
Machine Learning

Reinforcement Learning

Prof. Dr. Martin Riedmiller
AG Maschinelles Lernen und Natürlichsprachliche Systeme

Institut für Informatik
Technische Fakultät

Albert-Ludwigs-Universität Freiburg

riedmiller@informatik.uni-freiburg.de



Motivation

Can a software agent learn to play Backgammon by itself?

Learning from success or failure

Neuro-Backgammon:
playing at worldchampion level
(Tesauro, 1992)



Can a software agent learn to balance a pole by itself?

Learning from success or failure

Neural RL controllers:
noisy, unknown, nonlinear (Riedmiller

et.al. )



Can a software agent learn to cooperate with others by itself?

Learning from success or failure

Cooperative RL agents:
complex, multi-agent, cooperative
(Riedmiller et.al. )



Reinforcement Learning

has biological roots: reward and punishment

no teacher, but:

actions + goal
learn
→ algorithm/ policy

Goal

Action 1
Action 2
    ...

.

Agent .

’Happy Programming’



Actor-Critic Scheme (Barto, Sutton, 1983)

Critic

World

?

Internal

Actor

Actor Critic External reward

s

Actor-Critic Scheme:

• Critic maps external, delayed reward in internal training signal

• Actor represents policy



Overview

I Reinforcement Learning - Basics



A First Example

Goal

Repeat

Choose: Action a ∈{→,←, ↑}
Until Goal is reached



The ’Temporal Credit Assignment’ Problem

Goal

Which action(s) in the sequence has to be changed?

⇒ Temporal Credit Assignment Problem



Sequential Decision Making

Goal

Examples:
Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92)

Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics
and control, . . .



Three Steps

⇒ Describe environment as a Markov Decision Process (MDP)

⇒ Formulate learning task as a dynamic optimization problem

⇒ Solve dynamic optimization problem by dynamic programming
methods



1. Description of the environment

Goal

S: (finite) set of states
A: (finite) set of actions

Behaviour of the environment ’model’
p : S × S ×A→ [0, 1]
p(s′, s, a) Probability distribution of
transition

For simplicity, we will first assume a deterministic environment.
There, the model can be described by a transition function

f : S ×A→ S, s′ = f(s, a)

’Markov’ property: Transition only depends on current state and
action

Pr(st+1|st, at) = Pr(st+1|st, at, st−1, at−1, st−2, at−2, . . .)



2. Formulation of the learning task

every transition emits transition costs,
’immediate costs’, c : S ×A→ ℜ
(sometimes also called ’immediate reward’, r) 1

2

Now, an agent policy π : S → A can be
evaluated (and judged):
Consider pathcosts:
Jπ(s) =

∑

t c(st, π(st)), s0 = s

Wanted: optimal policy π∗ : S → A
where Jπ∗

(s) = minπ{
∑

t c(st, π(st))|s0 = s}

2

1

1 1
2

⇒ Additive (path-)costs allow to consider all events

⇒ Does this solve the temporal credit assignment problem? YES!



Choice of immediate cost function c(·) specifies policy to be learned

Example:

c(s) =







0 , if s success (s ∈ Goal)
1000 , if s failure (s ∈ Failure)

1 , else

Goal

Jπ(sstart) = 12

Jπ(sstart) = 1004

⇒ specification of requested policy by c(·) is simple!



3. Solving the optimization problem

For the optimal path costs it is known that

J∗(s) = min
a
{c(s, a) + J∗(f(s, a))}

(Principle of Optimality (Bellman, 1959))

⇒Can we compute J∗ (we will see why, soon)?



Computing J∗: the value iteration (VI) algorithm

Start with arbitrary J0(s)

for all states s : Jk+1(s) := mina∈A{c(s, a) + Jk(f(s, a))}

5

7

2

?

1

1

1 ⇒

5

7

2

3

1

1

1



Convergence of value iteration

Value iteration converges under certain assumptions, i.e. we have

limk→∞Jk = J∗

⇒ Discounted problems: Jπ∗
(s) = minπ{

∑

t γ
tc(st, π(st))|s0 = s}

where 0 ≤ γ < 1 (contraction mapping)

⇒ Stochastic shortest path problems:

• there exists an absorbing terminal state with zero costs

• there exists a ’proper’ policy (a policy that has a non-zero chance
to finally reach the terminal state)

• every non-proper policy has infinite path costs for at least one state



Ok, now we have J∗

⇒ when J∗ is known, then we also know an optimal policy:

π∗(s) ∈ argmina∈A{c(s, a) + J∗(f(s, a))}

5

7

21

1

1



Back to our maze

GoalStart

1

2
345

6
7

9

346789

10

5

11

10

11 9

1011

1001

1001 1000

1000



Overview of the approach so far

Ziel

• Description of the learning task as an MDP
S,A, T, f, c

c specifies requested behaviour/ policy

• iterative computation of optimal pathcosts J∗:
∀s ∈ S : Jk+1(s) = mina∈A{c(s, a) + Jk(f(s, a))}

