
Multi Layer Perceptrons

Dr. Joschka Boedecker
AG Maschinelles Lernen

Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgement
Slides courtesy of Martin Riedmiller

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (1)

Outline

◮ multi layer perceptrons (MLP)

◮ learning MLPs

◮ function minimization: gradient descend & related methods

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (2)

Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also are usually difficult to design by hand

◮ we want to have a generic model that can adapt to some training data
◮ basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland,

Hinton 1986), also named feed forward networks

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (3)

Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w , ~x〉)

◮ due to technical reasons, neurons
in MLPs calculate a smoothed
variant of this:

~x 7→ flog (w0 + 〈~w , ~x〉)

with

flog (z) =
1

1 + e−z

flog is called logistic function

 0

 0.2

 0.4

 0.6

 0.8

 1

−8 −6 −4 −2 0 2 4 6 8

◮ properties:
◮ monotonically increasing
◮ limz→∞ = 1
◮ limz→−∞ = 0
◮ flog (z) = 1− flog (−z)
◮ continuous, differentiable

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (4)

Multi layer perceptrons

◮ A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are
neurons with logistic activation.

x1

x2

...

xn

Σ

Σ

...

Σ

Σ

Σ

...

Σ

· · ·

· · ·

· · ·

Σ

Σ

...

Σ

Σ

◮ neurons of i-th layer serve as input features for neurons of i + 1th layer

◮ very complex functions can be calculated combining many neurons

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (5)

Multi layer perceptrons (cont.)

◮ multi layer perceptrons, more formally:
A MLP is a finite directed acyclic graph.

◮ nodes that are no target of any connection are called input neurons. A MLP
that should be applied to input patterns of dimension n must have n input
neurons, one for each dimension. Input neurons are typically enumerated as
neuron 1, neuron 2, neuron 3, ...

◮ nodes that are no source of any connection are called output neurons. A
MLP can have more than one output neuron. The number of output
neurons depends on the way the target values (desired values) of the
training patterns are described.

◮ all nodes that are neither input neurons nor output neurons are called
hidden neurons.

◮ since the graph is acyclic, all neurons can be organized in layers, with the
set of input layers being the first layer.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (6)

Multi layer perceptrons (cont.)

• connections that hop over several layers are called shortcut

• most MLPs have a connection structure with connections from all neurons of
one layer to all neurons of the next layer without shortcuts

• all neurons are enumerated

• Succ(i) is the set of all neurons j for which a connection i → j exists

• Pred(i) is the set of all neurons j for which a connection j → i exists

• all connections are weighted with a real number. The weight of the
connection i → j is named wji

• all hidden and output neurons have a bias weight. The bias weight of neuron
i is named wi0

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (7)

Multi layer perceptrons (cont.)

◮ variables for calculation:
◮ hidden and output neurons have some variable net i (“network input”)
◮ all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)
T to the MLP:

◮ for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

◮ for all hidden and output neurons i :
after the values aj have been calculated for all predecessors j ∈ Pred(i),
calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj)

ai ← flog (net i)
◮ the network output is given by the ai of the output neurons

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (8)

Multi layer perceptrons (cont.)

◮ illustration:

1

2

1

2

1

2

Σ

Σ

Σ

Σ

Σ

Σ Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

◮ apply pattern ~x = (x1, x2)T

◮ calculate activation of input neurons: ai ← xi
◮ propagate forward the activations: step by step
◮ read the network output from both output neurons

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (9)

Multi layer perceptrons (cont.)

◮ algorithm (forward pass):

Require: pattern ~x , MLP, enumeration of all neurons in topological order
Ensure: calculate output of MLP
1: for all input neurons i do
2: set ai ← xi
3: end for
4: for all hidden and output neurons i in topological order do
5: set net i ← wi0 +

∑

j∈Pred(i)wijaj

6: set ai ← flog (net i)
7: end for
8: for all output neurons i do
9: assemble ai in output vector ~y

10: end for
11: return ~y

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (10)

Multi layer perceptrons (cont.)

◮ variant:
Neurons with logistic activation
can only output values between 0
and 1. To enable output in a
wider range of real number
variants are used:

◮ neurons with tanh activation
function:

ai =tanh(net i)=
eneti −e

−neti

enet
i

+e−neti

◮ neurons with linear activation:

ai = net i

linear activation
tanh(x)

flog(2x)

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−3 −2 −1 0 1 2 3

◮ the calculation of the network
output is similar to the case of
logistic activation except the
relationship between net i and ai
is different.

