MACHINE LEARNING

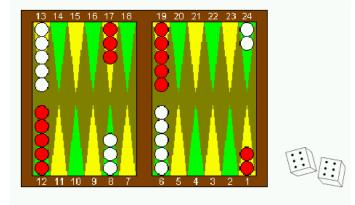
Reinforcement Learning

Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg

riedmiller@informatik.uni-freiburg.de

Motivation

Can a software agent learn to play Backgammon by itself?

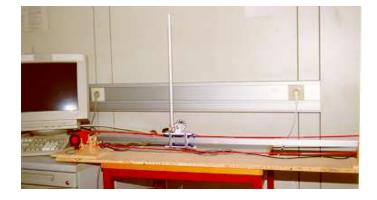


Learning from success or failure

Neuro-Backgammon:

playing at worldchampion level (Tesauro, 1992)

Can a software agent learn to balance a pole by itself?

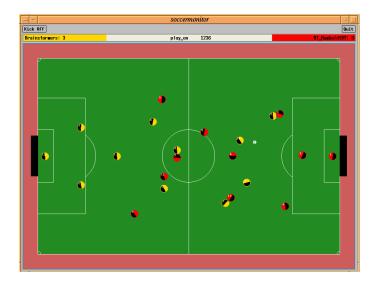


Learning from success or failure

Neural RL controllers:

noisy, unknown, nonlinear (Riedmiller et.al.)

Can a software agent learn to cooperate with others by itself?



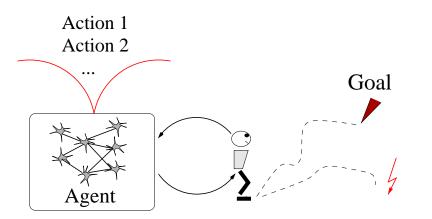
Learning from success or failure

Cooperative RL agents: complex, multi-agent, cooperative (Riedmiller et.al.)

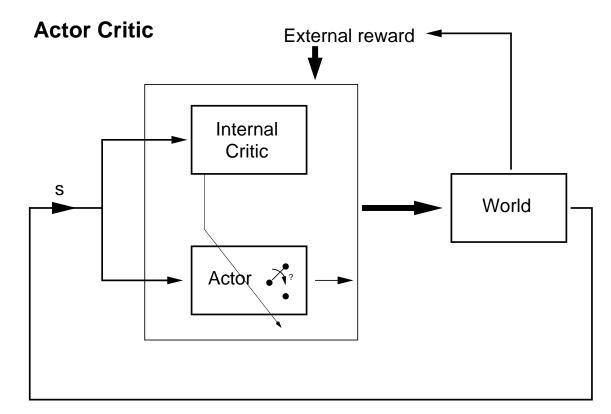
Reinforcement Learning

```
has biological roots: reward and punishment 'Happy Programming' no teacher, but:
```

actions + goal $\stackrel{learn}{\rightarrow}$ algorithm/ policy



Actor-Critic Scheme (Barto, Sutton, 1983)



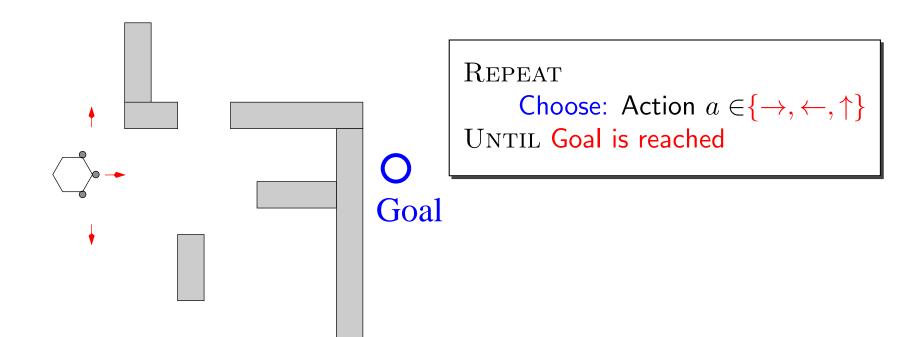
ACTOR-CRITIC SCHEME:

- Critic maps external, delayed reward in internal training signal
- Actor represents policy

