
Perceptrons

Dr. Joschka Boedecker
AG Maschinelles Lernen

Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgement
Slides courtesy of Martin Riedmiller

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (1)

Neural Networks

◮ The human brain has approximately 1011 neurons

◮ Switching time 0.001s (computer ≈ 10−10s)

◮ Connections per neuron: 104 − 105

◮ 0.1s for face recognition

◮ I.e. at most 100 computation steps

◮ parallelism

◮ additionally: robustness, distributedness

◮ ML aspects: use biology as an inspiration for artificial neural models and
algorithms; do not try to explain biology: technically imitate and exploit
capabilities

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (2)

Biological Neurons

◮ Dentrites input information to the cell

◮ Neuron fires (has action potential) if a certain threshold for the voltage is
exceeded

◮ Output of information by axon

◮ The axon is connected to dentrites of other cells via synapses

◮ Learning corresponds to adaptation of the efficiency of synapse, of the
synaptical weight

AXON

dendrites

SYNAPSES

soma

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (3)

Historical ups and downs

1950 1960 1970 1980 1990 2000

19
42
ar
tifi
cia
l n
eu
ro
ns
(M
cC
ul
lo
ch
/P
itt
s)

19
49
H
eb
bi
an
lea
rn
in
g
(H
eb
b)

19
58
Ro
se
nb
la
tt
pe
rc
ep
tr
on
(R
os
en
bl
at
t)

19
60
Ad
al
in
e/
M
Ad
al
in
e
(W
id
ro
w/
H
off
)

19
60
Le
rn
m
at
rix
(S
te
in
bu
ch
)

19
69
“p
er
ce
pt
ro
ns
”
(M
in
sk
y/
Pa
pe
rt
)

19
70
ev
ol
ut
io
na
ry
al
go
rit
hm
s
(R
ec
he
nb
er
g)

19
72
se
lf-
or
ga
ni
zin
g
m
ap
s
(K
oh
on
en
)

19
82
H
op
fie
ld
ne
tw
or
ks
(H
op
fie
ld
)

19
86
Ba
ck
pr
op
ag
at
io
n
(o
rig
.
19
74
)

19
92
Ba
ye
s
in
fe
re
nc
e

co
m
pu
ta
tio
na
l l
ea
rn
in
g

su
pp
or
t
ve
ct
or
m
ac
hi
ne
s

Bo
os
tin
g

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (4)

Perceptrons: adaptive neurons

◮ perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized
variants of a former, more simple model (McCulloch/Pitts neurons, 1942):

◮ inputs are weighted
◮ weights are real numbers (positive and negative)
◮ no special inhibitory inputs

◮ a percpetron with n inputs is described by a weight vector
~w = (w1, . . . ,wn)

T ∈ R
n and a threshold θ ∈ R. It calculates the following

function:

(x1, . . . , xn)
T 7→ y =

{

1 if x1w1 + x2w2 + · · ·+ xnwn ≥ θ

0 if x1w1 + x2w2 + · · ·+ xnwn < θ

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (5)

Perceptrons: adaptive neurons (cont.)

for convenience: replacing the threshold by an additional weight (bias weight)
w0 = −θ. A perceptron with weight vector ~w and bias weight w0 performs the
following calculation:

(x1, . . . , xn)
T 7→ y = fstep(w0 +

n
∑

i=1

(wixi)) = fstep(w0 + 〈~w , ~x〉)

with

fstep(z) =

{

1 if z ≥ 0

0 if z < 0

x1

xn

1

yΣ

w1

wn

w0

...

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (6)

Perceptrons: adaptive neurons (cont.)

◮ geometric interpretation of a
perceptron:
1. input patterns (x1, . . . , xn) are

points in n-dimensional space
2. points with w0 + 〈~w , ~x〉 = 0 are

on a hyperplane defined by w0

and ~w
3. points with w0 + 〈~w , ~x〉 > 0 are

above the hyperplane
4. points with w0 + 〈~w , ~x〉 < 0 are

below the hyperplane
5. perceptrons partition the input

space into two halfspaces along
a hyperplane

x2

x1

halfspace
upper

lower
halfspace

hyperplane

x2

x3

x1

lower
halfspace

hyperplane

upper
halfspace

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (7)

Perceptron learning problem

◮ perceptrons can automatically adapt to example data ⇒ Supervised
Learning: Classification

◮ perceptron learning problem:
given:

◮ a set of input patterns P ⊆ R
n, called the set of positive examples

◮ another set of input patterns N ⊆ R
n, called the set of negative examples

task:
◮ generate a perceptron that yields 1 for all patterns from P and 0 for all

patterns from N

◮ obviously, there are cases in which the learning task is unsolvable, e.g.
P ∩N 6= ∅

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (8)

Perceptron learning problem (cont.)

◮ Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately,
there is also a perceptron that classifies all training patterns accurately
and no training pattern is located on the decision boundary, i.e.
~w0 + 〈~w , ~x〉 6= 0 for all training patterns.

