Learning: Perceptrons – p. 10

Perceptron learning algorithm

Require: positive training patterns P and a negative training examplesN
Ensure: if exists, a perceptron is learned that classifies all patterns accurately
1: initialize weight vector ~w and bias weight w0 arbitrarily
2: while exist misclassified pattern ~x ∈ P ∪N do
3: if ~x ∈ P then
4: ~w ← ~w + ~x

5: w0 ← w0 + 1
6: else
7: ~w ← ~w − ~x

8: w0 ← w0 − 1
9: end if

10: end while
11: return ~w and w0

Machine Learning: Perceptrons – p. 11

Perceptron learning algorithm:
example

N = {(1, 0)T , (1, 1)T}, P = {(0, 1)T}

→ exercise

Machine Learning: Perceptrons – p. 12

Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Machine Learning: Perceptrons – p. 13

Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

Machine Learning: Perceptrons – p. 13

Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.

Machine Learning: Perceptrons – p. 13

Perceptron learning algorithm:
convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.

Proof:
for simplification we will add the bias weight to the weight vector, i.e.

~w = (w0, w1, . . . , wn)
T , and 1 to all patterns, i.e. ~x = (1, x1, . . . , xn)

T .

We will denote with ~w(t) the weight vector in the t-th iteration of perceptron

learning and with ~x(t) the pattern used in the t-th iteration.

Machine Learning: Perceptrons – p. 13

Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

Machine Learning: Perceptrons – p. 14

Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉

Machine Learning: Perceptrons – p. 14

Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉

Euclidean norm:
||~w||2 = 〈~w, ~w〉 =

∑n

i=1 wi wi

Machine Learning: Perceptrons – p. 14

Perceptron learning algorithm:
Preliminaries

Inner product (dot product of two vectors ~w, ~x)

〈~w, ~x〉 = ~wT ~x =
n

∑

i=1

wi xi

〈~w, ~x〉+ 〈~w, ~y〉 = 〈~w, ~x+ ~y〉

Euclidean norm:
||~w||2 = 〈~w, ~w〉 =

∑n

i=1 wi wi

Angle between two vectors:

cos∡(~x, ~y) = 〈~x,~y〉
||~x|| · ||~y||

Machine Learning: Perceptrons – p. 14

Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

Machine Learning: Perceptrons – p. 15

Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})

Machine Learning: Perceptrons – p. 15

Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns

Machine Learning: Perceptrons – p. 15

Perceptron learning algorithm:
convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.

〈

~w∗, ~w(t+1)
〉

=
〈

~w∗, ~w(t) ± ~x(t)
〉

=
〈

~w∗, ~w(t)
〉

±
〈

~w∗, ~x(t)
〉

≥
〈

~w∗, ~w(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns
Hence,

〈

~w∗, ~w(t+1)
〉

≥
〈

~w∗, ~w(0)
〉

+ (t+ 1)δ

Machine Learning: Perceptrons – p. 15

Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:

Machine Learning: Perceptrons – p. 16

Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence,

Machine Learning: Perceptrons – p. 16

Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~x(t), ~w(t)
〉

+ ||~x(t)||2

consider
〈

~x(t), ~w(t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence, x(t) not

correctly classified, then if ~x(t) ∈ P :
〈

~w(t), ~x(t)
〉

< 0, if

~x(t) ∈ N :
〈

~w(t), ~x(t)
〉

≥ 0. Therefore: ±
〈

~w(t), ~x(t)
〉

≤ 0. Dropping it makes
expression larger.

Machine Learning: Perceptrons – p. 16

Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~w(t), ~x(t)
〉

+ ||~x(t)||2

≤ ||~w(t)||2 + ε

with ε := max{||~x||2|~x ∈ P ∪N}

Machine Learning: Perceptrons – p. 17

Perceptron learning algorithm:
convergence proof (cont.)

||~w(t+1)||2 =
〈

~w(t+1), ~w(t+1)
〉

=
〈

~w(t) ± ~x(t), ~w(t) ± ~x(t)
〉

= ||~w(t)||2 ± 2
〈

~w(t), ~x(t)
〉

+ ||~x(t)||2

≤ ||~w(t)||2 + ε

with ε := max{||~x||2|~x ∈ P ∪N}
Hence,

||~w(t+1)||2 ≤ ||~w(0)||2 + (t+ 1)ε

Machine Learning: Perceptrons – p. 17

Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||

Machine Learning: Perceptrons – p. 18

Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||

≥

〈

~w∗, ~w(0)
〉

+ (t+ 1)δ

||~w∗|| ·
√

||~w(0)||2 + (t+ 1)ε

Machine Learning: Perceptrons – p. 18

Perceptron learning algorithm:
convergence proof (cont.)