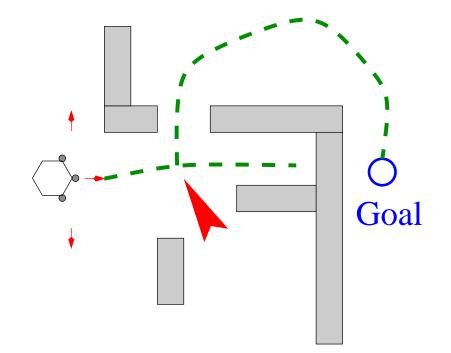
Overview

I Reinforcement Learning - Basics

A First Example



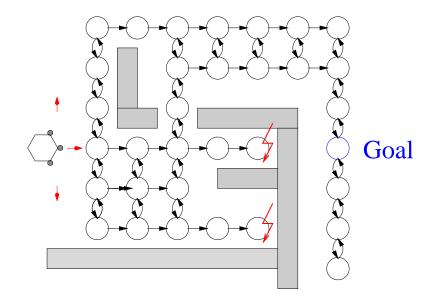
The 'Temporal Credit Assignment' Problem



Which action(s) in the sequence has to be changed?

 $\Rightarrow \mathsf{Temporal}\ \mathsf{Credit}\ \mathsf{Assignment}\ \mathsf{Problem}$

Sequential Decision Making



Examples:

Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92) Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics and control, . . .

Three Steps

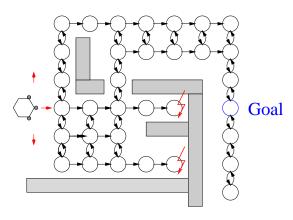
- ⇒ Describe environment as a Markov Decision Process (MDP)
- ⇒ Formulate learning task as a dynamic optimization problem

 \Rightarrow Solve dynamic optimization problem by dynamic programming methods

1. Description of the environment

S: (finite) set of states A: (finite) set of actions

Behaviour of the environment 'model' $p: S \times S \times A \rightarrow [0, 1]$ p(s', s, a) Probability distribution of transition



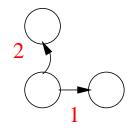
For simplicity, we will first assume a deterministic environment. There, the model can be described by a transition function $f:S\times A\to S$, s'=f(s,a)

'Markov' property: Transition only depends on current state and action

$$Pr(s_{t+1}|s_t, a_t) = Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, \ldots)$$

2. Formulation of the learning task

every transition emits transition costs, 'immediate costs', $c: S \times A \rightarrow \Re$ (sometimes also called 'immediate reward', r)

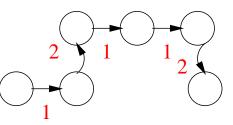


Now, an agent policy $\pi : S \to A$ can be evaluated (and judged):

Consider pathcosts:

$$J^{\pi}(s) = \sum_{t} c(s_t, \pi(s_t)), s_0 = s$$

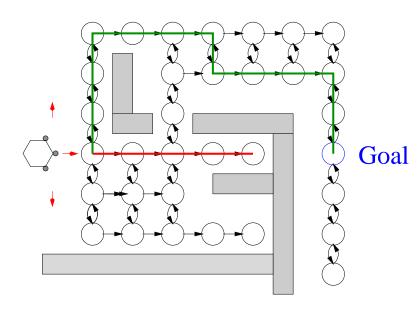
Wanted: optimal policy $\pi^* : S \to A$ where $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t c(s_t, \pi(s_t)) | s_0 = s \}$



- ⇒ Additive (path-)costs allow to consider *all* events
- \Rightarrow Does this solve the temporal credit assignment problem? YES!

Choice of immediate cost function $c(\cdot)$ specifies policy to be learned Example:

$$c(s) = \begin{cases} 0 &, \text{ if } s \text{ success } (s \in Goal) \\ 1000 &, \text{ if } s \text{ failure } (s \in Failure) \\ 1 &, else \end{cases}$$



$$J^{\pi}(s_{start}) = 12$$
$$J^{\pi}(s_{start}) = 1004$$

 \Rightarrow specification of requested policy by $c(\cdot)$ is simple!

3. Solving the optimization problem

For the optimal path costs it is known that

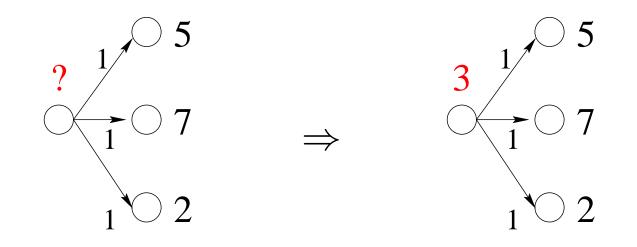
$$J^*(s) = \min_{a} \{ c(s, a) + J^*(f(s, a)) \}$$

(Principle of Optimality (Bellman, 1959))

 \Rightarrow Can we compute J^* (we will see why, soon)?

