PROBABILITY THEORY

Prof. Dr. Martin Riedmiller AG Maschinelles Lernen Albert-Ludwigs-Universität Freiburg

riedmiller@informatik.uni-freiburg.de

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg

Probability Theory (1)

Probabilities

probabilistic statements subsume different effects due to:

 convenience: declaring all conditions, exceptions, assumptions would be too complicated.

Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have a breakdown and ..." or simply: I will be in lecture with probability of 0.87

Probabilities

probabilistic statements subsume different effects due to:

 convenience: declaring all conditions, exceptions, assumptions would be too complicated.
 Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have a breakdown and ..." or simply: I will be in lecture with probability of 0.87

lack of information: relevant information is missing for a precise statement.
 Example: weather forcasting

Probabilities

probabilistic statements subsume different effects due to:

 convenience: declaring all conditions, exceptions, assumptions would be too complicated.
 Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have a breakdown and ..." or simply: I will be in lecture with probability of 0.87

- lack of information: relevant information is missing for a precise statement.
 Example: weather forcasting
- intrinsic randomness: non-deterministic processes.
 Example: appearance of photons in a physical process

► intuitively, probabilities give the expected relative frequency of an event

- \blacktriangleright intuitively, probabilities give the expected relative frequency of an event
- mathematically, probabilities are defined by axioms (Kolmogorov axioms). We assume a set of possible outcomes Ω. An event A is a subset of Ω
 - ▶ the probability of an event *A*, *P*(*A*) is a welldefined non-negative number: $P(A) \ge 0$
 - the certain event Ω has probability 1: $P(\Omega) = 1$
 - for two disjoint events A and B: $P(A \cup B) = P(A) + P(B)$

P is called probability distribution

- ► intuitively, probabilities give the expected relative frequency of an event
- mathematically, probabilities are defined by axioms (Kolmogorov axioms).
 We assume a set of possible outcomes Ω. An event A is a subset of Ω
 - the probability of an event A, P(A) is a welldefined non-negative number: $P(A) \ge 0$
 - the certain event Ω has probability 1: $P(\Omega) = 1$
 - for two disjoint events A and B: $P(A \cup B) = P(A) + P(B)$

P is called probability distribution

important conclusions (can be derived from the above axioms):
P(∅) = 0
P(¬A) = 1 − P(A)
if A ⊆ B follows P(A) ≤ P(B)
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

• example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$

• example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ probabilities of events, e.g.: $P(\{1\}) = \frac{1}{6}$ $P(\{1,2\}) = P(\{1\}) + P(\{2\}) = \frac{1}{3}$ $P(\{1,2\} \cup \{2,3\}) = \frac{1}{2}$

- example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ probabilities of events, e.g.: $P(\{1\}) = \frac{1}{6}$ $P(\{1,2\}) = P(\{1\}) + P(\{2\}) = \frac{1}{3}$ $P(\{1,2\} \cup \{2,3\}) = \frac{1}{2}$ Probability distribution (manipulated dice): P(1) = P(2) = P(3) = 0.13, P(4) = P(5) = 0.17, P(6) = 0.27
- typically, the actual probability distribution is not known in advance, it has to be estimated

Joint events

for pairs of events A, B, the joint probability expresses the probability of both events occuring at same time: P(A, B) example:
 D("Buyers" München is losing", ""Munder Demonstration") = 0.2

P("Bayern München is losing", "Werder Bremen is winning") = 0.3

Joint events

- for pairs of events A, B, the joint probability expresses the probability of both events occuring at same time: P(A, B) example:
 P("Bayern München is losing", "Werder Bremen is winning") = 0.3
- ► Definition: for two events the conditional probability of *A*|*B* is defined as the probability of event *A* if we consider only cases in which event *B* occurs. In formulas:

$$P(A|B) = rac{P(A,B)}{P(B)}, P(B) \neq 0$$

Joint events

for pairs of events A, B, the joint probability expresses the probability of both events occuring at same time: P(A, B) example:
 P("Bayern München is losing" "Werder Bremen is winning") = 0.3

P("Bayern München is losing", "Werder Bremen is winning") = 0.3

► Definition: for two events the conditional probability of A|B is defined as the probability of event A if we consider only cases in which event B occurs. In formulas:

$$P(A|B) = rac{P(A,B)}{P(B)}, P(B)
eq 0$$

with the above, we also have

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

Joint events (cont.)

 a contigency table makes clear the relationship between joint probabilities and conditional probabilities:

