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Acknowlegements and Further Reading

These slides are mainly based on the following three sources:

» A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,
corrected reprint, Springer, 2007 — recommendable, easy to read but
somewhat lengthy

» B. Hammer, Softcomputing, Lecture Notes, University of Osnabriick, 2003
— shorter, more research oriented overview

» T. Mitchell, Machine Learning, McGraw Hill, 1997 — very condensed
introduction with only a few selected topics

Further sources include several research papers (a few important and / or
interesting are explicitly cited in the slides) and own experiences with the
methods described in these slides.
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‘Evolutionary Algorithms' (EA) constitute a collection of methods that
originally have been developed to solve combinatorial optimization problems.
They adapt Darwinian principles to automated problem solving. Nowadays,
Evolutionary Algorithms is a subset of Evolutionary Computation that itself is a
subfield of Artificial Intelligence / Computational Intelligence.

Evolutionary Algorithms are those metaheuristic optimization algorithms from
Evolutionary Computation that are population-based and are inspired by
natural evolution. Typical ingredients are:

> A population (set) of individuals (the candidate solutions)
» A problem-specific fitness (objective function to be optimized)

» Mechanisms for selection, recombination and mutation (search strategy)

There is an ongoing controversy whether or not EA can be considered a
machine learning technique. They have been deemed as ‘uninformed search’
and failing in the sense of learning from experience (‘never make an error
twice’). However, they have been applied successfully to problems that are at
the very heart of machine learning.
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History of Evolutionary Algorithms

Around ever since the early days of computing: Box 1957, Bledsoe 1961

Pioneered in the 1960s and early 70s as

> Genetic Algorithms (GA) by Holland and Goldberg (US):
optimization of bit strings in analogy to discrete-valued DNA-sequences
» Evolution Strategies (ES) by Rechenberg and Schwefel (Europe):
similar techniques, but using real-valued numbers and only mutation

Have been developed in parallel for about two decades.
Nowadays considered as two different flavours of the same thing (EA).
More recent developments include:

> Neuroevolution: evolution of (recurrent) neural networks in control tasks

» Evolutionary Image Processing: analyzing and understanding images with
help of evolutionary programming
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Section 1: Motivation

» Natural Evolution
» Surface Metaphor

» Convergence
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Blue-print Natural Evolution

Why might Evolution be an interesting model for computer algorithms?

» Evolution has proven a powerful mechanism in ‘improving’ life-forms and
forming ever more complex species.

» Driven by suprisingly simple mechanisms, nevertheless produced
astonishing results.

Evolution is basically a random process, driven by evolutionary pressure:

1. Tinkering with genes (Genotype)
> Mating: recombination of genes in descendants
> Mutation: random changes (external influences, reproduction errors)

2. Testing (Phenotype), Competition (‘Survival of the fittest')

PIISEN
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Surface metaphor
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» Traits and fitness form a surface with hills and valleys.
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» Traits and fitness form a surface with hills and valleys.

> Population ‘travels’ this surface and slowly climbs the hills.
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» Traits and fitness form a surface with hills and valleys.
> Population ‘travels’ this surface and slowly climbs the hills.
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» Traits and fitness form a surface with hills and valleys.

> Population ‘travels’ this surface and slowly climbs the hills.
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Surface metaphor
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» Traits and fitness form a surface with hills and valleys.
> Population ‘travels’ this surface and slowly climbs the hills.

> Due to genetic drift it's possible to also travel through valleys and reach
another (higher) hill.
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» Traits and fitness form a surface with hills and valleys.
> Population ‘travels’ this surface and slowly climbs the hills.

> Due to genetic drift it's possible to also travel through valleys and reach
another (higher) hill.
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Surface metaphor
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> Traits and fitness form a surface with hills and valleys.

> Population ‘travels’ this surface and slowly climbs the hills.

» Due to genetic drift it's possible to also travel through valleys and reach
another (higher) hill.
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> Traits and fitness form a surface with hills and valleys.

> Population ‘travels’ this surface and slowly climbs the hills.

» Due to genetic drift it's possible to also travel through valleys and reach
another (higher) hill.
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Convergence of Natural Evolution

One could be uncomfortable with such a random process (no driving force):
» Does it find solutions just by (unlikely) coincidence?
» How random are the solutions it finds? Is it repeatable?