Computing J^* : the value iteration (VI) algorithm

Start with arbitrary $J_0(s)$ for all states $s: J_{k+1}(s) := \min_{a \in \mathcal{A}} \{ c(s, a) + J_k(f(s, a)) \}$



Convergence of value iteration

Value iteration converges under certain assumptions, i.e. we have $lim_{k\rightarrow\infty}J_k=J^*$

⇒ Discounted problems: $J^{\pi^*}(s) = \min_{\pi} \{\sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s\}$ where $0 \le \gamma < 1$ (contraction mapping)

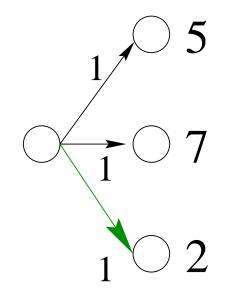
⇒ Stochastic shortest path problems:

- there exists an absorbing terminal state with zero costs
- there exists a 'proper' policy (a policy that has a non-zero chance to finally reach the terminal state)
- every non-proper policy has infinite path costs for at least one state

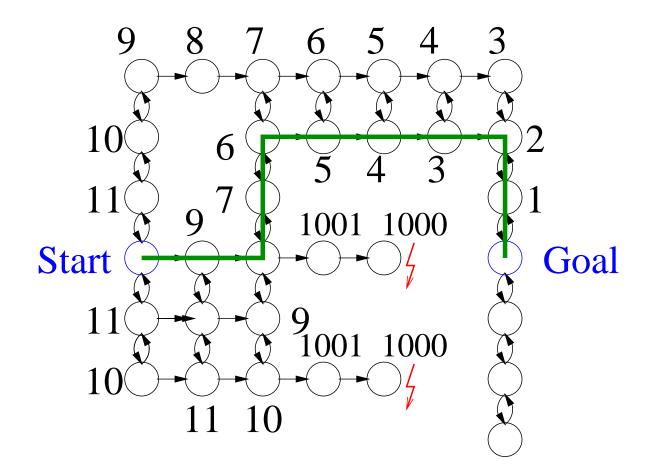
Ok, now we have J^*

 \Rightarrow when J^* is known, then we also know an optimal policy:

 $\pi^*(s) \in \arg\min_{a \in \mathcal{A}} \{ c(s,a) + J^*(f(s,a)) \}$

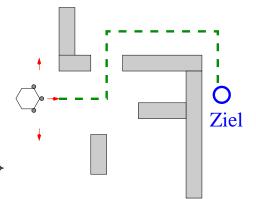


Back to our maze

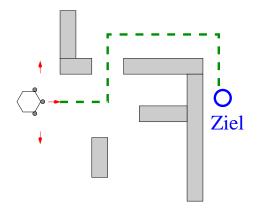


Overview of the approach so far

- Description of the learning task as an MDP S, A, T, f, c
 c specifies requested behaviour/ policy
- iterative computation of optimal pathcosts J^* : $\forall s \in S : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ c(s, a) + J_k(f(s, a)) \}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg \min_{a \in \mathcal{A}} \{ c(s, a) + J^*(f(s, a)) \}$
- value function ('costs-to-go') can be stored in a table



Overview of the approach: Stochastic Domains



- value iteration in stochastic environments: $\forall s \in S : J_{k+1}(s) = \min_{a \in A} \{ \sum_{s' \in S} p(s, s', a) (c(s, a) + J_k(s')) \}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg \min_{a \in \mathcal{A}} \{ \sum_{s' \in S} p(s, s', a) (c(s, a) + J_k(s')) \}$
- value function J ('costs-to-go') can be stored in a table

Reinforcement Learning

Problems of Value Iteration:

for all $s \in \mathcal{S}$: $J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ c(s, a) + J_k(f(s, a)) \}$

problems:

- Size of S (Chess, robotics, . . .) \Rightarrow learning time, storage?
- 'model' (transition behaviour) f(s,a) or p(s',s,a) must be known!

Reinforcement Learning is dynamic programming for very large state spaces and/ or model-free tasks

Important contributions - Overview

• Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

• Model-free learning (Q-Learning, (Watkins, 1989))

• neural representation of value function (or alternative function approximators)

Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

instead For all $s \in S$ now For some $s \in S$. . .

⇒ learning based on trajectories (experiences)



Q-Learning

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go.