◮ the activation function is a local
property of each neuron.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (11)

Multi layer perceptrons (cont.)

◮ typical network topologies:
◮ for regression: output neurons with linear activation
◮ for classification: output neurons with logistic/tanh activation
◮ all hidden neurons with logistic activation
◮ layered layout:

input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer i + 1,
no shortcut connections

◮ Lemma:
Any boolean function can be realized by a MLP with one hidden layer.
Any bounded continuous function can be approximated with arbitrary
precision by a MLP with one hidden layer.
Proof: was given by Cybenko (1989). Idea: partition input space in small
cells

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (12)

MLP Training

◮ given training data: D = {(~x (1), ~d (1)), . . . , (~x (p), ~d (p))} where ~d (i) is the
desired output (real number for regression, class label 0 or 1 for
classification)

◮ given topology of a MLP

◮ task: adapt weights of the MLP

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (13)

MLP Training (cont.)

◮ idea: minimize an error term

E(~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

with y(~x ; ~w): network output for input pattern ~x and weight vector ~w ,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E(~w ;D)

◮ interpret E just as a mathematical function depending on ~w and forget
about its semantics, then we are faced with a problem of mathematical
optimization

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (14)

Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f (~u)

~u can be any vector of suitable size. But which one solves this task and
how can we calculate it?

◮ some simplifications:
here we consider only functions f which are continuous and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (15)

Optimization theory (cont.)

◮ A global minimum ~u∗ is a point
so that:

f (~u∗) ≤ f (~u)

for all ~u.

◮ A local minimum ~u+ is a point so
that exist r > 0 with

f (~u+) ≤ f (~u)

for all points ~u with ||~u− ~u+|| < r

y

x

global local
minima

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (16)

Optimization theory (cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui
(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good
idea (c.f. linear regression)

but: there are also other points for which ∂f
∂ui

= 0, and resolving these
equations is often not possible

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (17)

Optimization theory (cont.)

◮ numerical way to find a minimum,
searching:
assume we are starting at a point
~u.
Which is the best direction to
search for a point ~v with
f (~v) < f (~u) ?

Which is the best stepwidth?

◮ general principle:

vi ← ui − ǫ
∂f

∂ui

ǫ > 0 is called learning rate

slope is negative (descending),
go right! slope is positive (ascending),
go left! slope is small, small step!

slope is large, large step!

~u ~u~u ~u

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

Gradient descent

◮ Gradient descent approach:

Require: mathematical function f , learning rate ǫ > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ~u
2: while ||gradf (~u)|| not close to 0 do
3: ~u ← ~u − ǫ · gradf (~u)
4: end while
5: return ~u

◮ open questions:
◮ how to choose initial ~u
◮ how to choose ǫ
◮ does this algorithm really converge?

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (19)

Gradient descent (cont.)

◮ choice of ǫ

1. case small ǫ: convergence 2.
case very small ǫ: convergence,
but it may take very long 3. case
medium size ǫ: convergence 4.
case large ǫ: divergence

◮ is crucial. Only small ǫ
guarantee convergence.

◮ for small ǫ, learning may take
very long

◮ depends on the scaling of f : an
optimal learning rate for f may
lead to divergence for 2 · f

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (20)

Gradient descent (cont.)

◮ some more problems with
gradient descent:

◮ flat spots and steep valleys:
need larger ǫ in ~u to jump over
the uninteresting flat area but
need smaller ǫ in ~v to meet the
minimum

◮ zig-zagging:
in higher dimensions: ǫ is not
appropriate for all dimensions

~u ~v

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (21)

Gradient descent (cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power
in practice. Finding the right ǫ is annoying. Approaching the minimum is
time consuming.

◮ heuristics to overcome problems of gradient descent:
◮ gradient descent with momentum
◮ individual lerning rates for each dimension
◮ adaptive learning rates
◮ decoupling steplength from partial derivates

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (22)

Gradient descent (cont.)

◮ gradient descent with momentum
idea: make updates smoother by carrying forward the latest update.