cos∡(~w∗, ~w(t+1)) =

〈

~w∗, ~w(t+1)
〉

||~w∗|| · ||~w(t+1)||

≥

〈

~w∗, ~w(0)
〉

+ (t+ 1)δ

||~w∗|| ·
√

||~w(0)||2 + (t+ 1)ε
−→
t→∞

∞

Since cos∡(~w∗, ~w(t+1)) ≤ 1, t must be bounded above. �

Machine Learning: Perceptrons – p. 18

Perceptron learning algorithm:
convergence

◮ Lemma (worst case running time):
If the given problem is solvable, perceptron learning terminates after at most

(n+ 1)22(n+1) log(n+1) iterations.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 1 2 3 4 5 6 7 8

◮ Exponential running time is a problem of the perceptron learning algorithm.

There are algorithms that solve the problem with complexity O(n
7

2)

Machine Learning: Perceptrons – p. 19

Perceptron learning algorithm:
cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task is
not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide

Machine Learning: Perceptrons – p. 20

Perceptron learning algorithm:
cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task is
not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide

◮ Lemma:
Starting the perceptron learning algorithm with weight vector ~0 on an
unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, Perceptrons

Machine Learning: Perceptrons – p. 20

Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)

Machine Learning: Perceptrons – p. 21

Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)

Assume, a solution ~w∗ exists. Then:

〈

~w∗, ~x(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}

Machine Learning: Perceptrons – p. 21

Perceptron learning algorithm:
cycle theorem

Proof:
Assume ~w(t+k) = ~w(t). Meanwhile, the patterns ~x(t+1), . . . , ~x(t+k) have been

applied. Without loss of generality, assume ~x(t+1), . . . , ~x(t+q) ∈ P and

~x(t+q+1), . . . , ~x(t+k) ∈ N . Hence:

~w(t)= ~w(t+k)= ~w(t)+ ~x(t+1)+ · · ·+ ~x(t+q)− (~x(t+q+1)+ · · ·+ ~x(t+k))

⇒ ~x(t+1) + · · ·+ ~x(t+q) = ~x(t+q+1) + · · ·+ ~x(t+k)

Assume, a solution ~w∗ exists. Then:

〈

~w∗, ~x(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}

Hence,
〈

~w∗, ~x(t+1) + · · ·+ ~x(t+q)
〉

≥ 0
〈

~w∗, ~x(t+q+1) + · · ·+ ~x(t+k)
〉

< 0 contradiction!

Machine Learning: Perceptrons – p. 21

Perceptron learning algorithm:
Pocket algorithm

◮ how can we determine a “good”
perceptron if the given task cannot
be solved perfectly?

◮ “good” in the sense of: perceptron
makes minimal number of errors

Machine Learning: Perceptrons – p. 22

Perceptron learning algorithm:
Pocket algorithm

◮ how can we determine a “good”
perceptron if the given task cannot
be solved perfectly?

◮ “good” in the sense of: perceptron
makes minimal number of errors

Machine Learning: Perceptrons – p. 22

Perceptron learning algorithm:
Pocket algorithm

◮ how can we determine a “good”
perceptron if the given task cannot
be solved perfectly?

◮ “good” in the sense of: perceptron
makes minimal number of errors

◮ Perceptron learning: the number of
errors does not decrease
monotonically during learning

◮ Idea: memorise the best weight
vector that has occured so far!
⇒ Pocket algorithm

Machine Learning: Perceptrons – p. 22

Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

Machine Learning: Perceptrons – p. 23

Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons
are computationally more powerful
(cf. McCullough/Pitts neurons)

◮ let’s try to find a network with two
perceptrons that can solve the XOR
problem:

• first step: find a perceptron that

classifies three patterns
accurately, e.g. w0 = −0.5,
w1 = w2 = 1 classifies
(0, 0)T , (0, 1)T , (1, 0)T but fails

on (1, 1)T

Machine Learning: Perceptrons – p. 23

Perceptron networks

◮ perceptrons can only learn linearly
separable problems.