Proof:

Let (~w ,w0) be a perceptron that classifies all patterns accurately. Hence,

〈~w , ~x〉+ w0

{

≥ 0 for all ~x ∈ P

< 0 for all ~x ∈ N

Define ε = min{−(〈~w , ~x〉+ w0)|~x ∈ N}. Then:

〈~w , ~x〉+ w0 +
ε

2

{

≥ ε
2
> 0 for all ~x ∈ P

≤ − ε
2
< 0 for all ~x ∈ N

Thus, the perceptron (~w ,w0 +
ε
2
) proves the lemma.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (9)

Perceptron learning algorithm: idea

◮ assume, the perceptron makes an
error on a pattern ~x ∈ P :
〈~w , ~x〉+ w0 < 0

◮ how can we change ~w and w0 to
avoid this error?

◮ we need to increase 〈~w , ~x〉+ w0

◮ increase w0
◮ if xi > 0, increase wi
◮ if xi < 0 (’negative influence’),

decrease wi

◮ perceptron learning algorithm:
add ~x to ~w , add 1 to w0 in this
case. Errors on negative patterns:
analogously.

x2

x3

x1

w

Geometric intepretation: increasing w0: shift,
modifying ~w : rotation

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (10)

Perceptron learning algorithm

Require: positive training patterns P and a negative training examples N
Ensure: if exists, a perceptron is learned that classifies all patterns accurately
1: initialize weight vector ~w and bias weight w0 arbitrarily
2: while exist misclassified pattern ~x ∈ P ∪ N do
3: if ~x ∈ P then
4: ~w ← ~w + ~x

5: w0 ← w0 + 1
6: else
7: ~w ← ~w − ~x

8: w0 ← w0 − 1
9: end if

10: end while
11: return ~w and w0

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (11)

Perceptron learning algorithm: example

N = {(1, 0)T , (1, 1)T}, P = {(0, 1)T}

→ exercise

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (12)

Perceptron learning algorithm: convergence

◮ Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron
given by (~w ,w0) classifies all patterns accurately.

Proof: follows immediately from algorithm.

◮ Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly,
the perceptron learning algorithm terminates.

Proof:

for simplification we will add the bias weight to the weight vector, i.e.
~w = (w0,w1, . . . ,wn)

T , and 1 to all patterns, i.e. ~x = (1, x1, . . . , xn)
T . We

will denote with ~w (t) the weight vector in the t-th iteration of perceptron
learning and with ~x (t) the pattern used in the t-th iteration.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (13)

Perceptron learning algorithm: Preliminaries

Inner product (dot product of two vectors ~w , ~x)

〈~w , ~x〉 = ~w
T
~x =

n
∑

i=1

wi xi

〈~w , ~x〉+ 〈~w , ~y〉 = 〈~w , ~x + ~y〉

Euclidean norm:
||~w ||2 = 〈~w , ~w〉 =

∑n

i=1 wi wi

Angle between two vectors:
cos∡(~x , ~y) = 〈~x,~y〉

||~x|| · ||~y||

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (14)

Perceptron learning algorithm: convergence proof (cont.)

Let be ~w∗ a weight vector that strictly classifies all training patterns.
〈

~w
∗
, ~w

(t+1)
〉

=
〈

~w
∗
, ~w

(t) ± ~x
(t)
〉

=
〈

~w
∗
, ~w

(t)
〉

±
〈

~w
∗
, ~x

(t)
〉

≥
〈

~w
∗
, ~w

(t)
〉

+ δ

with δ := min ({〈~w∗, ~x〉 |~x ∈ P} ∪ {− 〈~w∗, ~x〉 |~x ∈ N})
δ > 0 since ~w∗ strictly classifies all patterns
Hence,

〈

~w
∗
, ~w

(t+1)
〉

≥
〈

~w
∗
, ~w

(0)
〉

+ (t + 1)δ

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (15)

Perceptron learning algorithm: convergence proof (cont.)

||~w (t+1)||2 =
〈

~w
(t+1)

, ~w
(t+1)

〉

=
〈

~w
(t) ± ~x

(t)
, ~w

(t) ± ~x
(t)
〉

= ||~w (t)||2 ± 2
〈

~x
(t)
, ~w

(t)
〉

+ ||~x (t)||2

consider
〈

~x (t), ~w (t)
〉

:

if we go from t to t+1, then x(t) was not correctly classified. Hence, x(t) not

correctly classified, then if ~x (t) ∈ P :
〈

~w (t), ~x (t)
〉

< 0, if

~x (t) ∈ N :
〈

~w (t), ~x (t)
〉

≥ 0. Therefore: ±
〈

~w (t), ~x (t)
〉

≤ 0. Dropping it makes

expression larger.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (16)

Perceptron learning algorithm: convergence proof (cont.)

||~w (t+1)||2 =
〈

~w
(t+1)

, ~w
(t+1)

