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Outline

◮ multi layer perceptrons (MLP)

◮ learning MLPs

◮ function minimization: gradient descend & related methods
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Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also are usually difficult to design by hand
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Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also are usually difficult to design by hand

◮ we want to have a generic model that can adapt to some training data
◮ basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland,

Hinton 1986), also named feed forward networks
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w , ~x〉)
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w , ~x〉)

◮ due to technical reasons, neurons
in MLPs calculate a smoothed
variant of this:

~x 7→ flog (w0 + 〈~w , ~x〉)

with

flog (z) =
1

1 + e−z

flog is called logistic function
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w , ~x〉)

◮ due to technical reasons, neurons
in MLPs calculate a smoothed
variant of this:

~x 7→ flog (w0 + 〈~w , ~x〉)

with

flog (z) =
1

1 + e−z

flog is called logistic function
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◮ properties:
◮ monotonically increasing
◮ limz→∞ = 1
◮ limz→−∞ = 0
◮ flog (z) = 1− flog (−z)
◮ continuous, differentiable
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Multi layer perceptrons

◮ A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are
neurons with logistic activation.
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◮ neurons of i-th layer serve as input features for neurons of i + 1th layer

◮ very complex functions can be calculated combining many neurons
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Multi layer perceptrons (cont.)

◮ multi layer perceptrons, more formally:
A MLP is a finite directed acyclic graph.

◮ nodes that are no target of any connection are called input neurons. A MLP
that should be applied to input patterns of dimension n must have n input
neurons, one for each dimension. Input neurons are typically enumerated as
neuron 1, neuron 2, neuron 3, ...

◮ nodes that are no source of any connection are called output neurons. A
MLP can have more than one output neuron. The number of output
neurons depends on the way the target values (desired values) of the
training patterns are described.

◮ all nodes that are neither input neurons nor output neurons are called
hidden neurons.

◮ since the graph is acyclic, all neurons can be organized in layers, with the
set of input layers being the first layer.
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Multi layer perceptrons (cont.)

• connections that hop over several layers are called shortcut

• most MLPs have a connection structure with connections from all neurons of
one layer to all neurons of the next layer without shortcuts

• all neurons are enumerated

• Succ(i) is the set of all neurons j for which a connection i → j exists

• Pred(i) is the set of all neurons j for which a connection j → i exists

• all connections are weighted with a real number. The weight of the
connection i → j is named wji

• all hidden and output neurons have a bias weight. The bias weight of neuron
i is named wi0
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Multi layer perceptrons (cont.)

◮ variables for calculation:
◮ hidden and output neurons have some variable net i (“network input”)
◮ all neurons have some variable ai (“activation”/“output”)

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (8)



Multi layer perceptrons (cont.)

◮ variables for calculation:
◮ hidden and output neurons have some variable net i (“network input”)
◮ all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)
T to the MLP:

◮ for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi
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Multi layer perceptrons (cont.)

◮ variables for calculation:
◮ hidden and output neurons have some variable net i (“network input”)
◮ all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)
T to the MLP:

◮ for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

◮ for all hidden and output neurons i :
after the values aj have been calculated for all predecessors j ∈ Pred(i),
calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj )

ai ← flog (net i )
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Multi layer perceptrons (cont.)

◮ variables for calculation:
◮ hidden and output neurons have some variable net i (“network input”)
◮ all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)
T to the MLP:

◮ for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

◮ for all hidden and output neurons i :
after the values aj have been calculated for all predecessors j ∈ Pred(i),
calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj )

ai ← flog (net i )
◮ the network output is given by the ai of the output neurons
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Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (9)



Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
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Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations:
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Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations: step

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (9)



Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations: step by
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Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations: step by step
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Multi layer perceptrons (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations: step by step
◮ read the network output from both output neurons
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Multi layer perceptrons (cont.)