1: choose an initial point ~u
2: set ~∆← ~0 (stepwidth)
3: while ||gradf (~u)|| not close to 0 do

4: ~∆← −ǫ · gradf (~u)+µ~∆

5: ~u ← ~u + ~∆
6: end while
7: return ~u

µ ≥ 0, µ < 1 is an additional parameter that has to be adjusted by hand.
For µ = 0 we get vanilla gradient descent.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (23)

Gradient descent (cont.)

◮ advantages of momentum:
◮ smoothes zig-zagging
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantage:
◮ additional parameter µ
◮ may cause additional

zig-zagging

vanilla gradient descent

gradient descent with momentum

gradient descent with strong
momentum vanilla gradient descent

gradient descent with momentum
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (24)

Gradient descent (cont.)

◮ adaptive learning rate
idea:

◮ make learning rate individual for each dimension and adaptive
◮ if signs of partial derivative change, reduce learning rate
◮ if signs of partial derivative don’t change, increase learning rate

◮ algorithm: Super-SAB (Tollenare 1990)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (25)

Gradient descent (cont.)

1: choose an initial point ~u
2: set initial learning rate ~ǫ
3: set former gradient ~γ ← ~0
4: while ||gradf (~u)|| not close to 0

do
5: calculate gradient

~g ← gradf (~u)
6: for all dimensions i do

7: ǫi ←

η+ǫi if gi · γi > 0

η−ǫi if gi · γi < 0

ǫi otherwise
8: ui ← ui − ǫigi
9: end for

10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are additional
parameters that have to be adjusted
by hand. For η+ = η− = 1 we get
vanilla gradient descent.

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (26)

Gradient descent (cont.)

◮ advantages of Super-SAB and
related approaches:

◮ decouples learning rates of
different dimensions

◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change

◮ disadavantages:
◮ steplength still depends on

partial derivatives

vanilla gradient descent SuperSAB
vanilla gradient descent SuperSAB

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (27)

Gradient descent (cont.)

◮ make steplength independent of partial derivatives
idea:

◮ use explicit steplength parameters, one for each dimension
◮ if signs of partial derivative change, reduce steplength
◮ if signs of partial derivative don’t change, increase steplegth

◮ algorithm: RProp (Riedmiller&Braun, 1993)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (28)

Gradient descent (cont.)

1: choose an initial point ~u

2: set initial steplength ~∆

3: set former gradient ~γ ← ~0
4: while ||gradf (~u)|| not close to 0 do
5: calculate gradient ~g ← gradf (~u)
6: for all dimensions i do

7: ∆i ←

η+∆i if gi · γi > 0

η−∆i if gi · γi < 0

∆i otherwise

8: ui ←

ui +∆i if gi < 0

ui −∆i if gi > 0

ui otherwise

9: end for
10: ~γ ← ~g
11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are additional
parameters that have to be adjusted
by hand. For MLPs, good heuristics
exist for parameter settings: η+ = 1.2,
η− = 0.5, initial ∆i = 0.1

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (29)

Gradient descent (cont.)

◮ advantages of Rprop
◮ decouples learning rates of

different dimensions
◮ accelerates learning at flat spots
◮ slows down when signs of

partial derivatives change
◮ independent of gradient length

vanilla gradient descent Rprop vanilla
gradient descent Rprop

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (30)

Beyond gradient descent

◮ Newton

◮ Quickprop

◮ line search

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (31)

Beyond gradient descent (cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f (~u + ~∆) ≈ f (~u) + gradf (~u) · ~∆+
1

2
~∆T

H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf (~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf (~u))T

◮ advantages: no learning rate, no parameters, quick convergence

◮ disadvantages: calculation of H and H−1 very time consuming in high
dimensional spaces

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (32)

Beyond gradient descent (cont.)

◮ Quickprop (Fahlmann, 1988)
◮ like Newton’s method, but replaces H by a diagonal matrix containing only

the diagonal entries of H.
◮ hence, calculating the inverse is simplified
◮ replaces second order derivatives by approximations (difference ratios)

◮ update rule:

△w t
i :=

−g t
i

g t
i
− g t−1

i

(w t
i − w t−1

i
)

where g t
i
= grad f at time t.

◮ advantages: no learning rate, no parameters, quick convergence in many cases

◮ disadvantages: sometimes unstable

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (33)

Beyond gradient descent (cont.)