B
$$\neg B$$
marginalsA $P(A, B)$ $P(A, \neg B)$ $P(A)$ $\neg A$ $P(\neg A, B)$ $P(\neg A, \neg B)$ $P(\neg A)$ $P(B)$ $P(\neg B)$ joint prob

with
$$P(A) = P(A, B) + P(A, \neg B)$$
,
 $P(\neg A) = P(\neg A, B) + P(\neg A, \neg B)$,
 $P(B) = P(A, B) + P(\neg A, B)$,
 $P(\neg B) = P(A, \neg B) + P(\neg A, \neg B)$

conditional probability = joint probability / marginal probability

Joint events (Example)

example of a contigency table: cars and drivers

	red	blue	other	
male	0.05	0.15	0.35	0.55
female	0.2	0.05	0.2	0.45
	0.25	0.2	0.55	1

e.g: I observed a blue car. How likely is the driver female? How to express that in probabilistic terms?

Joint events (Example)

example of a contigency table: cars and drivers

	red	blue	other	
male	0.05	0.15	0.35	0.55
female	0.2	0.05	0.2	0.45
	0.25	0.2	0.55	1

e.g: I observed a blue car. How likely is the driver female? How to express that in probabilistic terms? $P('female'|'blue') = \frac{P('female', 'blue')}{P('blue')}$ How to access these values?

Joint events (Example)

example of a contigency table: cars and drivers

	red	blue	other	
male	0.05	0.15	0.35	0.55
female	0.2	0.05	0.2	0.45
	0.25	0.2	0.55	1

e.g: I observed a blue car. How likely is the driver female? How to express that in probabilistic terms? $P('female'|'blue') = \frac{P('female', 'blue')}{P('blue')}$ How to access these values? P('female', 'blue'): from table P('blue') = P('blue', 'male') + P('blue', female') = 0.2 ('Marginalisation')Therefore, $P('female'|'blue') = \frac{0.05}{0.2} = 0.25$ \Rightarrow joint probability table allows to answer arbitrary questions about domain.

Marginalisation

• Let $B_1, ..., B_n$ disjoint events with $\bigcup_i B_i = \Omega$. Then $P(A) = \sum_i P(A, B_i)$

This process is called marginalisation.

Productrule and chainrule

▶ from definition of conditional probability:

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

Productrule and chainrule

▶ from definition of conditional probability:

$$P(A, B) = P(A|B)P(B) = P(B|A)P(A)$$

▶ repeated application: chainrule:

$$P(A_{1},...,A_{n}) = P(A_{n},...,A_{1})$$

$$= P(A_{n}|A_{n-1},...,A_{1}) P(A_{n-1},...,A_{1})$$

$$= P(A_{n}|A_{n-1},...,A_{1}) P(A_{n-1}|A_{n-2},...,A_{1}) P(A_{n-2},...,A_{1})$$

$$= ...$$

$$= \Pi_{i=1}^{n} P(A_{i}|A_{1},...,A_{i-1})$$

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg

Conditional Probabilities

```
    conditionals:
    Example: if someone is taking a shower, he gets wet (by causality)
    P("wet"|"taking a shower") = 1
    while:
    P("taking a shower"|"wet") = 0.4
    because a person also gets wet if it is raining
```

Conditional Probabilities

```
conditionals.
  Example: if someone is taking a shower, he gets wet (by causality)
  P( "wet" | "taking a shower" ) = 1
  while:
  P( "taking a shower" | "wet" ) = 0.4
  because a person also gets wet if it is raining
causality and conditionals:
  causality typically causes conditional probabilities close to 1:
   P(\text{``wet''}|\text{``taking a shower''}) = 1, e.g.
   P(\text{"score a goal"} | \text{"shoot strong"}) = 0.92 ('vague causality': if you shoot
  strong, you very likely score a goal').
  Offers the possibility to express vagueness in reasoning.
  you cannot conclude causality from large conditional probabilities:
   P("being rich" | "owning an airplane" ) \approx 1
  but: owning an airplane is not the reason for being rich
```

Bayes rule

from the definition of conditional distributions:

$$P(A|B)P(B) = P(A,B) = P(B|A)P(A)$$

Hence:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

is known as Bayes rule.

Bayes rule

from the definition of conditional distributions:

$$P(A|B)P(B) = P(A,B) = P(B|A)P(A)$$

Hence:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

is known as Bayes rule.