» We're looking for ‘specific’ or even the 'optimal’ solutions.

But, there is promising empirical evidence for evolution to work in a desired
way. Example from natural evolution: hypothesis of ‘convergence’.
» The argument is that results and ‘solutions’ found by evolution are not
purely random but to a certain degree are repeatable and ‘reasonable’.
» The details are random, but the principles are heavily constrained by
environmental and physical necessities up to being ‘inevitable’.

» Moreover, if evolution would be restarted on earth, the outcome might not
be exactly the same but neither completely different.

Advocates of this argument try to justify it by looking at separated ‘niches’ of
our eco-system (we have only one evolution at hand), identifying similar
solutions found by independent processes; thus a ‘convergence’ of solutions.
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Example: Camera-Eye
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from: Simon Conway Morris, Life's solution, 2003
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Example: Camera-Eye
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Annelid (Ringelwurm). Image from: NOAA National Estuarine Research Reserve
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Example: Camera-Eye

Cephalopod (Kopffiissler). Image from: Nhobgood, 2006, CCA-SA 3.0
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Example: Camera-Eye
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Example: Camera-Eye (continued)

Membrana limitans
nterna
Stratum opticum
Ganglionic layer
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Outer nuclear layer
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light j R
v _ : i Layer of rods and
I\ | cones

from: Gray’s Anatomy, 1918
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Noteworthy Principles

Basics:
» Evolution is a random process of selection, reproduction and mutation
> It's driven by evolutionary pressure (‘survival of the fitesst')

» ‘Search’ is conducted with generations of populations, not by improving
individuals

Details:

» Populations evolving in different niches can independently develop
different (but similar) solutions to the same problem (EA: parallel
evolution, island model)

> Solutions may reach a local optimum from which it's hard to achieve any
significant improvements (example: human eye)

> Nevertheless, it's possible that populations leave a hill and ‘wade through
the water’ to finally reach a better hill (surface metaphor, genetic drift)

» Fitness of individuals may depend on the other individuals in the
population (example: predator — prey, EA: coevolution)

» ‘Good’ solutions are somehow constrained by the environment
(convergence, inevitable?)
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Section 2: Framework

v

From Biology to Computer Science

» Basic Framework

v

Example: evoVision

v

Advanced Techniques
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From Natural Evolution to Evolutionary Algorithms

» Natural evolution has proven a powerful optimization process
> We have identified it's main ingreedients

» How can we use these principles for solving optimization problems?

Dr. Sascha Lange  Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (14)



Example: Traveling Salesman Problem (TSP)

Task: In a complete graph, given a list of pairwise distances between its nodes,
find the shortest tour that visits every node exactly once. NP-hard optimization
problem.

Naive search algorithm:

» Start with a random tour
> Loop:

1. Alter tour randomly
2. Keep new tour, iff shorter

Problems:

> Might get stuck in local optima

> Might be necessary to become
worse in order to ‘escape’

» Solution (local optimum) found
heavily depends on starting point

Hypothesis Space
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Example: Traveling Salesman Problem (TSP) (cont.)

Idea: Search from different starting
positions in parallel

> Explore different regions of
hypothesis space

> Will end up in different local
optima

> More likely to find global optimum
(in the limit P towards 1)

Problem: How to distribute ‘computing’
power?

> Equal distribution: Same as doing
naive search several times in a row

» Exploring always the best so far:
equals naive search
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Example: Traveling Salesman Problem (TSP) (cont.)

Idea: Distribute according to quality

> Assign more computing power to exploring
better regions

> Realized by exploring more descendents of
already good tour

» Don't throw non-optimal tours away
(immediately) but continue to explore
their descendents

(A,B,C,ED)
Idea for further improvement: +([BCADE)
» Combine a tour that is good at the cities (A,B,C,D,E)
A, B, C with another tour that is good at —_—

D and E.
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Surface metaphor (EA)
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» Start with a random-initialized population of candidate solutions.

» Population ‘travels’ this surface and slowly climbs the hills.
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Surface metaphor (EA)
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» Start with a random-initialized population of candidate solutions.