◮ line search algorithms:

two nested loops:
◮ outer loop: determine serach

direction from gradient
◮ inner loop: determine

minimizing point on the line
defined by current search
position and search direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm
may be more complex algorithm,
e.g. Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (34)

Summary: optimization theory

◮ several algorithms to solve problems of the form:

minimize
~u

f (~u)

◮ gradient descent gives the main idea

◮ Rprop plays major role in context of MLPs

◮ dozens of variants and alternatives exist

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (35)

Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E(~w ;D)

for given network topology and training data D

E(~w ;D) =
1

2

p
∑

i=1

||y(~x (i); ~w)− ~d
(i)||2

◮ optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of E?

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (36)

Calculating partial derivatives

◮ the calculation of the network output of a MLP is done step-by-step:
neuron i uses the output of neurons j ∈ Pred(i) as arguments, calculates
some output which serves as argument for all neurons j ∈ Succ(i).

◮ apply the chain rule!

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (37)

Calculating partial derivatives (cont.)

◮ the error term

E(~w ;D) =

p
∑

i=1

(1

2
||y(~x (i); ~w)− ~d

(i)||2
)

introducing e(~w ; ~x , ~d) = 1
2
||y(~x ; ~w)− ~d ||2 we can write:

E(~w ;D) =

p
∑

i=1

e(~w ; ~x (i)
, ~d

(i))

applying the rule for sums:

∂E(~w ;D)

∂wkl

=

p
∑

i=1

∂e(~w ; ~x (i), ~d (i))

∂wkl

we can calculate the derivatives for each training pattern indiviudally and
sum up

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (38)

Calculating partial derivatives (cont.)

◮ individual error terms for a pattern ~x , ~d
simplifications in notation:

◮ omitting dependencies from ~x and ~d
◮ y(~w) = (y1, . . . , ym)T network output (when applying input pattern ~x)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (39)

Calculating partial derivatives (cont.)

◮ individual error term:

e(~w) =
1

2
||y(~x ; ~w)− ~d ||2 =

1

2

m
∑

j=1

(yj − dj)
2

by direct calculation:
∂e

∂yj
= (yj − dj)

yj is the activation of a certain output neuron, say ai

Hence:
∂e

∂ai
=

∂e

∂yj
= (ai − dj)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (40)

Calculating partial derivatives (cont.)

◮ calculations within a neuron i

assume we already know ∂e
∂ai

observation: e depends indirectly from ai and ai depends on net i
⇒ apply chain rule

∂e

∂net i
=

∂e

∂ai
·

∂ai

∂net i

what is ∂ai
∂net i

?

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (41)

Calculating partial derivatives (cont.)

◮
∂ai
∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i
=

∂fact(net i)

∂net i

◮ linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

◮ logistic activation: fact(net i) =
1

1+e−neti

⇒
∂fact (neti)

∂neti
= e−neti

(1+e−neti)2
= flog (net i) · (1− flog (net i))

◮ tanh activation: fact(net i) = tanh(net i)

⇒ ∂fact (neti)
∂neti

= 1− (tanh(net i))
2

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (42)

Calculating partial derivatives (cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j
depends on ai ⇒ apply chain rule

∂e

∂ai
=

∑

j∈Succ(i)

(∂e

∂net j
·
∂net j

∂ai

)

and:
net j = wjiai + ...

hence:
∂netj

∂ai
= wji

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (43)

Calculating partial derivatives (cont.)

◮ the weights

assume we already know ∂e
∂net i

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i
·
∂net i

∂wij

and:
net i = wijaj + ...

hence:
∂neti

∂wij

= aj

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (44)

Calculating partial derivatives (cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0
=

∂e

∂net i
·
∂net i

∂wi0

and:
net i = wi0 + ...

hence:
∂neti

∂wi0
= 1

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (45)

Calculating partial derivatives (cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2

∂e
∂a3

= a3 − d1
∂e

∂net3
= ∂e

∂a3
· ∂a3
∂net3

= ∂e
∂a3
· 1

∂e
∂a2

=
∑

j∈Succ(2)(
∂e

∂net j
·
∂net j
∂a2

) = ∂e
∂net3

· w3,2

∂e
∂net2

= ∂e
∂a2
· ∂a2
∂net2

= ∂e
∂a2
· a2(1− a2)

∂e
∂w3,2

= ∂e
∂net3

· ∂net3
∂w3,2

= ∂e
∂net3

· a2
∂e

∂w2,1
= ∂e

∂net2
· ∂net2
∂w2,1

= ∂e
∂net2

· a1
∂e

∂w3,0
= ∂e

∂net3
· ∂net3
∂w3,0

= ∂e
∂net3

· 1
∂e

∂w2,0
= ∂e

∂net2
· ∂net2
∂w2,0

= ∂e
∂net2

· 1

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (46)

Calculating partial derivatives (cont.)