► example:

 $P(\text{"taking a shower"} | \text{"wet"}) = P(\text{"wet"} | \text{"taking a shower"}) \frac{P(\text{"taking a shower"})}{P(\text{"wet"})}$

$$P(reason|observation) = P(observation|reason) \frac{P(reason)}{P(observation)}$$

Prof. Dr. Martin Riedmiller Machine Learning Lab, University of Freiburg

Bayes rule (cont)

- often this is useful in diagnosis situations, since P(observation|reason) might be easily determined.
- often delivers suprising results

▶ if patient has meningitis, then very often a stiff neck is observed

- ▶ if patient has meningitis, then very often a stiff neck is observed P(S|M) = 0.8 (can be easily determined by counting)
- observation: 'I have a stiff neck! Do I have meningitis?' (is it reasonable to be afraid?)

- if patient has meningitis, then very often a stiff neck is observed P(S|M) = 0.8 (can be easily determined by counting)
- observation: 'I have a stiff neck! Do I have meningitis?' (is it reasonable to be afraid?) P(M|S) =?
- we need to now: P(M) = 0.0001 (one of 10000 people has meningitis) and P(S) = 0.1 (one out of 10 people has a stiff neck).

- if patient has meningitis, then very often a stiff neck is observed P(S|M) = 0.8 (can be easily determined by counting)
- ▶ observation: 'I have a stiff neck! Do I have meningitis?' (is it reasonable to be afraid?) P(M|S) =?
- we need to now: P(M) = 0.0001 (one of 10000 people has meningitis) and P(S) = 0.1 (one out of 10 people has a stiff neck).
- ► then:

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Keep cool. Not very likely

Independence

▶ two events A and B are called independent, if

$$P(A,B) = P(A) \cdot P(B)$$

- ▶ independence means: we cannot make conclusions about A if we know B and vice versa. Follows: P(A|B) = P(A), P(B|A) = P(B)
- example of independent events: roll-outs of two dices
- example of dependent events: A = 'car is blue', B = 'driver is male' \rightarrow (from example) $P('blue') P('male') = 0.2 \cdot 0.55 = 0.11 \neq P('blue', 'male') = 0.15$

Random variables

- random variables describe the outcome of a random experiment in terms of a (real) number
- ► a random experiment is a experiment that can (in principle) be repeated several times under the same conditions

Random variables

- random variables describe the outcome of a random experiment in terms of a (real) number
- ► a random experiment is a experiment that can (in principle) be repeated several times under the same conditions
- discrete and continuous random variables

Random variables

- random variables describe the outcome of a random experiment in terms of a (real) number
- ► a random experiment is a experiment that can (in principle) be repeated several times under the same conditions
- discrete and continuous random variables
- probability distributions for discrete random variables can be represented in tables:

Example: random variable X (rolling a dice):

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

 probability distributions for continuous random variables need another form of representation

▶ problem: infinitely many outcomes

- problem: infinitely many outcomes
- considering intervals instead of single real numbers: $P(a < X \le b)$

- problem: infinitely many outcomes
- considering intervals instead of single real numbers: $P(a < X \le b)$
- cumulative distribution functions (cdf):
 A function F : ℝ → [0, 1] is called cumulative distribution function of a random variable X if for all c ∈ ℝ hold:

$$P(X \leq c) = F(c)$$

- Knowing F, we can calculate $P(a < X \le b)$ for all intervals from a to b
- ► F is monotonically increasing, $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$

- problem: infinitely many outcomes
- considering intervals instead of single real numbers: $P(a < X \le b)$
- cumulative distribution functions (cdf):
 A function F : ℝ → [0, 1] is called cumulative distribution function of a random variable X if for all c ∈ ℝ hold:

$$P(X \leq c) = F(c)$$

- Knowing F, we can calculate $P(a < X \le b)$ for all intervals from a to b
- ► *F* is monotonically increasing, $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- if exists, the derivative of F is called a probability density function (pdf). It yields large values in the areas of large probability and small values in the areas with small probability. But: the value of a pdf cannot be interpreted as a probability!

