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Overview of Today’s Lecture: Boosting

• Motivation

• AdaBoost

• examples



Motivation

• often, simple rules already yield a reasonable classification
performance

• e.g. email spam filter: ’buy now’ would already be a good indicator
for spam, doing better than random

• idea: use several of these simple rules (’decisions stumps’) and
combine them to do classification (⇒ committee appraoch)



Boosting

’Boosting’ is a general method to combine simple, rough rules into a
highly accurate decision model.

• assumes ’base learners’ (or ’weak learners’) that do at least slightly
better than random, e.g. ≥ 53% for a two-class classification. In
other words the error is strictly smaller than 0.5.

• given sufficient data, a boosting algorithm can provably construct a
single classifier with very high accuracy (say, e.g. 99%)

Algorithm: AdaBoost (Freund and Schapire, 1995)



General Framework for Boosting

• training set (x1, y1), . . . , (xp, yp), where yi ∈ {−1, 1} and xi ∈ X

• For t = 1 . . . T

– construct a distribution Dt = (dt1, . . . , d
t
p) on the training set,

where dti is the probability of occurence of training pattern i
(also called ’weight’ of i)

– train a base learner ht : X 7→ {−1,+1}
according to the training set distribution Dt

with a small error ǫt, ǫt = PrDt
[ht(xi) 6= yi]

• output final classifier Hfinal as a combination of the T hypothesis
h1, . . . , hT



AdaBoost - Details (Freund and Schapire, 1995)

• the final hypothesis is a weighted sum of the individual hypothesis:

Hfinal(x) = sign(
∑

t

αt ht(x))

• hypothesis are weighted depending on the error they produce:

αt :=
1

2
ln

1− ǫt
ǫt

e.g: ǫt = 0.1 → αt = 2.197; ǫt = 0.4 → αt = 0.41;
ǫt = 0.5 → αt = 0;

• the above choice of α can be shown to minimize an upper bound of
the final hypothesis error (see e.g. (Schapire, 2003) for details)



AdaBoost - Details (cont’d) (Freund and Schapire, 1995)

• training pattern probabilities are recomputed, such that wrongly
classified patterns gets a higher probability in the next round:

dt+1

i :=
dti
Zt

∗

{

exp(αt) , if yi 6= ht(xi)
exp(−αt) , else

=
dti
Zt

exp(−αt yi ht(xi))

• Zt is a normalisation factor, such that
∑

i d
t
i = 1 (probability

distribution), i.e.

Zt =
∑

i

dti exp(−αt yi ht(xi))



AdaBoost (Freund and Schapire, 1995)

• Initialize D1 = (1/p, . . . , 1/p), p is the number of training patterns

• For t = 1 . . . T :

– train base learner ht according to distribution Dt

– determine expected error:

ǫt :=

p
∑

i=1

dti I(h(xi) 6= yi),

where I(A) = 1, if A is true, 0, else.
– compute hypothesis weight and new pattern distribution:

αt :=
1

2
ln

1− ǫt
ǫt

dt+1

i :=
dti
Zt

exp(−αt yi ht(xi)), (Zt normalisation factor)

• Final hypothesis: Hfinal(x) = sign(
∑

tαt ht(x))



Example (1)

Example taken from (R. Schapire)

Hypothesis: simple splits parallel to one axis



Example (2)

Example taken from (R. Schapire)

error ǫ1 =?

ǫ1 = 0.3, α1 = 0.42, wrong pattern: d2i = 0.166, correct: d2i = 0.07

computation see next slide



ǫ1 =

p
∑

i=1

d1i I(h(xi) 6= yi) =
1

10
3 = 0.3

α1 =
1

2
ln

1− ǫ1
ǫ1

=
1

2
ln

1− 0.3

0.3
= 0.42

wrong patterns: d1i exp(α1) = 0.1 exp(0.42) = 0.152

correct patterns: d1i exp(−α1) = 0.1 exp(−0.42) = 0.066

Z1 = 70.066 + 3 0.152 = 0.918

wrong patterns: d2i = 0.152/0.918 = 0.166

correct patterns: d2i = 0.066/0.918 = 0.07



Example (3)

Example taken from (R. Schapire)

error ǫ2 =?

ǫ2 = 0.21, α2 = 0.65

computation see next slide



ǫ2 =

p
∑

i=1

d2i I(h(xi) 6= yi) = 0.07 + 0.07 + 0.07 = 0.21

α1 =
1

2
ln

1− ǫ2
ǫ2

=
1

2
ln

1− 0.21

0.21
= 0.65



Example (4)

Example taken from (R. Schapire)

ǫ2 = 0.14, α2 = 0.92



Example (5)

Example taken from (R. Schapire)

Final classifier:



Further examples (1)

Taken from (Meir, Raetsch, 2003): AdaBoost on a 2D toy data set: color indicates the label and the

diameter is proportional to the weight of the example. Dashed lines show decision boundaries of the

single classifiers (up to 5th iteration). Solid line shows the decision line of the combined classifier. In

the last two plots the decision line of Bagging is plotted for a comparison.



Performance of AdaBoost

In case of low noise in the training data, AdaBoost can reasonbly
learn even complex decision boundaries without overfitting

Figure taken from G. Raetsch, Tutorial MLSS ’03



Practical Application: Face Recognition (Viola and Jones,

2004)

• problem: find faces in photographs and movies

• weak classifiers: detec light/ dark rectangles in images

• many tricks to make it fast and accurate



Further aspects

• Boosting can be applied to any ML classifier: MLPs, Decision
Trees, . . .

• related approach: Bagging (Breiman): training sample distribution
remains unchanged. For each training of a hypotheses, another set
of training samples is drawn with putting back.

• boosting performs usually very well with respect to non overfitting
the data, if the noise in the data is low. While this is astonishing at
first glance, it can be theortically explained by analyzing the
margins of the classifiers.

• if the data has a higher noise level, boosting runs into the problem
of overfitting. Regularisation methods exist, that try to avoid this
(e.g. by restricting the weight of notorious outliers).

• extension to multi-class problems and regression problems exist.
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