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Neural Networks

◮ The human brain has approximately 1011 neurons

◮ Switching time 0.001s (computer ≈ 10−10s)

◮ Connections per neuron: 104 − 105

◮ 0.1s for face recognition

◮ I.e. at most 100 computation steps

◮ parallelism

◮ additionally: robustness, distributedness

◮ ML aspects: use biology as an inspiration for artificial neural models and
algorithms; do not try to explain biology: technically imitate and exploit
capabilities
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Biological Neurons

◮ Dentrites input information to the cell

◮ Neuron fires (has action potential) if a certain threshold for the voltage is
exceeded

◮ Output of information by axon

◮ The axon is connected to dentrites of other cells via synapses

◮ Learning corresponds to adaptation of the efficiency of synapse, of the
synaptical weight
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Historical ups and downs
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Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized
variants of a former, more simple model (McCulloch/Pitts neurons, 1942):

◮ inputs are weighted
◮ weights are real numbers (positive and negative)
◮ no special inhibitory inputs

◮ a percpetron with n inputs is described by a weight vector
~w = (w1, . . . ,wn)

T ∈ R
n and a threshold θ ∈ R. It calculates the following

function:

(x1, . . . , xn)
T 7→ y =

{

1 if x1w1 + x2w2 + · · ·+ xnwn ≥ θ

0 if x1w1 + x2w2 + · · ·+ xnwn < θ
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Perceptrons: adaptive neurons (cont.)

for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs the
following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi )) = fstep(w0 + 〈~w , ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0

x1

xn

1

yΣ

w1

wn

w0

...
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Perceptrons: adaptive neurons (cont.)

◮ geometric interpretation of a
perceptron:
1. input patterns (x1, . . . , xn) are

points in n-dimensional space
2. points with w0 + 〈~w , ~x〉 = 0 are

on a hyperplane defined by w0

and ~w
3. points with w0 + 〈~w , ~x〉 > 0 are

above the hyperplane
4. points with w0 + 〈~w , ~x〉 < 0 are

below the hyperplane
5. perceptrons partition the input

space into two halfspaces along
a hyperplane
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Perceptron learning problem

◮ perceptrons can automatically adapt to example data ⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

◮ a set of input patterns P ⊆ R
n, called the set of positive examples

◮ another set of input patterns N ⊆ R
n, called the set of negative examples

task:
◮ generate a perceptron that yields 1 for all patterns from P and 0 for all

patterns from N

◮ obviously, there are cases in which the learning task is unsolvable, e.g.
P ∩N 6= ∅
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Perceptron learning problem (cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately
and no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w , ~x〉 6= 0 for all training patterns.

Proof:

Let (~w ,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w , ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w , ~x〉+ w0)|~x ∈ N}. Then:

〈~w , ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N

Thus, the perceptron (~w ,w0 +
ε
2
) proves the lemma.
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Perceptron learning algorithm: idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w , ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error?

◮ we need to increase 〈~w , ~x〉+ w0

◮ increase w0
◮ if xi > 0, increase wi
◮ if xi < 0 (’negative influence’),

decrease wi

◮ perceptron learning algorithm:
add ~x to ~w , add 1 to w0 in this
case. Errors on negative patterns:
analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0: shift,
modifying ~w : rotation
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Perceptron learning algorithm

Require: positive training patterns P and a negative training examples N
Ensure: if exists, a perceptron is learned that classifies all patterns accurately
1: initialize weight vector ~w and bias weight w0 arbitrarily
2: while exist misclassified pattern ~x ∈ P ∪ N do
3: if ~x ∈ P then
4: ~w ← ~w + ~x

5: w0 ← w0 + 1
6: else
7: ~w ← ~w − ~x

8: w0 ← w0 − 1
9: end if

10: end while
11: return ~w and w0
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Perceptron learning algorithm: example

N = {(1, 0)T , (1, 1)T}, P = {(0, 1)T}

→ exercise
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Perceptron learning algorithm: convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w ,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.

Proof:

for simplification we will add the bias weight to the weight vector, i.e.
~w = (w0,w1, . . . ,wn)

T , and 1 to all patterns, i.e. ~x = (1, x1, . . . , xn)
T . We

will denote with ~w (t) the weight vector in the t-th iteration of perceptron
learning and with ~x (t) the pattern used in the t-th iteration.
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Perceptron learning algorithm: Preliminaries

Inner product (dot product of two vectors ~w , ~x)

〈~w , ~x〉 = ~w
T
~x =

n
∑

i=1

wi xi

〈~w , ~x〉+ 〈~w , ~y〉 = 〈~w , ~x + ~y〉

Euclidean norm:
||~w ||2 = 〈~w , ~w〉 =

∑n

i=1 wi wi

Angle between two vectors:
cos∡(~x , ~y) = 〈~x,~y〉

||~x|| · ||~y||
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Perceptron learning algorithm: convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.
〈

~w
∗
, ~w

(t+1)
〉

=
〈

~w
∗
, ~w

(t) ± ~x
(t)
〉

=
〈

~w
∗
, ~w

(t)
〉

±
〈

~w
∗
, ~x

(t)
〉

≥
〈

~w
∗
, ~w

(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns
Hence,

〈

~w
∗
, ~w

(t+1)
〉

≥
〈

~w
∗
, ~w

(0)
〉

+ (t + 1)δ
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Perceptron learning algorithm: convergence proof (cont.)