Continuous random variables (cont.)

example: a continuous random variable that can take any value between a and b and does not prefer any value over another one (uniform distribution):

Gaussian distribution

the Gaussian/Normal distribution is a very important probability distribution. Its pdf is:

$$pdf(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

 $\mu \in \mathbb{R} \text{ and } \sigma^2 > 0 \text{ are parameters of the distribution.}$ The cdf exists but cannot be expressed in a simple form $\mu \text{ controls the position of the distribution, } \sigma^2 \text{ the spread of the distribution}$

Statistical inference

determining the probability distribution of a random variable (estimation)

Statistical inference

- determining the probability distribution of a random variable (estimation)
- collecting outcome of repeated random experiments (data sample)
- ► adapt a generic probability distribution to the data. example:
 - Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p (=probability of outcome '1')
 - Gaussian distribution with parameters μ and σ^2
 - uniform distribution with parameters a and b

Statistical inference

- determining the probability distribution of a random variable (estimation)
- collecting outcome of repeated random experiments (data sample)
- ► adapt a generic probability distribution to the data. example:
 - Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p (=probability of outcome '1')
 - Gaussian distribution with parameters μ and σ^2
 - uniform distribution with parameters a and b
- maximum-likelihood approach:

 $\max_{\text{parameters}} P(\text{data sample}|\text{distribution})$

- maximum likelihood with Bernoulli-distribution:
- ▶ assume: coin toss with a twisted coin. How likely is it to observe head?

- maximum likelihood with Bernoulli-distribution:
- ▶ assume: coin toss with a twisted coin. How likely is it to observe head?
- repeat several experiments, to get a sample of observations, e.g.: 'head', 'head', 'number', 'head', 'number', 'head', 'head', 'head', 'head', 'number', 'number', ...

You observe k times 'head' and n times 'number'

- maximum likelihood with Bernoulli-distribution:
- ▶ assume: coin toss with a twisted coin. How likely is it to observe head?
- repeat several experiments, to get a sample of observations, e.g.: 'head', 'head', 'number', 'head', 'number', 'head', 'head', 'head', 'head', 'number', 'number', ...

You observe k times 'head' and n times 'number' Probabilisitic model: 'head' occurs with (unknown) probability p, 'number' with probability 1-p

maximize the likelihood, e.g. for the above sample:

 $\underset{p}{\text{maximize } p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdots = p^{k} (1-p)^{n}$

$$\underset{p}{\text{maximize } p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdots = p^{k} (1-p)^{n}$$

Trick 1: Taking logarithm of function does not change position of minima rules: $log(a \cdot b) = log(a) + log(b), log(a^b) = b log(a)$

Trick 2: Minimizing -log() instead of maximizing log()

$$\max_{p} \max_{p} p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdots = p^{k} (1-p)^{n}$$

Trick 1: Taking logarithm of function does not change position of minima rules: $\log(a \cdot b) = \log(a) + \log(b), \log(a^b) = b \log(a)$

Trick 2: Minimizing -log() instead of maximizing log()

This yields:

$$\underset{p}{\textit{minimize}} - \log(p^k(1-p)^n) = -k\log p - n\log(1-p)$$

calculating partial derivatives w.r.t p and zeroing: $p = \frac{k}{k+n}$ \Rightarrow The relative frequency of observations is used as estimator for p

- maximum likelihood with Gaussian distribution:
- given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- \blacktriangleright task: determine optimal values for μ and σ^2

- maximum likelihood with Gaussian distribution:
- given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- task: determine optimal values for μ and σ² assume independence of the observed data:

 $P(\text{data sample}|\text{distribution}) = P(x^{(1)}|\text{distribution}) \cdots P(x^{(p)}|\text{distribution})$

replacing probability by density:

$$P(\text{data sample}|\text{distribution}) \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(1)}-\mu)^2}{\sigma^2}} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(p)}-\mu)^2}{\sigma^2}}$$

- maximum likelihood with Gaussian distribution:
- given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- task: determine optimal values for μ and σ² assume independence of the observed data:

 $P(\text{data sample}|\text{distribution}) = P(x^{(1)}|\text{distribution}) \cdots P(x^{(p)}|\text{distribution})$

replacing probability by density:

$$\mathsf{P}(\mathsf{data \ sample}|\mathsf{distribution}) \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(1)}-\mu)^2}{\sigma^2}} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(p)}-\mu)^2}{\sigma^2}}$$

performing log transformation:

$$\sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \big)$$

minimizing negative log likelihood instead of maximizing log likelihood:

$$\underset{\mu,\sigma^{2}}{\textit{minimize}} \ - \sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \big)$$

minimizing negative log likelihood instead of maximizing log likelihood:

$$\underset{\mu,\sigma^{2}}{\textit{minimize}} \ - \sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \big)$$