◮ algorithm (forward pass):

Require: pattern ~x , MLP, enumeration of all neurons in topological order
Ensure: calculate output of MLP
1: for all input neurons i do
2: set ai ← xi
3: end for
4: for all hidden and output neurons i in topological order do
5: set net i ← wi0 +

∑

j∈Pred(i) wijaj

6: set ai ← flog (net i )
7: end for
8: for all output neurons i do
9: assemble ai in output vector ~y

10: end for
11: return ~y
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Multi layer perceptrons (cont.)

◮ variant:
Neurons with logistic activation
can only output values between 0
and 1. To enable output in a
wider range of real number
variants are used:

◮ neurons with tanh activation
function:

ai =tanh(net i )=
eneti −e

−net i

enet
i

+e−net i

◮ neurons with linear activation:

ai = net i

linear activation
tanh(x)

flog(2x)
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Multi layer perceptrons (cont.)

◮ variant:
Neurons with logistic activation
can only output values between 0
and 1. To enable output in a
wider range of real number
variants are used:

◮ neurons with tanh activation
function:

ai =tanh(net i )=
eneti −e

−net i

enet
i
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◮ neurons with linear activation:

ai = net i

linear activation
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◮ the calculation of the network
output is similar to the case of
logistic activation except the
relationship between net i and ai
is different.

◮ the activation function is a local
property of each neuron.
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Multi layer perceptrons (cont.)

◮ typical network topologies:
◮ for regression: output neurons with linear activation
◮ for classification: output neurons with logistic/tanh activation
◮ all hidden neurons with logistic activation
◮ layered layout:

input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer i + 1,
no shortcut connections
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Multi layer perceptrons (cont.)

◮ typical network topologies:
◮ for regression: output neurons with linear activation
◮ for classification: output neurons with logistic/tanh activation
◮ all hidden neurons with logistic activation
◮ layered layout:

input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer i + 1,
no shortcut connections

◮ Lemma:
Any boolean function can be realized by a MLP with one hidden layer.
Any bounded continuous function can be approximated with arbitrary
precision by a MLP with one hidden layer.
Proof: was given by Cybenko (1989). Idea: partition input space in small
cells
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MLP Training

◮ given training data: D = {(~x (1), ~d (1)), . . . , (~x (p), ~d (p))} where ~d (i) is the
desired output (real number for regression, class label 0 or 1 for
classification)

◮ given topology of a MLP

◮ task: adapt weights of the MLP
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MLP Training (cont.)

◮ idea: minimize an error term

E (~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

with y(~x ; ~w): network output for input pattern ~x and weight vector ~w ,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2
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MLP Training (cont.)

◮ idea: minimize an error term

E (~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

with y(~x ; ~w): network output for input pattern ~x and weight vector ~w ,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E (~w ;D)
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MLP Training (cont.)

◮ idea: minimize an error term

E (~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

with y(~x ; ~w): network output for input pattern ~x and weight vector ~w ,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E (~w ;D)

◮ interpret E just as a mathematical function depending on ~w and forget
about its semantics, then we are faced with a problem of mathematical
optimization
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Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f (~u)

~u can be any vector of suitable size. But which one solves this task and
how can we calculate it?
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Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f (~u)

~u can be any vector of suitable size. But which one solves this task and
how can we calculate it?

◮ some simplifications:
here we consider only functions f which are continuous and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x
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Optimization theory (cont.)

◮ A global minimum ~u∗ is a point
so that:

f (~u∗) ≤ f (~u)

for all ~u.

◮ A local minimum ~u+ is a point so
that exist r > 0 with

f (~u+) ≤ f (~u)

for all points ~u with ||~u−~u+|| < r

y

x

global local
minima
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Optimization theory (cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui
(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good
idea (c.f. linear regression)
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Optimization theory (cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui
(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good
idea (c.f. linear regression)

but: there are also other points for which ∂f
∂ui

= 0, and resolving these
equations is often not possible
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

slope is negative (descending),
go right!

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

slope is positive (ascending),
go left!

