

Clustering

UNI FREIBURG

> Machine Learning Summer 2012

Manuel Blum

Supervised vs. Unsupervised Learning

Supervised Learning

Unsupervised Learning

Initialization of cluster centroids

Iteration 1: compute closest centroids

Iteration 1:

compute closest centroids move controids to mean of assigned points

Iteration 2: compute closest centroids

Iteration 1:

compute closest centroids move controids to mean of assigned points

Iteration 2: compute closest centroids move centroids

Iteration 3: compute closest centroids

Iteration 1:

compute closest centroids move controids to mean of assigned training patterns

Iteration 2: compute closest centroids move centroids

Iteration 3: compute closest centroids move centroids

Iteration 4: algorithm converges

K-means Algorithm

input: K, { $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$ }, $x^{(i)} \in \mathbb{R}^n$

randomly initialize K cluster controids $\mu_1, \mu_2, ..., \mu_K \in R^n$ do

for i = 1 to m

 $c^{(i)}$:= index of cluster centroid closest to $x^{(i)}$

for k = 1 to K

 μ_k := mean of training patterns assigned to cluster k until convergence

K-means Optimization Objective

$$J\left(c^{(1)},\ldots,c^{(m)},\mu_{1},\ldots,\mu_{K}\right) = \frac{1}{m}\sum_{i=1}^{m}\left\|x^{(i)}-\mu_{c^{(i)}}\right\|^{2}$$

- cluster assignment step minimizes J w.r.t. $c^{(1)}$, ..., $c^{(m)}$

 \mathbf{n}

- moving the centroids minimizes J w.r.t. $\mu_1, ..., \mu_K$
- the objective function is monotonically decreasing towards a local minimum of J
- K-means always converges within finite time

Application: Color Quantization

- reduce the number of distinct colors in an image by clustering the pixels
- the pixels of the original image are used as training patterns $\mathbf{x}^{(i)}$
- K controls the number of colors in the output image
- K-means will learn the K most typical colors in the image
- the original pixels can be replaced by the closest prototypes after training

Random Initialization

- Forgy's method:
 - initialize centroids to K randomly picked training patterns
- the random partition method:
 - randomly assign a cluster to each training pattern
 - move centroids to the means of the randomly assigned points
- *problem:* the performance of K-means heavily depends on the initial cluster centers
- simple solution:
 - run K-means multiple times using different random initializations
 - choose the clustering that minimizes the cost function J

How to choose K

- correct choice of k is often ambiguous
- most often K is specified by hand

- the elbow method:

Final Remarks

- results of K-means heavily depend on the scaling of the data
- Euclidean distance must be a meaningful measure of similarity for the dataset
- K-means will rarely work for high dimensional data (d > 20)
- cluster centroids are also called prototypes or codebook vectors
- the set of prototypes is called codebook