» Population ‘travels’ this surface and slowly climbs the hills.
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Surface metaphor (EA)
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» Start with a random-initialized population of candidate solutions
> Population ‘travels’ this surface and slowly climbs the hills
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Surface metaphor (EA)
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» Start with a random-initialized population of candidate solutions.
> Population ‘travels’ this surface and slowly climbs the hills.
» Eventually, a (sub-)population will ‘converge’ on the global optimum.

Evolutionary Algorithms — Framework (1
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General Framework of Evolutionary Algorithms

initial population

Criterion
Evaluation

Pist
yes 4

final population or
best individual from population

» Individuals: hypothesis x from a hypothesis space X
» Population: collection P of u present hypotheses P = {x;|i = 1,...,u}
» Evaluation: apply a mapping f : X — R (fitness function) to all individuals

> Selection mechanism: selects individuals x € P; for reproduction (mating);
selects individuals from offsprings and P; to form the new population Pji;

» Reproduction: combination of two or more individuals (Crossover) and
random alteration (Mutation).
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Individuals

Individuals are the chosen representation of the candidate hypotheses.
Within EA you have (nearly) free choice of the model!

Common representations within EA:

> Bit-strings: binary representations of logic formulae (e.g. rules), values of
boolean variables, ... — Genetic Algorithms

» Real-valued: parameter vectors of a polynom of 3rd degree, a control law,
a neural network, a process, ... — Evolutionary Strategies

» Structured: Decision trees, neural networks, programs, ... — Genetic /
Evolutionary Programming, Neuroevolution

Restriction: Definition of (at least) a meaningful mutation-operator for a given
representation must be possible. (Crossover operator is no necessity.)

Example TSP: Sequence of nodes to visit, X the set of all permutations of
(A, B,C,D,E).
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Fitness Function

The fitness function ‘rates’ the quality of the candidate solutions and forms the
basis for the selection procedure. Thus, it's problem dependent! Usually:

» A function f : X — R with f(x) >0, Vx € X

The fitness may be either a direct function of the individual’s parameters, or it
also may involve more complex computations or even a testing procedure that
is performed in the real-world.

Examples:

» Calculating the generalization error of an evolved image-classifier on
validation data

> Measuring the time an evolved control law manages to balance a pole
» Walking distance (within 30s) of a robot dog using an evolved gait pattern

As such, the fitness may have a non-deterministic component!
In nature: difference between testing the genotype or phenotype.

Example TSP: f: X — R: f(x) = f(x1,...,x5) = 1 — dbaweltdboog)t. 4 d0x.x)

max; ; d(x,-,xj-)<4

Dr. Sascha Lange  Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (21)



Selection of Parents

Randomly selects individuals of a population that get the chance for generating
offsprings. The sampling is usually done from a probability distribution somehow
derived from the fitness of the individuals. Specifically, fitter individuals must

be more likely to send offsprings to the next generation than less fit individuals.

» Number of individuals to select is a parameter; it's relation to the
population size diffesr among EA variants (from smaller to larger than p)

> Usually, it's allowed to select the same individual more than once
(selection with or without replacement)

Selection mechanisms commonly found in EAs:
» Fitness proportional selection (roulette wheel selection)
» Ranking selection

» Tournament selection

> Uniform selection (pressure must come from survivor selection)
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Selection of Parents: Fitness proportional selection

Probability P(x;) for selecting the individual x; with fitness f(x;) is given by

Vo fba)
Pla) = S 65

Thus, the selection probability depends on the absolute fitness value of the
individual compared to the absolute fitness values of the rest of the population.

Problems

» Premature Convergence: outstanding individuals dominate population too
early

» Almost no selection pressure, when all individuals have similar fitness

» Different behavior on transposed versions of the fitness function

Improvements

» Windowing: Subtract a constant beta; from the fitness of each individual,
e.g. Bi = minyep, f(x). Doesn’t help with premature convergence.

» Sigma-Scaling: f’(x) = max (f(x) — (f — c - 0¢),0) using the variance oy
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Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number A
of parents to select) is noninteger. Thus, we have to sample the parents.

D <+ empty collection (might contain multiple copies of same member)

WHILE D] < A
r <— uniformly picked random value from [0, 1]
i+ 0
Do
i—i+1
r < r — P(x;) where x; i-th element of population P
WHILE r >0
add x; to collection D
return D
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Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number A
of parents to select) is noninteger. Thus, we have to sample the parents.