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

slope is small, small step!
~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

slope is large, large step!
~u
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Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

◮ general principle:

vi ← ui − ǫ
∂f

∂ui

ǫ > 0 is called learning rate
~u
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Gradient descent

◮ Gradient descent approach:

Require: mathematical function f , learning rate ǫ > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ~u
2: while ||gradf (~u)|| not close to 0 do
3: ~u ← ~u − ǫ · gradf (~u)
4: end while
5: return ~u

◮ open questions:
◮ how to choose initial ~u
◮ how to choose ǫ
◮ does this algorithm really converge?
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Gradient descent (cont.)

◮ choice of ǫ
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Gradient descent (cont.)

◮ choice of ǫ

1. case small ǫ: convergence
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Gradient descent (cont.)

◮ choice of ǫ

2. case very small ǫ: convergence,
but it may take very long
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Gradient descent (cont.)

◮ choice of ǫ

3. case medium size ǫ:
convergence
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Gradient descent (cont.)

◮ choice of ǫ

4. case large ǫ: divergence
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Gradient descent (cont.)

◮ choice of ǫ

◮ is crucial. Only small ǫ
guarantee convergence.

◮ for small ǫ, learning may take
very long

◮ depends on the scaling of f : an
optimal learning rate for f may
lead to divergence for 2 · f
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Gradient descent (cont.)

◮ some more problems with
gradient descent:

◮ flat spots and steep valleys:
need larger ǫ in ~u to jump over
the uninteresting flat area but
need smaller ǫ in ~v to meet the
minimum

~u ~v
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Gradient descent (cont.)

◮ some more problems with
gradient descent:

◮ flat spots and steep valleys:
need larger ǫ in ~u to jump over
the uninteresting flat area but
need smaller ǫ in ~v to meet the
minimum

◮ zig-zagging:
in higher dimensions: ǫ is not
appropriate for all dimensions

~u ~v
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Gradient descent (cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power
in practice. Finding the right ǫ is annoying. Approaching the minimum is
time consuming.
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Gradient descent (cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power
in practice. Finding the right ǫ is annoying. Approaching the minimum is
time consuming.

◮ heuristics to overcome problems of gradient descent:
◮ gradient descent with momentum
◮ individual lerning rates for each dimension
◮ adaptive learning rates
◮ decoupling steplength from partial derivates
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Gradient descent (cont.)

◮ gradient descent with momentum
idea: make updates smoother by carrying forward the latest update.

1: choose an initial point ~u
2: set ~∆← ~0 (stepwidth)
3: while ||gradf (~u)|| not close to 0 do

4: ~∆← −ǫ · gradf (~u)+µ~∆

5: ~u ← ~u + ~∆
6: end while
7: return ~u

µ ≥ 0, µ < 1 is an additional parameter that has to be adjusted by hand.
For µ = 0 we get vanilla gradient descent.
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

vanilla gradient descent
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

gradient descent with momentum
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

gradient descent with strong
momentum
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

vanilla gradient descent
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Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

gradient descent with momentum
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Gradient descent (cont.)

◮ adaptive learning rate
idea:

◮ make learning rate individual for each dimension and adaptive
◮ if signs of partial derivative change, reduce learning rate
◮ if signs of partial derivative don’t change, increase learning rate

◮ algorithm: Super-SAB (Tollenare 1990)

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (25)



Gradient descent (cont.)

1: choose an initial point ~u
2: set initial learning rate ~ǫ
3: set former gradient ~γ ← ~0
4: while ||gradf (~u)|| not close to 0

do
5: calculate gradient

~g ← gradf (~u)
6: for all dimensions i do

7: ǫi ←











η+ǫi if gi · γi > 0

η−ǫi if gi · γi < 0

ǫi otherwise
8: ui ← ui − ǫigi
9: end for

10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are additional
parameters that have to be adjusted
by hand. For η+ = η− = 1 we get
vanilla gradient descent.
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Gradient descent (cont.)

◮ advantages of Super-SAB and
related approaches:

◮ decouples learning rates of
different dimensions

◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantages:
◮ steplength still depends on

partial derivatives
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Gradient descent (cont.)
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related approaches:
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Gradient descent (cont.)