► transforming into:

$$\underset{\mu,\sigma^{2}}{\textit{minimize}} \; \frac{p}{2} \log(\sigma^{2}) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^{2}} \big(\frac{1}{2} \sum_{i=1}^{p} (x^{(i)} - \mu)^{2} \big)$$

minimizing negative log likelihood instead of maximizing log likelihood:

$$\underset{\mu,\sigma^{2}}{\textit{minimize}} \ - \sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \big)$$

► transforming into:

$$\underset{\mu,\sigma^2}{\text{minimize } \frac{p}{2}\log(\sigma^2) + \frac{p}{2}\log(2\pi) + \frac{1}{\sigma^2}}\underbrace{\left(\frac{1}{2}\sum_{i=1}^{p}(x^{(i)}-\mu)^2\right)}_{\text{resolution}}$$

sq. error term

minimizing negative log likelihood instead of maximizing log likelihood:

$$\underset{\mu,\sigma^{2}}{\textit{minimize}} \ - \sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \big)$$

▶ transforming into:

$$\underset{\mu,\sigma^2}{\text{minimize }} \frac{p}{2}\log(\sigma^2) + \frac{p}{2}\log(2\pi) + \frac{1}{\sigma^2}\underbrace{(\frac{1}{2}\sum_{i=1}^{p}(x^{(i)}-\mu)^2)}_{\text{sg. error term}}$$

 \blacktriangleright observation: maximizing likelihood w.r.t. μ is equivalent to minimizing squared error term w.r.t. μ

- \blacktriangleright extension: regression case, μ depends on input pattern and some parameters
- ▶ given: pairs of input patterns and target values $(\vec{x}^{(1)}, d^{(1)}), \ldots, (\vec{x}^{(p)}, d^{(p)})$, a parameterized function f depending on some parameters \vec{w}
- ► task: estimate w and o² so that d⁽ⁱ⁾ f(x⁽ⁱ⁾; w) fits a Gaussian distribution in best way

- \blacktriangleright extension: regression case, μ depends on input pattern and some parameters
- ▶ given: pairs of input patterns and target values $(\vec{x}^{(1)}, d^{(1)}), \dots, (\vec{x}^{(p)}, d^{(p)})$, a parameterized function f depending on some parameters \vec{w}
- ► task: estimate w and σ² so that d⁽ⁱ⁾ f(x⁽ⁱ⁾; w) fits a Gaussian distribution in best way
- maximum likelihood principle:

$$\underset{\vec{w},\sigma^{2}}{\text{maximize}} \ \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2} \frac{(d^{(1)} - f(\vec{x}^{(1)};\vec{w}))^{2}}{\sigma^{2}}} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2} \frac{(d^{(p)} - f(\vec{x}^{(p)};\vec{w}))^{2}}{\sigma^{2}}}$$

minimizing negative log likelihood:

$$\underset{\vec{w},\sigma^{2}}{\text{minimize}} \ \frac{p}{2} \log(\sigma^{2}) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^{2}} \big(\frac{1}{2} \sum_{i=1}^{p} (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^{2} \big)$$

minimizing negative log likelihood:

$$\underset{\vec{w},\sigma^{2}}{\text{minimize } \frac{p}{2}\log(\sigma^{2}) + \frac{p}{2}\log(2\pi) + \frac{1}{\sigma^{2}}\left(\underbrace{\frac{1}{2}\sum_{i=1}^{p}(d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^{2}}_{i=1}\right)$$

minimizing negative log likelihood:

$$\underset{\vec{w},\sigma^{2}}{\text{minimize } \frac{p}{2}\log(\sigma^{2}) + \frac{p}{2}\log(2\pi) + \frac{1}{\sigma^{2}} \underbrace{\left(\frac{1}{2}\sum_{i=1}^{p} (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^{2}\right)}_{\text{calculation}}$$

► f could be, e.g., a linear function or a multi layer perceptron

 minimizing the squared error term can be interpreted as maximizing the data likelihood P(trainingdata|modelparameters)

Probability and machine learning

	machine learning	statistics	
unsupervised learning	we want to create a model	estimating the probability	
	of observed patterns	distribution P(patterns)	
classification	guessing the class from an	estimating	
	input pattern	P(class input pattern)	
regression	predicting the output from	estimating	
	input pattern	P(output input pattern)	

- probabilities allow to precisely describe the relationships in a certain domain, e.g. distribution of the input data, distribution of outputs conditioned on inputs, ...
- ML principles like minimizing squared error can be interpreted in a stochastic sense

References

- Norbert Henze: Stochastik f
 ür Einsteiger
- ► Chris Bishop: Neural Networks for Pattern Recognition