D <+ empty collection (might contain multiple copies of same member)

WHILE D] < A
r <— uniformly picked random value from [0, 1]
i+ 0
Do
i—i+1
r < r — P(x;) where x; i-th element of population P
WHILE r >0
add x; to collection D
return D

Subtracting a probability P(x;) from the random value can be seen as letting a
ball roll over a field (with its size proportional to P(x;)) of a roulette wheel.
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Selection of Parents: Roulette Wheel Algorithm

Given the likelihood of each individual being selected for reproduction, how do
we determine what individuals to select how often? Typically, the expected
number of copies of an individual (likelihood multiplied by the total number A
of parents to select) is noninteger. Thus, we have to sample the parents.

D <+ empty collection (might contain multiple copies of same member)

WHILE D] < A
r <— uniformly picked random value from [0, 1]
i+ 0
Do
i—i+1
r < r — P(x;) where x; i-th element of population P
WHILE r >0
add x; to collection D
return D

Subtracting a probability P(x;) from the random value can be seen as letting a
ball roll over a field (with its size proportional to P(x;)) of a roulette wheel.

Problem: The sample might quite largely deviate from ideal distribution.
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Selection of Parents: Stochastic Universal Sampling

D <+ empty collection (might contain multiple copies of same member)
i1
r < uniformly picked random value from [0,1/A]
WHILE |D]| < A
WHILE r < P(x;) (where x; i-th element of population P)
add x; to collection D
r—r+1/X
r<r— P(x)
i—i+1
return D
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Selection of Parents: Stochastic Universal Sampling

Idea: Just draw one random number to determine the whole sample. Spin only
one time a roulette wheel with X\ equally spaced arms, instead of spinning a
one-armed wheel A-times.

D <+ empty collection (might contain multiple copies of same member)
i1
r < uniformly picked random value from [0,1/A]
WHILE |D]| < A
WHILE r < P(x;) (where x; i-th element of population P)
add x; to collection D
r—r—+1/X
r<r— P(x)
i—i+1
return D

The number of copies of each parent x; is
> at least the integer part of A\ - P(x;)
> no more than one greater,
because r initialized in [0,1/A] and incremented by 1/\ with every selection.
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Selection of Parents: Ranking Selection

Preserves constant selection pressure by sorting the population on the basis of
fitness and then allocating selection probabilities to individuals according to
their rank.

> the mapping from rank to selection probability can be done arbitrarily
> e.g. using a linearly or exponentially decreasing mapping

> as long as the probabilities add up to one
Ranking selection does not suffer from premature convergence and does not

have the same problems as fitness-proportional selection with transposed
versions of the fitness function.
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Selection of Parents: Linear Ranking Scheme

One particular ranking scheme that is often found in GA (with i/ = 0 the rank
of the worst individual and i = yx — 1 the rank of the best):
2—s 2i(s—1)

poo op(p—1)

Pin_rank (Xi) =

Here, we assume the size of the parent population i equals the number of
produced descendents \. s € (1,2] is a parameter controlling the expected
number of copies of the highest-ranked individual.

Results for s = 2 and p = 10 individuals:

0,20
0,15
0,10
0,05

0
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Selection of Parents: Exponential Ranking Scheme

If more selection pressure is needed and higher-ranked individuals should be
more likely to being selected, one could use an exponential function for
mapping ranks to selection probabilities, e.g. (with i = 0 the rank of the worst
individual and i = p — 1 the rank of the best):

e—s(h—=1i)

P Xp_ran i) = —<—  ~

exp.rank (Xi) S le i)
Again, we assume the size of the parent population u equals the number of
produced descendents \. s € (0,1] is a parameter controlling the probability
mass on the higher-ranked individuals.

Results for s = 0.5 and p = 10 individuals:

0,4
0,3
0,2
0,1

0 —
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Selection of Parents: Tournament Selection

Tournament Selection (TS) is another selection mechanism that does look only
at relative fitnesses and that has the same beneficial properties as the ranking
schemes regarding translated and transposed versions of the fitness function.