◮ advantages of Super-SAB and
related approaches:

◮ decouples learning rates of
different dimensions

◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantages:
◮ steplength still depends on

partial derivatives

SuperSAB
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Gradient descent (cont.)

◮ make steplength independent of partial derivatives
idea:

◮ use explicit steplength parameters, one for each dimension
◮ if signs of partial derivative change, reduce steplength
◮ if signs of partial derivative don’t change, increase steplegth

◮ algorithm: RProp (Riedmiller&Braun, 1993)
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Gradient descent (cont.)

1: choose an initial point ~u

2: set initial steplength ~∆

3: set former gradient ~γ ← ~0
4: while ||gradf (~u)|| not close to 0 do
5: calculate gradient ~g ← gradf (~u)
6: for all dimensions i do

7: ∆i ←











η+∆i if gi · γi > 0

η−∆i if gi · γi < 0

∆i otherwise

8: ui ←











ui +∆i if gi < 0

ui −∆i if gi > 0

ui otherwise

9: end for
10: ~γ ← ~g
11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are additional
parameters that have to be adjusted
by hand. For MLPs, good heuristics
exist for parameter settings: η+ = 1.2,
η− = 0.5, initial ∆i = 0.1
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Gradient descent (cont.)

◮ advantages of Rprop
◮ decouples learning rates of

different dimensions
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change
◮ independent of gradient length
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Gradient descent (cont.)

◮ advantages of Rprop
◮ decouples learning rates of

different dimensions
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change
◮ independent of gradient length

vanilla gradient descent

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (30)



Gradient descent (cont.)

◮ advantages of Rprop
◮ decouples learning rates of

different dimensions
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change
◮ independent of gradient length

Rprop
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Beyond gradient descent

◮ Newton

◮ Quickprop

◮ line search
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Beyond gradient descent (cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f (~u + ~∆) ≈ f (~u) + gradf (~u) · ~∆+
1

2
~∆T

H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.
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Beyond gradient descent (cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f (~u + ~∆) ≈ f (~u) + gradf (~u) · ~∆+
1

2
~∆T

H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf (~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf (~u))T
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Beyond gradient descent (cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f (~u + ~∆) ≈ f (~u) + gradf (~u) · ~∆+
1

2
~∆T

H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf (~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf (~u))T

◮ advantages: no learning rate, no parameters, quick convergence

◮ disadvantages: calculation of H and H−1 very time consuming in high
dimensional spaces
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Beyond gradient descent (cont.)

◮ Quickprop (Fahlmann, 1988)
◮ like Newton’s method, but replaces H by a diagonal matrix containing only

the diagonal entries of H.
◮ hence, calculating the inverse is simplified
◮ replaces second order derivatives by approximations (difference ratios)
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Beyond gradient descent (cont.)

◮ Quickprop (Fahlmann, 1988)
◮ like Newton’s method, but replaces H by a diagonal matrix containing only

the diagonal entries of H.
◮ hence, calculating the inverse is simplified
◮ replaces second order derivatives by approximations (difference ratios)

◮ update rule:

△w t
i :=

−g t
i

g t
i
− g t−1

i

(w t
i − w t−1

i
)

where g t
i = grad f at time t.

◮ advantages: no learning rate, no parameters, quick convergence in many cases

◮ disadvantages: sometimes unstable

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (33)



Beyond gradient descent (cont.)

◮ line search algorithms:

two nested loops:
◮ outer loop: determine serach

direction from gradient
◮ inner loop: determine

minimizing point on the line
defined by current search
position and search direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm
may be more complex algorithm,
e.g. Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces
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Beyond gradient descent (cont.)