〉

=
〈

~w
(t) ± ~x

(t)
, ~w

(t) ± ~x
(t)
〉

= ||~w (t)||2 ± 2
〈

~w
(t)
, ~x

(t)
〉

+ ||~x (t)||2

≤ ||~w (t)||2 + ε

with ε := max{||~x ||2|~x ∈ P ∪N}
Hence,

||~w (t+1)||2 ≤ ||~w (0)||2 + (t + 1)ε

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (17)

Perceptron learning algorithm: convergence proof (cont.)

cos∡(~w∗
, ~w

(t+1)) =

〈

~w∗, ~w (t+1)
〉

||~w∗|| · ||~w (t+1)||

≥

〈

~w∗, ~w (0)
〉

+ (t + 1)δ

||~w∗|| ·
√

||~w (0)||2 + (t + 1)ε
−→
t→∞

∞

Since cos∡(~w∗, ~w (t+1)) ≤ 1, t must be bounded above.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (18)

Perceptron learning algorithm: convergence

◮ Lemma (worst case running time):
If the given problem is solvable, perceptron learning terminates after at
most (n + 1)22(n+1) log(n+1) iterations.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 1 2 3 4 5 6 7 8

◮ Exponential running time is a problem of the perceptron learning
algorithm. There are algorithms that solve the problem with complexity

O(n
7
2)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (19)

Perceptron learning algorithm: cycle theorem

◮ Lemma:
If a weight vector occurs twice during perceptron learning, the given task
is not solvable. (Remark: here, we mean with weight vector the extended
variant containing also w0)

Proof: next slide

◮ Lemma:
Starting the perceptron learning algorithm with weight vector ~0 on an
unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, Perceptrons

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (20)

Perceptron learning algorithm: cycle theorem

Proof:

Assume ~w (t+k) = ~w (t). Meanwhile, the patterns ~x (t+1), . . . , ~x (t+k) have been
applied. Without loss of generality, assume ~x (t+1), . . . , ~x (t+q) ∈ P and
~x (t+q+1), . . . , ~x (t+k) ∈ N . Hence:

~w
(t)= ~w

(t+k)= ~w
(t)+ ~x

(t+1)+ · · ·+ ~x
(t+q)− (~x (t+q+1)+ · · ·+ ~x

(t+k))

⇒ ~x
(t+1) + · · ·+ ~x

(t+q) = ~x
(t+q+1) + · · ·+ ~x

(t+k)

Assume, a solution ~w∗ exists. Then:
〈

~w
∗
, ~x

(t+i)
〉

{

≥ 0 if i ∈ {1, . . . , q}

< 0 if i ∈ {q + 1, . . . , k}
Hence,

〈

~w
∗
, ~x

(t+1) + · · ·+ ~x
(t+q)

〉

≥ 0
〈

~w
∗
, ~x

(t+q+1) + · · ·+ ~x
(t+k)

〉

< 0 contradiction!

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (21)

Perceptron learning algorithm: Pocket algorithm

◮ how can we determine a “good” perceptron if the given task cannot be
solved perfectly?

◮ “good” in the sense of: perceptron makes minimal number of errors

◮ Perceptron learning: the number of errors does not decrease monotonically
during learning

◮ Idea: memorise the best weight vector that has occured so far!
⇒ Pocket algorithm

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (22)

Perceptron networks

◮ perceptrons can only learn linearly separable problems.

◮ famous counterexample: XOR(x1, x2): P = {(0, 1)T , (1, 0)T},
N = {(0, 0)T , (1, 1)T}

◮ networks with several perceptrons are computationally more powerful (cf.
McCullough/Pitts neurons)

◮ let’s try to find a network with two perceptrons that can solve the XOR
problem:

◮ first step: find a perceptron that classifies three patterns accurately, e.g.
w0 = −0.5, w1 = w2 = 1 classifies (0, 0)T , (0, 1)T , (1, 0)T but fails on
(1, 1)T

◮ second step: find a perceptron that uses the output of the first perceptron
as additional input. Hence, training patterns are: N = {(0, 0, 0), (1, 1, 1)},
P = {(0, 1, 1), (1, 0, 1)}. perceptron learning yields: v0 = −1,
v1 = v2 = −1, v3 = 2

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (23)

Perceptron networks (cont.)

XOR-network:

x1

x2

1

1

y

Σ

Σ

1

1

−1

−1

2

−0.5

−1

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (24)

Historical remarks

◮ Rosenblatt perceptron (1958):
◮ retinal input (array of pixels)
◮ preprocessing level, calculation

of features
◮ adaptive linear classifier
◮ inspired by human vision

◮ if features are complex enough,
everything can be classified

◮ if features are restricted (only
parts of the retinal pixels
available to features), some
interesting tasks cannot be
learned (Minsky/Papert, 1969)

◮ important idea: create features
instead of learning from raw data

Σ

linear
classifierretina features

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (25)

Summary

◮ Perceptrons are simple neurons with limited representation capabilites:
linear seperable functions only

◮ simple but provably working learning algorithm

◮ networks of perceptrons can overcome limitations

◮ working in feature space may help to overcome limited representation
capability

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Perceptrons (26)