D + empty collection (might contain multiple copies of same member)
WHILE D] < A
select k individuals randomly (with or without replacement)
determine the best of these k individuals comparing their fitness values
add the best individual to D
return D

TS is widely used because the easy control of its selection pressure through
> the tournament size k € {2,3,4,...} (larger k — more pressure)
> the probability of selecting the winner (usually p = 1, highest pressure)
> replacement (without replacement: k — 1 worst cannot be chosen)

and because it doesn’t have to know absolute fitness values of all individuals
but only relative fitnesses of the tournament participants. Example: two
candidate solutions compete against each other and the winner is selected.
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Selection of Survivors

This processing step is responsible for producing the next generation P;i1 from
the old population P; and newly formed offsprings. It's mechanisms are closely
coupled to the earlier parent selection.

In general, there are two principle population models to select from:
Generation-based

> given a population of size p

> select a ‘mating pool’ of parents from the population

» produce X offsprings (in GA often: A\ = p)

> the whole population is replaced by u < A offsprings

» may loose the fittest individual and maximal fitness may decline again

Steady-State

> given a population of size u
» produce a number of offsprings

» replace only part of the population by A < p offsprings
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Selection of Survivors: Age-Based Replacement

Replacement of the individuals of a population independent of their fitness
value but depending on their age (number of generations the individual
survived). Keeping the individuals with highest fitness in this scheme depends

on them being selected for reproduction.

Possible realizations:
> In the extreme case where A = p each individual just survives one
generation, as the whole population is replaced in each step
(generation-based)
> In the other extreme case of A = 1 only the oldest individual is “killed” and
each individual survives i generations (realizing a FIFO) (steady-state)

> In the steady-state case of A < u the A oldest are replaced
Note: Randomly selecting “dying” individuals is also considered age-based

replacement. Although used quite often, using random selection is strongly
discouraged as loosing the fittest individual is more likely (Smith and Vavak).
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Selection of Survivors: Fitness-Based Replacement

Fitness-based replacement is a widely used technique with countless variants for
selecting the p individuals that form the new population from the p + A parents
and offsprings. In principle, all techniques discussed for the selection of parents
can be also used here, based on inverse fitness or ranks. Further techniques:

Replace Worst (GENITOR)

> Replace the A worst individuals
» Rapidly improving mean fitness, but: danger of premature convergence

» Thus: use only with large populations and / or no-duplicates policy

Elitism
» Add-on to all age-based and stochastic fitness-based schemes
» Rule: always keep the fittest member in population

> If the fittest individual is selected for replacement and no offspring with
better fitness is inserted, keep it and discard another individual

» Guaranteed monotonic improvement of fittest individual in population
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Reproduction

The task of the reproduction step is to create new individuals from old ones.
There are two principal types of variation operators: unary and binary operators.

Unary: Mutation

» Applied to one individual, delievers a “slightly” changed mutant (offspring)

» Mutation is almost always stochatic, causing a random, unbiased change

Binary: Recombination or “Cross-Over”

> Merges information from two parents into one or two offsprings
» As mutation, involves random choices of what and how to merge
» Often used option: a non-zero chance of this operator not being applied

» Operators involving more parents are possible, but seldom used

The details of the used operators depend on the particular representation. Thus,
the operators will be discussed in more detail in the corresponding section.
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Termination Condition

Ideal world: if we know the optimum of the objective (fitness) function (and
have unlimited time), we could stop the procedure when a candidate solution is
found with a fitness that is within a given boundary € > 0 of the optimum.

Practice: in most cases one of the following stopping criteria is used:
» The maximally allowed time elapses (CPU time, real time)
» The total number of fitness evaluations reaches a given limit

> The fitness improvement remains under a given threshold for a given
period of time

The diversity of the population remains under a given threshold

v

> A given number of generations has been evolved
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Example: evoVision — Exemplary Realization of the Modules

initial population

v

F,i+1
Criterion
o MM

yes

final population or
best individual from population
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Example: evoVision — Supervised Learning with Feature Extraction

Common approach to learning with images (classification or regression): two
layered architecture.

i \ ((ball 100, -30),
1. feature extraction (goal 110, -20))

edges, corners, contours,

regions, textures, ... % §

2. learning
algorithm

(0.63, 0.50, 0.00)

Open problem: how can the feature extraction subsytem also be learned?
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Example: evoVision — Representation