• Computation of an optimal policy from J∗

π∗(s) ∈ argmina∈A{c(s, a) + J∗(f(s, a))}

• value function (’costs-to-go’) can be stored in a table



Overview of the approach: Stochastic Domains

Ziel

• value iteration in stochastic environments:
∀s ∈ S : Jk+1(s) = mina∈A{

∑

s′∈S p(s, s′, a) (c(s, a) + Jk(s
′))}

• Computation of an optimal policy from J∗

π∗(s) ∈ argmina∈A{
∑

s′∈S p(s, s′, a) (c(s, a) + Jk(s
′))}

• value function J (’costs-to-go’) can be stored in a table



Reinforcement Learning

Problems of Value Iteration:

for all s ∈ S :Jk+1(s) = mina∈A{c(s, a) + Jk(f(s, a))}

problems:

• Size of S (Chess, robotics, . . . ) ⇒ learning time, storage?

• ’model’ (transition behaviour) f(s, a) or p(s′, s, a) must be known!

Reinforcement Learning is dynamic programming for very large state
spaces and/ or model-free tasks



Important contributions - Overview

• Real Time Dynamic Programming
(Barto, Sutton, Watkins, 1989)

• Model-free learning (Q-Learning,(Watkins, 1989))

• neural representation of value function (or alternative function
approximators)



Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

instead For all s ∈ S now For some s ∈ S . . .
⇒ learning based on trajectories (experiences)

Goal



Q-Learning

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go.
Qπ(s, a) denotes the expected future pathcosts for applying action a

in state s (and continuing according to policy π):

Qπ(s, a) :=
∑

s′∈S

p(s′, s, a)(c(s, a) + Jπ(s
′))

where Jπ(s
′) expected pathcosts when starting from s′ and acting

according to π



Q-learning: Action selection

is now possible without a model:

Original VI: state evaluation
Action selection:

π
∗
(s) ∈ argmin{c(s, a)+J

∗
(f(s, a))}

5

7

21

1

1

Q: state-action evaluation
Action selection:

π
∗
(s) = argminQ

∗
(s, a)

3

6

8



Learning an optimal Q-Function

To find Q∗, a value iteration algorithm can be applied

Qk+1(s, u) :=
∑

s′∈S

p(s′, s, a)(c(s, a) + Jk(s
′))

where Jk(s) = mina′∈A(s)Qk(s, a
′)

⋄ Furthermore, learning a Q-function without a model, by
experience of transition tuples (s, a)→ s′ only is possible:

Q-learning (Q-Value Iteration + Robbins-Monro stochastic
approximation)

Qk+1(s, a) := (1− α)Qk(s, a) + α (c(s, a) + min
a′∈A(s′)

Qk(s
′, a′))



Summary Q-learning

Q-learning is a variant of value iteration when no model is available

it is based on two major ingredigents:

• uses a representation of costs-to-go for state/ action-pairs Q(s, a)

• uses a stochastic approximation scheme to incrementally compute
expectation values on the basis of observed transititions (s, a)→ s′

⋄ converges under the same assumption as value iteration + ’every
state/ action pair has to be visited infinitely often’ + conditions for
stochastic approximation



Q-Learning algorithm

Repeat

start in arbitrary initial state s0; t = 0
Repeat

choose action greedily ut := argmina∈AQk(st, a)
or ut according to an exploration scheme
apply ut in the environment: st+1 = f(st, ut, wt)
learn Q-value:
Qk+1(st, ut) := (1− α)Qk(st, ut) + α(c(st, ut) + Jk(st+1))
where Jk(st+1) := mina∈AQk(st+1, a)

Until Terminal state reached
Until policy is optimal (’enough’)



Representation of the path-costs in a function

approximator

Idea: neural representation of value function (or alternative function
approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

...

...

x J(x)

wij

⇒ few parameters (here: weights) specify value function for a large
state space

⇒ learning by gradient descent: ∂E
∂wij

= ∂(J(s′)−c(s,a)−J(s))2

∂wij



Example: learning to intercept in robotic soccer

• as fast as possible (anticipation of intercept
position)

• random noise in ball and player movement
→ need for corrections

• sequence of turn(θ)and dash(v)-
commands required

.

.

.

⇒handcoding a routine is a lot of work, many parameters to tune!



Reinforcement learning of intercept

Goal: Ball is in kickrange of player

• state space: Swork = positions on pitch

• S+: Ball in kickrange

• S−: e.g. collision with opponent

• c(s) =







0 , s ∈ S+

1 , s ∈ S−

0.01 , else

• Actions: turn(10o), turn(20o), . . . turn(360o), . . . dash(10),
dash(20), . . .

• neural value function (6-20-1-architecture)



Learning curves

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

"kick.stat" u 3:7

Percentage of successes

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

"kick.stat" u 3:11

Costs (time to intercept)