◮ famous counterexample:
XOR(x1, x2):

P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons
are computationally more powerful
(cf. McCullough/Pitts neurons)

◮ let’s try to find a network with two
perceptrons that can solve the XOR
problem:

• first step: find a perceptron that

classifies three patterns
accurately, e.g. w0 = −0.5,
w1 = w2 = 1 classifies
(0, 0)T , (0, 1)T , (1, 0)T but fails

on (1, 1)T

• second step: find a perceptron
that uses the output of the first
perceptron as additional input.
Hence, training patterns are:
N = {(0, 0, 0), (1, 1, 1)},
P = {(0, 1, 1), (1, 0, 1)}.
perceptron learning yields:
v0 = −1, v1 = v2 = −1,
v3 = 2

Machine Learning: Perceptrons – p. 23

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Machine Learning: Perceptrons – p. 24

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

partitioning of first perceptron

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

partitioning of second perceptron, assuming
first perceptron yields 0

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

partitioning of second perceptron, assuming
first perceptron yields 1

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24

Perceptron networks
(cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1
2

−0.5

−1

Geometric interpretation:

combining both

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-

-+

+

Machine Learning: Perceptrons – p. 24

Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features

Machine Learning: Perceptrons – p. 25

Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features

• if features are complex enough,
everything can be classified

• if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)

Machine Learning: Perceptrons – p. 25

Historical remarks

◮ Rosenblatt perceptron (1958):

• retinal input (array of pixels)

• preprocessing level, calculation
of features

• adaptive linear classifier

• inspired by human vision

Σ

linear
classifierretina features

• if features are complex enough,
everything can be classified

• if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)

◮ important idea: create features
instead of learning from raw data

Machine Learning: Perceptrons – p. 25

Summary

◮ Perceptrons are simple neurons with limited representation capabilites:
linear seperable functions only

◮ simple but provably working learning algorithm

◮ networks of perceptrons can overcome limitations

◮ working in feature space may help to overcome limited representation
capability

Machine Learning: Perceptrons – p. 26

	Neural Networks
	Biological Neurons
	Historical ups and downs
	Perceptrons: adaptive neurons
	Perceptrons: adaptive neurons

	Perceptrons: adaptive neurons\ (cont.)
	Perceptrons: adaptive neurons\ (cont.)

	Perceptrons: adaptive neurons\ (cont.)
	Perceptrons: adaptive neurons\ (cont.)
	Perceptrons: adaptive neurons\ (cont.)
	Perceptrons: adaptive neurons\ (cont.)
	Perceptrons: adaptive neurons\ (cont.)

	Perceptron learning problem
	Perceptron learning problem
	Perceptron learning problem

	Perceptron learning problem\ (cont.)
	Perceptron learning problem\ (cont.)
	Perceptron learning problem\ (cont.)
	Perceptron learning problem\ (cont.)

	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea
	Perceptron learning algorithm:\idea

	Perceptron learning algorithm
	Perceptron learning algorithm:\ example
	Perceptron learning algorithm:\convergence
	Perceptron learning algorithm:\convergence
	Perceptron learning algorithm:\convergence
	Perceptron learning algorithm:\convergence

	Perceptron learning algorithm:\Preliminaries
	Perceptron learning algorithm:\Preliminaries
	Perceptron learning algorithm:\Preliminaries
	Perceptron learning algorithm:\Preliminaries

	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)

	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)

	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)

	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)
	Perceptron learning algorithm:\convergence proof (cont.)

	Perceptron learning algorithm:\convergence
	Perceptron learning algorithm:\cycle theorem
	Perceptron learning algorithm:\cycle theorem

	Perceptron learning algorithm:\cycle theorem
	Perceptron learning algorithm:\cycle theorem
	Perceptron learning algorithm:\cycle theorem

	Perceptron learning algorithm:\ Pocket algorithm
	Perceptron learning algorithm:\ Pocket algorithm
	Perceptron learning algorithm:\ Pocket algorithm

	Perceptron networks
	Perceptron networks
	Perceptron networks

	Perceptron networks\(cont.)
	Perceptron networks\(cont.)
	Perceptron networks\(cont.)
	Perceptron networks\(cont.)
	Perceptron networks\(cont.)
	Perceptron networks\(cont.)

	Historical remarks
	Historical remarks
	Historical remarks

	Summary