Low-Level-Vision High-Level-Vision u.
Subsystem Kontroller

ki fa_perator 5 oy
. o sgal or
= Operator| 3 a=(2,, 85 ... )
L] a 8 i
> ©
— . =
(=3
\Qperator | =< |

Phenotype: image processing algorihtms (operators) & trained neural network
Genotype: boolean, ordinal and real-valued parameters of image processing
algorithms, for controlling the neural net's topology, selecting the error function

Exemplary Operators:
» Histograms. Parameters: number of windows, number of buckets

» Colored-Blobs-Encoder. Parameters: Prototype colors for color
segmentation of the whole image, properties of blobs to pass on (e.g.
position, size, bounding box, roundness, etc.)
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Example: evoVision — Reproduction

Cross-Over
» The i-th parent is recombined with both the (i — i)-th and the (i + 1)-th
parent (produces as many offsprings as selected parents)

> The offspring inherits a randomly selected subset of the joint set of its
parents’ operators as well as the neural net topology of its first parent.

> Parameters of operators and neural net remain unchanged.

» There is a chance of p = 1 — rfrecombination fOr €ach parent remaining
unchanged and being copied directly to the collection of offsprings.

Mutation

» Each offspring is mutated with a chance of rmutation

» Mutation can delete operators or add random-initialized new operators
» Each parameter is changed with a 10%-chance

> Real-valued parameters get added normal distributed noise

» Ordinal numbers are drawn from a uniform distribution

> Ranges (variances derived) are specified for each parameter individually
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Example: evoVision — Parameter Abstraction

class ParameterMetaInfo {

public:
enum parameterType {
BOOL=0, //'< interpret as vector of boolean values
INT, //'< interpret as vector of integer values
DOUBLE //'< interpret as vector of double values
};

ParameterMetaInfo(enum parameterType type,
unsigned int dimension,
const vector<double>& minValues,
const vector<double>& maxValues);

Parameter create() const;

class Parameter {
public:
const ParameterMetaInfo x const getMetaInfo() const;

vector<double> getValue() const;
void setValue(const vector<double>& v);

’
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Example: evoVision — Parameter Abstraction

class Individual {
public:
virtual Individualx clone() const;

const vector<ParameterMetaInfo>& getParameterDescriptions() const;
void addParameter( const Parameter& );

Parameterx getParameter(unsigned int i) const;

virtual bool isParameterValid(int 1i);

virtual void initialize();
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Example: evoVision — Population Model

» Random initialization of candidates

» Constant population size of (typically) 60 individuals (quite small)

» Selection: Fitness proportional selection of 20 parents for mating,
implemented with roulette wheel algorithm (not optimal!)

> Replacement: The A = 15 best offsprings replace the 15 worst individuals
(GENITOR)

> Thus: steady-state population model

Problem in experiments: Some operators quickly dominated the whole
population. That was due to some operators already producing ok-results with
initial parameters (e.g. histogram), whereas other operators needed much more
time to optimize parameters to just reach average results.

Implemented solution: Start with 30 epochs of parallel evolution of several
sub-populations that each only contain one particular operator. After 30 epochs
merge the candidates with already pre-optimized parameters into one
population (fitness-based). Crossover slowly mixes operators into offsprings.
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Example: evoVision — Fitness

The fitness of the individuals is determined testing the fully trained neural
network on the training and testing data sets.

The fitness includes the following components:
> training error (directing early evolution)
> generalization error (directing evolution in later phases)
» size of description generated by the operators (smaller is better)
> size of neural network (smaller is better)

> computing time (real-time capabilities wanted!)

The computing time turned out to be a very useful component in replacing
both size components and in speeding-up the whole evolutionary process.

All components were transformed (non-negative, larger = better) and scaled
appropriately. Determining good weighting factors for the components wasn't
easy and had large influence on results in particular tasks.