||~w (t+1)||2 =
〈

~w
(t+1)

, ~w
(t+1)

〉

=
〈

~w
(t) ± ~x

(t)
, ~w

(t) ± ~x
(t)
〉

= ||~w (t)||2 ± 2
〈

~x
(t)
, ~w

(t)
〉

+ ||~x (t)||2

consider
〈

~x (t), ~w (t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence, x(t) not

correctly classified, then if ~x (t) ∈ P :
〈

~w (t), ~x (t)
〉

< 0, if

~x (t) ∈ N :
〈

~w (t), ~x (t)
〉

≥ 0. Therefore: ±
〈

~w (t), ~x (t)
〉

≤ 0. Dropping it makes

expression larger.
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Perceptron learning algorithm: convergence proof (cont.)

||~w (t+1)||2 =
〈

~w
(t+1)

, ~w
(t+1)

〉

=
〈

~w
(t) ± ~x

(t)
, ~w

(t) ± ~x
(t)
〉

= ||~w (t)||2 ± 2
〈

~w
(t)
, ~x

(t)
〉

+ ||~x (t)||2

≤ ||~w (t)||2 + ε

with ε := max{||~x ||2|~x ∈ P ∪N}
Hence,

||~w (t+1)||2 ≤ ||~w (0)||2 + (t + 1)ε
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Perceptron learning algorithm: convergence proof (cont.)

cos∡(~w∗
, ~w

(t+1)) =

〈

~w∗, ~w (t+1)
〉

||~w∗|| · ||~w (t+1)||

≥

〈

~w∗, ~w (0)
〉

+ (t + 1)δ

||~w∗|| ·
√

||~w (0)||2 + (t + 1)ε
−→
t→∞

∞

Since cos∡(~w∗, ~w (t+1)) ≤ 1, t must be bounded above.
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Perceptron learning algorithm: convergence

◮ Lemma (worst case running time):
If the given problem is solvable, perceptron learning terminates after at
most (n + 1)22(n+1) log(n+1) iterations.
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◮ Exponential running time is a problem of the perceptron learning
algorithm. There are algorithms that solve the problem with complexity

O(n
7
2 )
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Perceptron learning algorithm: cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task
is not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide

◮ Lemma:
Starting the perceptron learning algorithm with weight vector ~0 on an
unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, Perceptrons
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Perceptron learning algorithm: cycle theorem

Proof:

Assume ~w (t+k) = ~w (t). Meanwhile, the patterns ~x (t+1), . . . , ~x (t+k) have been
applied. Without loss of generality, assume ~x (t+1), . . . , ~x (t+q) ∈ P and
~x (t+q+1), . . . , ~x (t+k) ∈ N . Hence:

~w
(t)= ~w

(t+k)= ~w
(t)+ ~x

(t+1)+ · · ·+ ~x
(t+q)− (~x (t+q+1)+ · · ·+ ~x

(t+k))

⇒ ~x
(t+1) + · · ·+ ~x

(t+q) = ~x
(t+q+1) + · · ·+ ~x

(t+k)

Assume, a solution ~w∗ exists. Then:
〈

~w
∗
, ~x

(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}
Hence,

〈

~w
∗
, ~x

(t+1) + · · ·+ ~x
(t+q)

〉

≥ 0
〈

~w
∗
, ~x

(t+q+1) + · · ·+ ~x
(t+k)

〉

< 0 contradiction!
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Perceptron learning algorithm: Pocket algorithm

◮ how can we determine a “good” perceptron if the given task cannot be
solved perfectly?

◮ “good” in the sense of: perceptron makes minimal number of errors

◮ Perceptron learning: the number of errors does not decrease monotonically
during learning

◮ Idea: memorise the best weight vector that has occured so far!
⇒ Pocket algorithm
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Perceptron networks

◮ perceptrons can only learn linearly separable problems.

◮ famous counterexample: XOR(x1, x2): P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons are computationally more powerful (cf.
McCullough/Pitts neurons)

◮ let’s try to find a network with two perceptrons that can solve the XOR
problem:

◮ first step: find a perceptron that classifies three patterns accurately, e.g.
w0 = −0.5, w1 = w2 = 1 classifies (0, 0)T , (0, 1)T , (1, 0)T but fails on
(1, 1)T

◮ second step: find a perceptron that uses the output of the first perceptron
as additional input. Hence, training patterns are: N = {(0, 0, 0), (1, 1, 1)},
P = {(0, 1, 1), (1, 0, 1)}. perceptron learning yields: v0 = −1,
v1 = v2 = −1, v3 = 2
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Perceptron networks (cont.)

XOR-network:

x1

x2

1
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y
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Historical remarks

◮ Rosenblatt perceptron (1958):
◮ retinal input (array of pixels)
◮ preprocessing level, calculation

of features
◮ adaptive linear classifier
◮ inspired by human vision

◮ if features are complex enough,
everything can be classified

◮ if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)

◮ important idea: create features
instead of learning from raw data

Σ

linear
classifierretina features
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Summary

◮ Perceptrons are simple neurons with limited representation capabilites:
linear seperable functions only

◮ simple but provably working learning algorithm

◮ networks of perceptrons can overcome limitations

◮ working in feature space may help to overcome limited representation
capability
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