 $Q_{\pi}(s, a)$ denotes the expected future pathcosts for applying action a

in state s (and continuing according to policy π):

$$Q_{\pi}(s,a) := \sum_{s' \in S} p(s',s,a)(c(s,a) + J_{\pi}(s'))$$

where $J_{\pi}(s')$ expected pathcosts when starting from s' and acting according to π

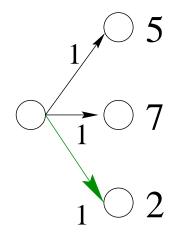
Q-learning: Action selection

is now possible without a model:

Original VI: state evaluation Action selection: Q: state-action evaluation Action selection:

 $\pi^*(s) = \arg\min Q^*(s, a)$

 $\pi^*(s) \in \arg\min\{c(s,a) + J^*(f(s,a))\}$



Learning an optimal Q-Function

To find Q^* , a value iteration algorithm can be applied

$$Q_{k+1}(s,u) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_k(s'))$$

where $J_k(s) = \min_{a' \in \mathcal{A}(s)} Q_k(s, a')$

 \diamond Furthermore, learning a Q-function without a model, by experience of transition tuples $(s, a) \rightarrow s'$ only is possible:

Q-LEARNING (Q-Value Iteration + Robbins-Monro stochastic approximation)

$$Q_{k+1}(s,a) := (1-\alpha) Q_k(s,a) + \alpha \left(c(s,a) + \min_{a' \in \mathcal{A}(s')} Q_k(s',a') \right)$$

Summary Q-learning

Q-learning is a variant of value iteration when no model is available it is based on two major ingredigents:

- uses a representation of costs-to-go for state/ action-pairs Q(s,a)
- uses a stochastic approximation scheme to incrementally compute expectation values on the basis of observed transititions $(s,a)\to s'$

◊ converges under the same assumption as value iteration + 'every state/ action pair has to be visited infinitely often' + conditions for stochastic approximation

Q-Learning algorithm

Repeat

start in arbitrary initial state s_0 ; t = 0

Repeat

choose action greedily $u_t := \arg \min_{a \in \mathcal{A}} Q_k(s_t, a)$ or u_t according to an exploration scheme apply u_t in the environment: $s_{t+1} = f(s_t, u_t, w_t)$ learn Q-value:

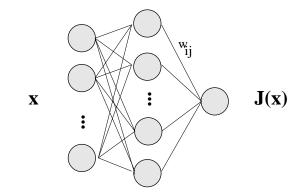
$$Q_{k+1}(s_t, u_t) := (1 - \alpha)Q_k(s_t, u_t) + \alpha(c(s_t, u_t) + J_k(s_{t+1}))$$

where $J_k(s_{t+1}) := \min_{a \in \mathcal{A}} Q_k(s_{t+1}, a)$

UNTIL Terminal state reached UNTIL policy is optimal ('enough')

Representation of the path-costs in a function approximator

Idea: neural representation of value function (or alternative function approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

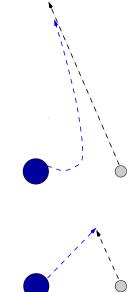


 \Rightarrow few parameters (here: weights) specify value function for a large state space

 $\Rightarrow \quad \text{learning by gradient descent: } \frac{\partial E}{\partial w_{ij}} = \frac{\partial (J(s') - c(s,a) - J(s))^2}{\partial w_{ij}}$

Example: learning to intercept in robotic soccer

- as fast as possible (anticipation of intercept position)
- $\bullet\,$ random noise in ball and player movement $\rightarrow\,$ need for corrections
- sequence of $TURN(\theta)$ and DASH(v)commands required



 \Rightarrow handcoding a routine is a lot of work, many parameters to tune!

Reinforcement learning of intercept

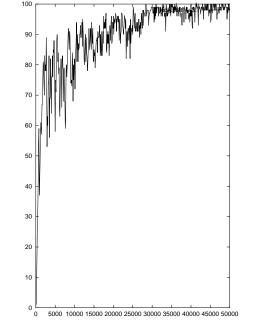
Goal: Ball is in kickrange of player

- state space: $S^{work} = positions$ on pitch
- S^+ : Ball in kickrange
- S^- : e.g. collision with opponent

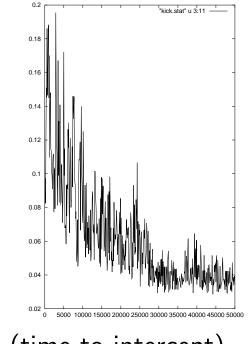
•
$$c(s) = \begin{cases} 0 & , s \in S^+ \\ 1 & , s \in S^- \\ 0.01 & , else \end{cases}$$

- Actions: TURN(10°), TURN(20°), ... TURN(360°), ... DASH(10), DASH(20), ...
- neural value function (6-20-1-architecture)

Learning curves



Percentage of successes



Costs (time to intercept)