◮ line search algorithms:

two nested loops:
◮ outer loop: determine serach

direction from gradient
◮ inner loop: determine

minimizing point on the line
defined by current search
position and search direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm
may be more complex algorithm,
e.g. Newton

grad

search line

◮ problem: time consuming for
high-dimensional spaces
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Summary: optimization theory

◮ several algorithms to solve problems of the form:

minimize
~u

f (~u)

◮ gradient descent gives the main idea

◮ Rprop plays major role in context of MLPs

◮ dozens of variants and alternatives exist
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Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E (~w ;D)

for given network topology and training data D

E (~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2
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Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E (~w ;D)

for given network topology and training data D

E (~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

◮ optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of E?
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Calculating partial derivatives

◮ the calculation of the network output of a MLP is done step-by-step:
neuron i uses the output of neurons j ∈ Pred(i) as arguments, calculates
some output which serves as argument for all neurons j ∈ Succ(i).

◮ apply the chain rule!
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Calculating partial derivatives (cont.)

◮ the error term

E (~w ;D) =

p
∑

i=1

(1

2
||y(~x (i); ~w)− ~d

(i)||2
)

introducing e(~w ;~x , ~d) = 1
2
||y(~x ; ~w)− ~d ||2 we can write:
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Calculating partial derivatives (cont.)

◮ the error term

E (~w ;D) =

p
∑

i=1

(1

2
||y(~x (i); ~w)− ~d

(i)||2
)

introducing e(~w ;~x , ~d) = 1
2
||y(~x ; ~w)− ~d ||2 we can write:

E (~w ;D) =

p
∑

i=1

e(~w ;~x (i)
, ~d

(i))

applying the rule for sums:
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Calculating partial derivatives (cont.)

◮ the error term

E (~w ;D) =

p
∑

i=1

(1

2
||y(~x (i); ~w)− ~d

(i)||2
)

introducing e(~w ;~x , ~d) = 1
2
||y(~x ; ~w)− ~d ||2 we can write:

E (~w ;D) =

p
∑

i=1

e(~w ;~x (i)
, ~d

(i))

applying the rule for sums:

∂E (~w ;D)

∂wkl

=

p
∑

i=1

∂e(~w ;~x (i), ~d (i))

∂wkl

we can calculate the derivatives for each training pattern indiviudally and
sum up
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Calculating partial derivatives (cont.)

◮ individual error terms for a pattern ~x , ~d
simplifications in notation:

◮ omitting dependencies from ~x and ~d
◮ y(~w) = (y1, . . . , ym)

T network output (when applying input pattern ~x)
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Calculating partial derivatives (cont.)

◮ individual error term:

e(~w) =
1

2
||y(~x ; ~w)− ~d ||2 =

1

2

m
∑

j=1

(yj − dj)
2

by direct calculation:
∂e

∂yj
= (yj − dj)

yj is the activation of a certain output neuron, say ai

Hence:
∂e

∂ai
=

∂e

∂yj
= (ai − dj)
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Calculating partial derivatives (cont.)

◮ calculations within a neuron i

assume we already know ∂e
∂ai

observation: e depends indirectly from ai and ai depends on net i
⇒ apply chain rule

∂e

∂net i
=

∂e

∂ai
·

∂ai

∂net i

what is ∂ai
∂net i

?
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Calculating partial derivatives (cont.)

◮
∂ai
∂net i

ai is calculated like: ai = fact(net i ) (fact activation function)
Hence:

∂ai

∂net i
=

∂fact(net i )

∂net i
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Calculating partial derivatives (cont.)

◮
∂ai
∂net i

ai is calculated like: ai = fact(net i ) (fact activation function)
Hence:

∂ai

∂net i
=

∂fact(net i )

∂net i

◮ linear activation: fact(net i ) = net i

⇒
∂fact (net i )

∂net i
= 1
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Calculating partial derivatives (cont.)

◮
∂ai
∂net i

ai is calculated like: ai = fact(net i ) (fact activation function)
Hence:

∂ai

∂net i
=

∂fact(net i )

∂net i

◮ linear activation: fact(net i ) = net i

⇒
∂fact (net i )

∂net i
= 1

◮ logistic activation: fact(net i ) =
1

1+e−neti

⇒
∂fact (net i )

∂net i
= e−neti

(1+e−neti )2
= flog (net i ) · (1− flog (net i ))
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Calculating partial derivatives (cont.)

