
.

Machine Learning

Concept Learning

Dr. Joschka Boedecker
AG Maschinelles Lernen und Natürlichsprachliche Systeme

Institut für Informatik
Technische Fakultät

Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgment Slides courtesy of Martin Riedmiller, previously
adapted from slides provided by

Tom Mitchell, Carnegie-Mellon-University
and Peter Geibel, University of Osnabrück

Overview of Today’s Lecture: Concept Learning

read T. Mitchell, Machine Learning, chapter 2

• Learning from examples

• General-to-specific ordering over hypotheses

• Version spaces and candidate elimination algorithm

• Picking new examples

• The need for inductive bias

Note: simple approach assuming no noise, illustrates key concepts

Introduction

• Assume a given domain, e.g. objects, animals, etc.

• A concept can be seen as a subset of the domain, e.g.
birds⊆animals

• Task: acquire intensional concept description from training
examples

• Generally we can’t look at all objects in the domain

Training Examples for EnjoySport

• Examples: “Days at which my friend Aldo enjoys his favorite water
sport”

• Result: classifier for days = description of Aldo’s behavior

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

What is the general concept?

Representing Hypotheses

• Many possible representations

• in the following: h is conjunction of constraints on attributes

• Each constraint can be

– a specfic value (e.g., Water = Warm)
– don’t care (e.g., “Water =?”)
– no value allowed (e.g.,“Water=∅”)

• For example,

Sky AirTemp Humid Wind Water Forecst
〈Sunny ? ? Strong ? Same〉

• We write h(x) = 1 for a day x, if x satisfies the description

• Note that much more expressive languages exists

Most General/Most Specific Hypothesis

• Most general hypothesis: (?, ?, ?, ?, ?)

• Most specific hypothesis: (∅, ∅, ∅, ∅, ∅)

Prototypical Concept Learning Task

• Given:

– Instances X : Possible days, each described by the attributes

Sky, AirTemp, Humidity, Wind, Water, Forecast

– Target function c: EnjoySport : X → {0, 1}
– Hypotheses H: Conjunctions of literals. E.g.

〈?, Cold,High, ?, ?, ?〉.

– Training examples D: Positive and negative examples of the
target function

〈x1, c(x1)〉, . . . 〈xm, c(xm)〉

• Determine: A hypothesis h in H with h(x) = c(x) for all x in D.

The Inductive Learning Hypothesis

The inductive learning hypothesis: Any hypothesis found to
approximate the target function well over a sufficiently large set of
training examples will also approximate the target function well over
other unobserved examples.

• I.e. the training set needs to ’represent’ the whole domain (which
may be infinite)

• Even if we have a ’good’ training set, we can still construct bad
hypotheses!

• Can this be defined formally?

Concept Learning as Search

• The hypothesis representation language defines a potentially large
space

• Learning can be viewed as a task of searching this space

• Assume, that Sky has three possible values, and each of the
remaining attributes has 2 possible values

• → Instance space constains 96 distinct examples

• Hypothesis space contains 5120 syntactically different hypothesis

• What about the semantically different ones?

• Different learning algorithms search this space in different ways!

General-to-Specific Ordering of Hypothesis

• Many algorithms rely on ordering of hypothesis

• Consider
h1 = (Sunny, ?, ?, Strong, ?, ?)

and
h2 = (Sunny, ?, ?, ?, ?, ?)

• h2 is more general than h1!

• How to formalize this?

Definition h2 is more general than h1, if h1(x) = 1 implies h2(x) = 1.
In symbols

h2 ≥g h1

Instance, Hypotheses, and More-General-Than

General-to-Specific Ordering of Hypothesis

• ≥g does not depend on the concept to be learned

• It defines a partial order over the set of hypotheses

• strictly-more-general than: >g

• more-specific-than ≤g

• Basis for the learning algorithms presented in the following!

• Find-S:

– Start with most specific hypothesis (∅, ∅, ∅, ∅, ∅, ∅)
– Generalize if positive example is not covered!

Find-S Algorithm

• Initialize h to the most specific hypothesis in H

• For each positive training instance x

– For each attribute constraint ai in h

∗ If the constraint ai in h is satisfied by x

∗ Then do nothing
∗ Else replace ai in h by the next more general constraint that is
satisfied by x

• Output hypothesis h

Hypothesis Space Search by Find-S

Instances X Hypotheses H

Specific

General

1x
2

x

x 3

x4

h0

h1

h2,3

h
4

+ +

+

x = <Sunny Warm High Strong Cool Change>, +
4

x = <Sunny Warm Normal Strong Warm Same>, +1
x = <Sunny Warm High Strong Warm Same>, +2
x = <Rainy Cold High Strong Warm Change>, -3

h = <Sunny Warm Normal Strong Warm Same>1
h = <Sunny Warm ? Strong Warm Same>2

h = <Sunny Warm ? Strong ? ? >
4

h = <Sunny Warm ? Strong Warm Same>
3

0h = <∅, ∅, ∅, ∅, ∅, ∅>

-

The Role of Negative Examples

• Basically, the negative examples are simply ignored!