Dr. Sascha Lange  Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Framework (41)



Example: evoVision — Termination

Very basic, non-optimized termination criterion:
> Fixed number of generations
» Number of generations in the range from 200 to 1000 (problem dependent)
» Tendency: longer than necessary

Note: Overfitting here was only a minor problem because the fitness function
contained a component reflecting the generalization error / generalization
performance on a validation set.
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Example: evoVision — Classification Tasks

Subtraktion
Testmenge | Testmenge 2
keine Isolation 96% 44%
10 Epochen isoliert 96% 56%
30 Epochen isoliert 100% 100%
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Example: evoVision — Exemplary Learning Curve

Fitness (normalisiert)

Population
02 F Bestes ——---- a
0 1 1 1
0 50 100 150 200

Epoche
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Example: evoVision — Exemplary Improvement of Fittest Individual
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Example: evoVision — Movie

Driving to a ball: training data — learned behavior 1, learned behavior 2
Turning towards a balll: learned behavior
Driving to the goal: learned behavior
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Theoretical Properties of the EA Framework

It is often noted that Evolutionary Algorithms do a global search and are not
affected by local optima as other, local search and learning methods are.

In fact, in many cases it can be proven that EAs are guaranteed to find the
optimal solution with probability 1 if we let them ‘search long enough’.

This is often done by proving the probability P(Xoptimai € Pi) of having an
optimal candidate solution Xgptimar With the best possible fitness value in the
population P; going to 1 as the number i of generations goes to co:

lim P(Xopt,‘ma/ [S P;) =1.

i—o0
Necessary condition: hypothesis space is connected; mutation and cross-over

operator can reach every possible hypothesis

Can be easily achieved by using a mutation operator mutate with a small but
positive probability of mutating any given individual directly into any other
possible individual: Vx1,x2 € X P(mutate(x1) = x2) > 0.

Criticism: no convergence rate, no error-bounds if searching only for finite time
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Advanced Techniques

In the following, we will briefly discuss several advanced techniques. These can
be used as generic (problem independent) extensions of the basic framework.

» Coevolution
» Parallel Distributed Evolution (Island Model EA)
> Self Adaptation
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Advanced Techniques: Coevolution

Two (or more) separate populations are evolved at the same time with the
intention of stimulating the evolutionary improvement of both.

Cooperative Coevolution

A taks is split into two or more sub-task and several populations each solving
one of the sub-tasks are evolved in parallel. The fitness is tested on the whole
task, combining sub-solutions from the populations.

One major problem is how to select the individuals that are combined for
fitness-testing. For example, 1) test each individual of population A with best
individual of population B or 2) test each individual of population A with n
randomly selected individuals (encounters) of population B.

Competitive Coevolution

In this scheme individuals compete with each other and gain fitness at each
other’'s expense. Competing individuals can be members of the same population
or of different, separately evolved populations.

Classic examples: board games, prisoners dilemma.
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Advanced Techniques: Parallel Distributed Evolution

Individuals are spread among several sub-populations that are evolved in
parallel and (most of the time) independently from each other. Benefits:

» Simple but effective scheme for utilizing parallel processors (speed-up)

» Helps fighting premature convergence (can be used as initial phase)

Sub-population “communicate” with each other from time to time, by
exchanging individuals. Questions regarding this “migration” process involve:

» When to migrate?
» Which individuals to migrate (e.g. random or fitness-based selelction)?

» Which populations communicate with each other? — Which topology?

Also known as ‘coarse-grain’ parallel EA or ‘Island Model' EA.
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Advanced Techniques: Self Adaptation

Finding good parameters for the population size p, the mutation rate pp,, the
recombination rate p, and the parameters controlling the selective pressure
(e.g. number of replaced individuals \) often is a hard task in itself.

Moreover, the optimum of the combination of these parameters may vary over
the course of the evolutionary process.

Idea of self-adaptation: some of the parameters of the evolutionary process are
made subject to optimization themselves; the evolutionary process evolves its
own parameters!

» Self-adaptation is a standard method in Evolution Strategies

» Parameters are included in the representation of the individuals:

X:(X17X27"~7XI77 P1>P27-~~:Pk)

solution parameters

> Most often: parameters regarding the mutation (Evolution Strategies)
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Section 3: Representations

> Genetic Algorithms (bit strings)
» Evolution Strategies (real-valued vectors)
> Genetic Programming (trees, programms)

» Neuroevolution (neural networks)

Dr. Sascha Lange  Machine Learning Lab, University of Freiburg Evolutionary Algorithms — Representations (52)



Genetic Algorithms

Pioneered by John Holland and David E. Goldberg in the 1970s. Classic book:
J. Holland, Adaptation in Natural and Artificial Systems,
The MIT Press; Reprint edition 1992 (originally published in 1975).