◮
∂ai
∂net i

ai is calculated like: ai = fact(net i ) (fact activation function)
Hence:

∂ai

∂net i
=

∂fact(net i )

∂net i

◮ linear activation: fact(net i ) = net i

⇒
∂fact (net i )

∂net i
= 1

◮ logistic activation: fact(net i ) =
1

1+e−neti

⇒
∂fact (net i )

∂net i
= e−neti

(1+e−neti )2
= flog (net i ) · (1− flog (net i ))

◮ tanh activation: fact(net i ) = tanh(net i )

⇒
∂fact (net i )

∂net i
= 1− (tanh(net i ))

2
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Calculating partial derivatives (cont.)

◮ from neuron to neuron

assume we already know ∂e
∂net j

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j
depends on ai ⇒ apply chain rule
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Calculating partial derivatives (cont.)

◮ from neuron to neuron

assume we already know ∂e
∂net j

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j
depends on ai ⇒ apply chain rule

∂e

∂ai
=

∑

j∈Succ(i)

( ∂e

∂net j
·
∂net j

∂ai

)
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Calculating partial derivatives (cont.)

◮ from neuron to neuron

assume we already know ∂e
∂net j

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j
depends on ai ⇒ apply chain rule

∂e

∂ai
=

∑

j∈Succ(i)

( ∂e

∂net j
·
∂net j

∂ai

)

and:
net j = wjiai + ...

hence:
∂netj

∂ai
= wji
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Calculating partial derivatives (cont.)

◮ the weights

assume we already know ∂e
∂net i

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
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Calculating partial derivatives (cont.)

◮ the weights

assume we already know ∂e
∂net i

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i
·
∂net i

∂wij
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Calculating partial derivatives (cont.)

◮ the weights

assume we already know ∂e
∂net i

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i
·
∂net i

∂wij

and:
net i = wijaj + ...

hence:
∂neti

∂wij

= aj
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Calculating partial derivatives (cont.)

◮ bias weights

assume we already know ∂e
∂net i

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
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Calculating partial derivatives (cont.)

◮ bias weights

assume we already know ∂e
∂net i

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0
=

∂e

∂net i
·
∂net i

∂wi0
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Calculating partial derivatives (cont.)

◮ bias weights

assume we already know ∂e
∂net i

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0
=

∂e

∂net i
·
∂net i

∂wi0

and:
net i = wi0 + ...

hence:
∂neti

∂wi0
= 1
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Calculating partial derivatives (cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2
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Calculating partial derivatives (cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2

∂e
∂a3

= a3 − d1
∂e

∂net3
= ∂e

∂a3
· ∂a3
∂net3

= ∂e
∂a3
· 1

∂e
∂a2

=
∑

j∈Succ(2)(
∂e

∂net j
·
∂net j
∂a2

) = ∂e
∂net3

· w3,2

∂e
∂net2

= ∂e
∂a2
· ∂a2
∂net2

= ∂e
∂a2
· a2(1− a2)

∂e
∂w3,2

= ∂e
∂net3

· ∂net3
∂w3,2

= ∂e
∂net3

· a2
∂e

∂w2,1
= ∂e

∂net2
· ∂net2
∂w2,1

= ∂e
∂net2

· a1
∂e

∂w3,0
= ∂e

∂net3
· ∂net3
∂w3,0

= ∂e
∂net3

· 1
∂e

∂w2,0
= ∂e

∂net2
· ∂net2
∂w2,0

= ∂e
∂net2

· 1
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Calculating partial derivatives (cont.)

◮ calculating the partial derivatives:
◮ starting at the output neurons
◮ neuron by neuron, go from output to input
◮ finally calculate the partial derivatives with respect to the weights

◮ Backpropagation
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations:
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by step
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by step
◮ calculate error, ∂e

∂ai
, and ∂e

∂net i
for output neurons
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Calculating partial derivatives (cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by step
◮ calculate error, ∂e

∂ai
, and ∂e

∂net i
for output neurons

◮ propagate backward error: step
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Calculating partial derivatives (cont.)