• What about a negative example like
(Sunny,Warm,High, Strong, Freezing,Change)

• Example is incorrectly classified as positive by hypothesis

(Sunny,Warm, ?, Strong, ?, ?)

• Correct hypothesis would be

(Sunny,Warm, ?, Strong, (Warm ∨ Cool), ?)

• Is not in hypothesis set H

• If we assume the existence of a consistent hypothesis in H, then
negative examples can be safely ignored.

Complaints about Find-S

• Assume a consistent and unknown h that has generated the
training set

• → Algorithm can’t tell whether it has learned the right concept
because it picks one hypothesis out of many possible ones

• Can’t tell when training data inconsistent because it ignores the
negative examples: doesn’t account for noise

• Picks a maximally specific h (why?) → is this reasonable?

• Depending on H, there might be several correct hypothesis!

• → Version spaces:

– Characterize the set of all consistent hypotheses
– ... without enumerating all of them

Version Spaces

Definition A hypothesis h is consistent with a set of training examples
D of target concept c if and only if h(x) = c(x) for each training
example 〈x, c(x)〉 in D.

Consistent(h,D) ≡ (∀〈x, c(x)〉 ∈ D) h(x) = c(x)

Definition The version space, V SH,D, with respect to hypothesis
space H and training examples D, is the subset of hypotheses from H

consistent with all training examples in D.

V SH,D ≡ {h ∈ H|Consistent(h,D)}

The List-Then-Eliminate Algorithm:

1. V ersionSpace← a list containing every hypothesis in H

2. For each training example, 〈x, c(x)〉:

remove from V ersionSpace any hypothesis h for which
h(x) 6= c(x)

3. Output the list of hypotheses in V ersionSpace

Version Space for Enjoy Sport

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

Representing Version Spaces

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

1. The General boundary, G, of version space V SH,D is the set of its
maximally general members that are consistent with the given
training set

2. The Specific boundary, S, of version space V SH,D is the set of its
maximally specific members that are consistent with the given
training set

3. Every member of the version space lies between these boundaries

V SH,D = {h ∈ H|(∃s ∈ S)(∃g ∈ G)(g ≥ h ≥ s)}

where x ≥ y means x is more general or equal to y

Candidate Elimination Algorithm – Pos. Examples

Input: training set
Output:

• G = maximally general hypotheses in H

• S = maximally specific hypotheses in H

Algorithm:
For each training example d, do

• If d is a positive example

– Remove from G any hypothesis inconsistent with d

– For each hypothesis s in S that is not consistent with d

∗ Remove s from S

∗ Add to S all minimal generalizations h of s such that
(a) h is consistent with d, and
(b) some member of G is more general than h

∗ Remove from S any hypothesis that is more general than
another hypothesis in S

Candidate Elimination Algorithm – Neg. Examples

• If d is a negative example

– Remove from S any hypothesis inconsistent with d

– For each hypothesis g in G that is not consistent with d

∗ Remove g from G

∗ Add to G all minimal specializations h of g such that
(a) h is consistent with d, and
(b) some member of S is more specific than h

∗ Remove from G any hypothesis that is less general than
another hypothesis in G

Example Trace

{<?, ?, ?, ?, ?, ?>}

S
0
: {<Ø, Ø, Ø, Ø, Ø, Ø>}

G 0
:

Example Trace

S 1:

S 2:

G 1, G 2:

{<Sunny, Warm, Normal, Strong, Warm, Same>}

{<Sunny, Warm, ?, Strong, Warm, Same>}

{<?, ?, ?, ?, ?, ?>}

Training examples:

 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy-Sport?=Yes

 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy-Sport?=Yes

Example Trace

G 3:

 <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

Training Example:

3.

S2 , S 3 : <Sunny, Warm, ?, Strong, Warm, Same>{ }

<Sunny, ?, ?, ?, ?, ?> <?, Warm, ?, ?, ?, ?> <?, ?, ?, ?, ?, Same>{ }

G 2: <?, ?, ?, ?, ?, ?>{ }

Example Trace

Training Example:

EnjoySport = Yes<Sunny, Warm, High, Strong, Cool, Change>,4.

S 3: <Sunny, Warm, ?, Strong, Warm, Same>{ }

S 4: <Sunny, Warm, ?, Strong, ?, ?>{ }

G 4: <Sunny, ?, ?, ?, ?, ?> <?, Warm, ?, ?, ?, ?> { }

G3: <Sunny, ?, ?, ?, ?, ?> <?, Warm, ?, ?, ?, ?> <?, ?, ?, ?, ?, Same>{ }

Properties of the two Sets

• S can be seen as the summary of the positive examples

• Any hypothesis more general than S covers all positive examples

• Other hypotheses fail to cover at least one pos. ex.