We will discuss A) ‘simple’ Genetic Algorithms that exclusively use bit-strings
and B) a variant for evolving permutations (like in the TSP discussed earlier).

Classic Simple Genetic Algorithms:

Represtation:
Recombination:
Mutation:
Parent selection:

Survival selection:

Bit-strings

1-Point crossover
Bit flip

Fitness proportional

Generational
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Representation

Genotype: Bit-string with b; € {0,1}:

(bi]b: o] [b] o [1T0To1]1]

Length and interpretation as phenotype depend on application.

Representing numbers in binary is problematic. For example:
» Hamming distance between 7 (0111) and 6 (0110) is smaller than that
from 7 to 8 (1000)
» Thus, changing a 7 to a 6 is more likely than changing it to an 8

» Usually, we would want similar chances for both 6 and 8

Gray coding ensures that consecutive integers have Hamming distance one:
> the 1st (most significant) bit of the gray code is the same as the binary
> the i-th (i > 1) bit g; is the result of XOR(b;_1, bi)
> Examples: 3:011 — 010, 4 : 100 — 110, 5: 101 — 111
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Mutation

Each bit gets flipped with a small probability p» (mutation rate). For example:
[1fofofaf1]w~ [1]1]0f0]1]
The expected number of flipped bits for an encoding of length L is L - pp.

Good mutation rates depend on the application and the desired outcome (good
population vs. one highly fit individual).

Rule of thumb: choose mutation rate such that in average one bit per
generation to one bit per offspring is changed.
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Crossover

In GA, the recombination operator is considered the primary mechanism for
creating diversity, with mutation being only a ‘background’ search operator.

This operator is the most distinguishing feature of GAs from other global
optimization methods.

It's common to apply crossover operators probabilistically with a probability p;.
With probability 1 — p, the parent at hand is copied directly to the offsprings.

One-Point Crossover
Chooses a random integer r from the range [1, L — 1], splits both parents in
two parts after this position and joins these parts to form the two offsprings:

[1]ofof1]1] [1]of1]1]0]

[ofof1]1]o0] [ofofof1]1]

with the splitting position at r = 2.
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Crossover (continued)

N-Point Crossover
Generalized version of the 1-Point Crossover that chooses N random crossover
points from the range [1, L — 1], for example N=2:

[TTo]of1]1] (o al1]1]

[ofof1]1]o0] [ofofo1]0]

Uniform Crossover
Treats every bit (gene) separately and decides with the help of a random
experiment whether to choose the bit of parent 1 or 2:

[1]ofof1]1] ENCEENEREY
™l

™4

[ofof1]1]0] [ofofof1]o]
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Permutation Representations

Many problems naturally take the form of deciding on the order in which a
sequence of given events should occur. Examples include job-shop scheduling
tasks and the traveling-salesman problem.

Genotype: Sequence of integers (or letters) e; € {1,2,3,...,L}:

afe][a] o [4]2[3]1]5]

Phenotype: Sequence of nodes to visit / jobs to execute.
Length L equals the number of nodes to visit / events to schedule.

Some of these problems may be order-based—that is, in job-shop scheduling,
the order of execution is important—and some may not—e.g. the routes
4,3,1,2 and 2,1,3,4 in a TSP are equivalent and have the same fitness.

Mutation Operators

Legal mutations are limited to moving values around in the genome:
Swap Mutation: Swap the values at two randomly selected positions
Insert Mutation: Move a randomly selected value to a random position

Scramble Mutation: Scramble the positions of a randomly selected sub-string
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Permutation Representations (continued)

Problem of crossing over: (both) offsprings need to be valid permutations.

[als5]3]2]1] (e [s]2kr]

_—

[1]2]4]5]3] ZERIESY

Order Crossover
Selects two crossover points, copies the values between these two points from
one parent to the offspring

[4]s]3]2]1] EEIEIN

[1[2]a]5]3] [ [ [=fs] |
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Permutation Representations (continued)

Problem of crossing over: (both) offsprings need to be valid permutations.
[a]5]3[2]1] ™2 [3]2fr]
[1]2]4]5]3] (245 [ 4 [543

Order Crossover

Selects two crossover points, copies the values between these two points from
one parent to the offspring and then copies the remaining values to the empty
spots in the order they appear in the other pare