MACHINE LEARNING

Reinforcement Learning

Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg

riedmiller@informatik.uni-freiburg.de

Motivation

Can a software agent learn to <mark>pl</mark>ay Backgammon by itself?

Learning from success or failure

Neuro-Backgammon:

playing at worldchampion level (Tesauro, 1992)

Can ^a software agent learn to balance ^a pole by itself?

Learning from success or failure

Neural RL controllers:

noisy, unknown, nonlinear (Riedmiller et.al.)

Can ^a software agent learn to cooperate with others by itself?

Learning from success or failure

Cooperative RL agents: complex, multi-agent, cooperative (Riedmiller et.al.)

Reinforcement Learning

```
has biological roots: reward and punishment    'Happy Programming'
no teacher, but:
```
 $\textsf{actions}\ +\textsf{goal}\ \stackrel{learn}{\rightarrow}\ \textsf{algorithm}\ /\ \textsf{policy}$

Actor-Critic Scheme (Barto, Sutton, 1983)

ACTOR-CRITIC SCHEME:

- Critic maps external, delayed reward in internal training signal
- Actor represents policy

Overview

^I Reinforcement Learning - Basics

^A First Example

The 'Temporal Credit Assignment' Problem

Which action(s) in the sequence has to be changed?

⇒ Temporal Credit Assignment Problem

Sequential Decision Making

Examples:

Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92) Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics and control, . . .

Three Steps

- ⇒Describe environment as ^a Markov Decision Process (MDP)
- ⇒Formulate learning task as ^a dynamic optimization problem

⇒ Solve dynamic optimization problem by dynamic programming methods

1. Description of the environment

^S: (finite) set of states ^A: (finite) set of actions

Behaviour of the environment 'model' $p: S \times S \times A \rightarrow [0,1]$
 $p(s' \mid s,a)$ Probabili $p(s^\prime, s, a)$ Probability distribution of transition

For simplicity, we will first assume ^a deterministic environment. There, the model can be described by ^a transition function $f: S \times A \rightarrow S$, $s' = f(s, a)$

'Markov' property: Transition only depends on <mark>current</mark> state and action

$$
Pr(s_{t+1}|s_t, a_t) = Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, \ldots)
$$

2. Formulation of the learning task

every transition emits transition costs, γ 'immediate costs', $c: S \times A \rightarrow \Re$ (sometimes also called 'immediate reward', r)

Now, an agent policy $\pi\,:\,S\,\to\, A$ can be evaluated (and judged):

Consider pathcosts:

$$
J^{\pi}(s) = \sum_t c(s_t, \pi(s_t)), s_0 = s
$$

Wanted: optimal policy π^* where $J^{\pi}(s) = \min_{\pi} \{\sum_{t} c(s_t, \pi(s))\}$ $^* : \mathcal{S} \rightarrow \mathcal{A}$ ∗ $(s) = \min_{\pi} \{ \sum_t c(s_t, \pi(s_t)) | s_0 = s \}$

- ⇒Additive (path-)costs allow to consider all events
- ⇒Does this solve the temporal credit assignment problem? YES!

Choice of immediate cost function $c(\cdot)$ specifies policy to be learned Example:

$$
c(s) = \begin{cases} 0, & \text{if } s \text{ success } (s \in Goal) \\ 1000, & \text{if } s \text{ failure } (s \in Failure) \\ 1, & else \end{cases}
$$

$$
J^{\pi}(s_{start}) = 12
$$

$$
J^{\pi}(s_{start}) = 1004
$$

⇒ \Rightarrow specification of requested policy by $c(\cdot)$ is simple!

3. Solving the optimization problem

For the optimal path costs it is known that

$$
J^*(s) = \min_{a} \{c(s, a) + J^*(f(s, a))\}
$$

(Principle of Optimality (Bellman, 1959))

 \Rightarrow Can we compute J^* (we will see why, soon)?

Computing J^* : the value iteration (VI) algorithm

Start with arbitrary $J_0(s)$ for all states $s: J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)+J_k(f(s,a))\}$

Convergence of value iteration

Value iteration converges under certain assumptions, i.e. we have $lim_{k\rightarrow\infty}J_{k}=J^{\ast}$

 \Rightarrow Discounted problems: J^{π}
where $0 \leq \alpha < 1$ (contraction ⇒where $0 \leq \gamma < 1$ (contraction mapping) ∗ $s(s) = \min_{\pi} \{ \sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s \}$

⇒Stochastic shortest path problems:

- there exists an absorbing terminal state with zero costs
- there exists ^a 'proper' policy (a policy that has ^a non-zero chance to finally reach the terminal state)
- every non-proper policy has infinite path costs for at least one state

${\bf O}$ k, now we have J^*

⇒when J^* is known, then we also know an optimal policy:

 $\pi^*(s) \in \argmin_{a \in A} \{c(s, a) + J^*(f(s, a))\}$

Back to our maze

Overview of the approach so far

- Description of the learning task as an MDP S, A, T, f, c \overline{c} specifies requested behaviour $\overline{/}$ policy
- iterative computation of optimal pathcosts J∗ $\forall s \in \mathcal{S}: J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s,a) + J_k(f(s,a))\}$:
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg\min_{a \in A} \{c(s,a) + J^*(f(s,a))\}$ * $(s) \in \argmin_{a \in \mathcal{A}} \{c(s, a) + J^*\}$ $^*(f(s,a))\}$
- value function ('costs-to-go') can be stored in ^a table

Overview of the approach: Stochastic Domains

- value iteration in stochastic environments: $\forall s \in \mathcal{S}: J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ \sum_{s' \in S} p(s, s', a) (c(s, a) + J_k(s')) \}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg\min_{a \in A} \{\sum_{l \in S} p(s, s', a) \}$ *(s) ∈ $\arg \min_{a \in A} \{ \sum_{s' \in S} p(s, s', a) (c(s, a) + J_k(s')) \}$
- $\bullet\,$ value function J ('costs-to-go') can be stored in a table

Reinforcement Learning

Problems of Value Iteration:

for all $s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s,a) + J_k(f(s,a))\}$

problems:

- \bullet Size of S (Chess, robotics, \dots) \Rightarrow learning time, storage?
- $\bullet\,$ 'model' (transition behaviour) $f(s,a)$ or $p(s',s,a)$ must be known!