◮ illustration:
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Calculating partial derivatives (cont.)

◮ illustration:
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◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by step
◮ calculate error, ∂e

∂ai
, and ∂e

∂net i
for output neurons

◮ propagate backward error: step by step
◮ calculate ∂e

∂wji
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Calculating partial derivatives (cont.)

◮ illustration:

1
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◮ apply pattern ~x = (x1, x2)
T

◮ propagate forward the activations: step by step
◮ calculate error, ∂e

∂ai
, and ∂e

∂net i
for output neurons

◮ propagate backward error: step by step
◮ calculate ∂e

∂wji

◮ repeat for all patterns and sum up
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Back to MLP Training

◮ bringing together building blocks of MLP learning:
◮ we can calculate ∂E

∂wij

◮ we have discussed methods to minimize a differentiable mathematical
function
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Back to MLP Training

◮ bringing together building blocks of MLP learning:
◮ we can calculate ∂E

∂wij

◮ we have discussed methods to minimize a differentiable mathematical
function

◮ combining them yields a learning algorithm for MLPs:
◮ (standard) backpropagation = gradient descent combined with calculating

∂E
∂wij

for MLPs

◮ backpropagation with momentum = gradient descent with moment
combined with calculating ∂E

∂wij
for MLPs

◮ Quickprop
◮ Rprop
◮ ...
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Back to MLP Training (cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do
4: for all (~x , ~d) ∈ D do
5: apply ~x to network and calculate the network output
6: calculate ∂e(~x)

∂wij
for all weights

7: end for
8: calculate ∂E(D)

∂wij
for all weights suming over all training patterns

9: perform one update step of the minimization approach
10: end while

◮ learning by epoch: all training patterns are considered for one update step
of function minimization
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Back to MLP Training (cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do
4: for all (~x , ~d) ∈ D do
5: apply ~x to network and calculate the network output
6: calculate ∂e(~x)

∂wij
for all weights

7: perform one update step of the minimization approach
8: end for
9: end while

◮ learning by pattern: only one training patterns is considered for one update
step of function minimization (only works with vanilla gradient descent!)
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Lernverhalten und Parameterwahl - 3 Bit Parity
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Lernverhalten und Parameterwahl - 6 Bit Parity
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Lernverhalten und Parameterwahl - 10 Encoder
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Lernverhalten und Parameterwahl - 12 Encoder
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Lernverhalten und Parameterwahl - ’two sprials’
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Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most
frequently sold newspaper in
Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets
in Germany, differing in a lot of
facets
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Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most
frequently sold newspaper in
Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets
in Germany, differing in a lot of
facets

◮ problem: how many copies are
sold in which sales outlet?

◮ neural approach: train a neural
network for each sales outlet,
neural network predicts next
week’s sales rates

◮ system in use since mid of 1990s

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (57)



Examples: Alvinn (Dean, Pommerleau, 1992)

◮ autonomous vehicle driven by a multi-layer perceptron

◮ input: raw camera image

◮ output: steering wheel angle

◮ generation of training data by a human driver

◮ drives up to 90 km/h

◮ 15 frames per second
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Alvinn MLP structure
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Alvinn Training aspects

◮ training data must be ’diverse’

◮ training data should be balanced (otherwise e.g. a bias towards steering
left might exist)

◮ if human driver makes errors, the training data contains errors

◮ if human driver makes no errors, no information about how to do
corrections is available

◮ generation of artificial training data by shifting and rotating images
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Summary

◮ MLPs are broadly applicable ML models

◮ continuous features, continuos outputs

◮ suited for regression and classification

◮ learning is based on a general principle: gradient descent on an error
function

◮ powerful learning algorithms exist

◮ likely to overfit ⇒ regularisation methods
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