• G can be seen as the summary of the negative examples

• Any hypothesis more specific than G covers no previous negative
example

• Other hypothesis cover at least one positive example

Resulting Version Space

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

Properties

• If there is a consistent hypothesis then the algorithm will converge
to S = G = {h} when enough examples are provided

• False examples may cause the removal of the correct h

• If the examples are inconsistent, S and G become empty

• This can also happen, when the concept to be learned is not in H

What Next Training Example?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• If the algorithm is allowed to select the next example, which is
best?

ideally, choose an instance that is classified positive by half and
negative by the other half of the hypothesis in VS. In either case
(positive or negative example), this will eliminate half of the
hypothesis. E.g: 〈Sunny Warm Normal Light Warm Same〉

How Should These Be Classified?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• 〈Sunny Warm Normal Strong Cool Change〉

• 〈Rainy Cool Normal Light Warm Same〉

• 〈Sunny Warm Normal Light Warm Same〉

Classification

• Classify a new example as positive or negative, if all hypotheses in
the version space agree in their classification

• Otherwise:

– Rejection or
– Majority vote (used in the following)

Inductive Bias

• What if target concept not contained in hypothesis space?

• Should we include every possible hypothesis?

• How does this influence the generalisation ability?

Inductive Leap

• Induction vs. deduction (=theorem proving)

• Induction provides us with new knowledge!

• What Justifies this Inductive Leap?

+ 〈Sunny Warm Normal Strong Cool Change〉

+ 〈Sunny Warm Normal Light Warm Same〉

S : 〈Sunny Warm Normal ? ? ?〉

Question: Why believe we can classify the unseen

〈Sunny Warm Normal Strong Warm Same〉?

An UNBiased Learner

• Idea: Choose H that expresses every teachable concept

• I.e., H corresponds to the power set of X → |H| = 2|X|

• → much bigger than before, where |H| = 937

• Consider H ′ = disjunctions, conjunctions, negations over previous
H. E.g.,

〈Sunny Warm Normal ? ? ?〉 ∨ ¬〈? ? ? ? ? Change〉

• It holds h(x) = 1 if x satisfies the logical expression.

• What are S, G in this case?

The Futility of Bias-Free Learning

• S = {s}, with s = disjunction of positive examples

• G = {g}, with g = Negated disjunction of negative examples

→ Only training examples will be unambiguously classified A learner
that makes no a priori assumptions regarding the identity of the target
concept has no rational basis for classifying any unseen instances.

• Inductive bias = underyling assumptions

• These assumption explain the result of learning

• The inductive bias explains the inductive leap!

Inductive Bias

• Concept learning algorithm L

• Instances X , target concept c

• Training examples Dc = {〈x, c(x)〉}

• Let L(xi, Dc) denote the classification assigned to the instance xi

by L after training on data Dc, e.g. EnjoySport = yes

Definition The inductive bias of L is any minimal set of assertions B
such that for any target concept c and corresponding training
examples Dc

(∀xi ∈ X) [(B ∧Dc ∧ xi) ⊢ L(xi,Dc)]

where A ⊢ B means A logically entails B.

Inductive Bias for Candidate Elimination

(∀xi ∈ X) [(B ∧Dc ∧ xi) ⊢ L(xi,Dc)]

• Assume a training set Dc. The algorithm computes the version
space V SH,D.

• xi is classified by unanimous voting. → this way L(xi,Dc) is
computed.

• Conjecture: B = {c ∈ H} is the inductive bias (’the underlying
target concept c is in H’)

• From c ∈ H it follows that c is a member of the version space.

• L(xi,Dc) = k implies that all members of V SH,D, including c, vote
for class k (unanimous voting). Therefore: c(xi) = k = L(xi, Dc).

• This means, that the output of the learner L(xi, Dc) can be
logically deduced from B ∧Dc ∧ xi

• → The inductive bias of the Candidate Elimination Algorithm is: c
is in H

Inductive Systems and Equivalent Deductive Systems

Three Learners with Different Biases

• Note that the inductive bias is often only implicitly encoded in the
learning algorithm

• In the general case, it’s much more difficult to determine the
inductive bias

• Often properties of the learning algorithm have to be included, e.g.
its search strategy

• What is inductive bias of

– Rote learner: Store examples, Classify x iff it matches previously
observed example.
No inductive bias (→ no generalisation!)

– Candidate elimination algorithm
c is in H (see above)

– Find-S c is in H and that all instances are negative examples
unless the opposite is entailed by its training data

A good generalisation capability of course depends on the appropriate
choice of the inductive bias!

Summary Points

• Concept learning as search through H

• General-to-specific ordering over H

• Version space candidate elimination algorithm

• S and G boundaries characterize learner’s uncertainty

• Learner can generate useful queries

• Inductive leaps possible only if learner is biased

• Inductive learners can be modelled by equivalent deductive systems