Reinforcement Learning is dynamic programming for very large state ${\sf spaces}$ and $/$ or ${\sf model}\textrm{-}$ free ${\sf tasks}$

Important contributions - Overview

• Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

• Model-free learning (Q-Learning,(Watkins, 1989))

• neural representation of value function (or alternative functionapproximators)

Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

 $s \in \mathcal{S}$ now For some $s \in \mathcal{S}$...

 \Rightarrow learning based on trajectories (experiences) ⇒

Q-Learning

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go.

 $Q_\pi(s,a)$ denotes the expected future pathcosts for applying action a

in state s (and continuing according to policy π):

$$
Q_{\pi}(s, a) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_{\pi}(s'))
$$

where $J_\pi(s')$ expected pathcosts when starting from s' and acting
secondization according to π

Q-learning: Action selection

is now possible without ^a model:

Original VI: state evaluationAction selection:

Q: state-action evaluationAction selection:

> π^* $^*(s) = \arg \min Q^*$ (s,a) 30 8

 π^* $*(s) \in \arg \min \{c(s,a)+J^*\}$ $^*(f(s,a))\}$

Learning an optimal Q-Function

To find Q^{\ast} , a value iteration algorithm can be applied

$$
Q_{k+1}(s, u) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_k(s'))
$$

where $J_k(s) = \min_{a' \in \mathcal{A}(s)} Q_k(s,a')$

⋄ Furthermore, learning ^a Q-function without ^a model, by experience of transition tuples $(s,a) \rightarrow s'$ only is possible:

 $\operatorname{Q-LEARNING}$ $\left(\operatorname{Q-Value}$ Iteration $+$ Robbins-Monro stochastic approximation)

$$
Q_{k+1}(s, a) := (1 - \alpha) Q_k(s, a) + \alpha (c(s, a) + \min_{a' \in \mathcal{A}(s')} Q_k(s', a'))
$$

Summary Q-learning

Q-learning is ^a variant of value iteration when no model is available it is based on two major ingredigents:

- $\bullet\,$ uses a representation of costs-to-go for state $/$ action-pairs $Q(s,a)$
- uses ^a stochastic approximation scheme to incrementally compute expectation values on the basis of observed transititions $(s,a) \rightarrow s'$

⋄ \diamond converges under the same assumption as value iteration $+$ 'every state/ action pair has to be visited infinitely often' $+$ conditions for stochastic approximation

Q-Learning algorithm

REPEAT

start in arbitrary initial state $s_0; \, t=0$

REPEAT

choose action greedily $u_t := \argmin_{a \in \mathcal{A}} Q_k(s_t, a)$ or u_t according to an exploration scheme apply u_t in the environment: $s_{t+1} = f(s_t, u_t, w_t)$ learn Q-value:

$$
Q_{k+1}(s_t, u_t) := (1 - \alpha)Q_k(s_t, u_t) + \alpha(c(s_t, u_t) + J_k(s_{t+1}))
$$

where $J_k(s_{t+1}) := \min_{a \in \mathcal{A}} Q_k(s_{t+1}, a)$

UNTIL Terminal state reached $\,$ UNTIL policy is optimal ('enough') $\,$

Representation of the path-costs in ^a functionapproximator

Idea: neural representation of value function (or alternative functionapproximators) (Neuro Dynamic Programming (Bertsekas, 1987))

⇒ few parameters (here: weights) specify value function for ^a large state space

⇒ \Rightarrow \quad learning by gradient descent: $\frac{\partial E}{\partial w_{ij}}$ $=\frac{\partial(J(s}% {\mathbf{A})}{\partial(s,a)}\cdot\mathcal{O}(\mathbf{A})$ ′)− $c(s,a) J(s))$ $\frac{c(s,a)-J(s))^2}{\partial w_{ij}}$

Example: learning to intercept in robotic soccer

- as fast as possible (anticipation of intercept position)
- random noise in ball and player movement \rightarrow need for corrections
- sequence of TURN (θ) and d DASH (v) commands required

[⇒]handcoding ^a routine is ^a lot of work, many parameters to tune!

Reinforcement learning of intercept

Goal: Ball is in kickrange of player

- \bullet state space: $S^{work} =$ positions on pitch
- $\bullet\quad S^+ \colon$ Ball in kickrange
- $\bullet\quad S^-$: e.g. collision with opponent

•
$$
c(s) = \begin{cases} 0, & s \in S^+ \\ 1, & s \in S^- \\ 0.01, & else \end{cases}
$$

- \bullet Actions: turn(10^o), turn(20^o), . . . turn(360^o), . . . DASH(10), $\mathrm{DASH}(20),\;\ldots$.
- neural value function (6-20-1-architecture)

Learning curves

Percentage of successes

Costs (time to intercept)