◮ calculating the partial derivatives:
◮ starting at the output neurons
◮ neuron by neuron, go from output to input
◮ finally calculate the partial derivatives with respect to the weights

◮ Backpropagation

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (47)

Calculating partial derivatives (cont.)

◮ illustration:

1

2

1

2

1

2

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

◮ apply pattern ~x = (x1, x2)T

◮ propagate forward the activations: step by step
◮ calculate error, ∂e

∂ai
, and ∂e

∂net i
for output neurons

◮ propagate backward error: step by step
◮ calculate ∂e

∂wji

◮ repeat for all patterns and sum up

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (48)

Back to MLP Training

◮ bringing together building blocks of MLP learning:
◮ we can calculate ∂E

∂wij

◮ we have discussed methods to minimize a differentiable mathematical
function

◮ combining them yields a learning algorithm for MLPs:
◮ (standard) backpropagation = gradient descent combined with calculating

∂E
∂wij

for MLPs

◮ backpropagation with momentum = gradient descent with moment
combined with calculating ∂E

∂wij
for MLPs

◮ Quickprop
◮ Rprop
◮ ...

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (49)

Back to MLP Training (cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do
4: for all (~x , ~d) ∈ D do
5: apply ~x to network and calculate the network output
6: calculate ∂e(~x)

∂wij
for all weights

7: end for
8: calculate ∂E (D)

∂wij
for all weights suming over all training patterns

9: perform one update step of the minimization approach
10: end while

◮ learning by epoch: all training patterns are considered for one update step
of function minimization

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (50)

Back to MLP Training (cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do
4: for all (~x , ~d) ∈ D do
5: apply ~x to network and calculate the network output
6: calculate ∂e(~x)

∂wij
for all weights

7: perform one update step of the minimization approach
8: end for
9: end while

◮ learning by pattern: only one training patterns is considered for one update
step of function minimization (only works with vanilla gradient descent!)

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (51)

Lernverhalten und Parameterwahl - 3 Bit Parity

10

20

30

40

50

60

70

80

90

100

0.001 0.01 0.1 1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

3 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSAB

Quelle:
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (52)

Lernverhalten und Parameterwahl - 6 Bit Parity

0

50

100

150

200

250

300

350

400

450

500

0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

6 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSAB

Quelle:
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (53)

Lernverhalten und Parameterwahl - 10 Encoder

0

50

100

150

200

250

300

350

400

450

500

0.001 0.01 0.1 1 10

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

10-5-10 Encoder - Sensitivity

Rprop

BP

QP

SSAB

Quelle:
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (54)

Lernverhalten und Parameterwahl - 12 Encoder

0

200

400

600

800

1000

0.001 0.01 0.1 1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

12-2-12 Encoder - Sensitivity

Rprop

QP

SSAB

Quelle:
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (55)

Lernverhalten und Parameterwahl - ’two sprials’

0

2000

4000

6000

8000

10000

12000

14000

1e-05 0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

Two Spirals - Sensitivity

Rprop

BP

QP

SSAB

Quelle:
Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (56)

Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most
frequently sold newspaper in
Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets
in Germany, differing in a lot of
facets

◮ problem: how many copies are
sold in which sales outlet?

◮ neural approach: train a neural
network for each sales outlet,
neural network predicts next
week’s sales rates

◮ system in use since mid of 1990s

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (57)

Examples: Alvinn (Dean, Pommerleau, 1992)

◮ autonomous vehicle driven by a multi-layer perceptron

◮ input: raw camera image

◮ output: steering wheel angle

◮ generation of training data by a human driver

◮ drives up to 90 km/h

◮ 15 frames per second

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (58)

Alvinn MLP structure

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (59)

Alvinn Training aspects

◮ training data must be ’diverse’

◮ training data should be balanced (otherwise e.g. a bias towards steering
left might exist)

◮ if human driver makes errors, the training data contains errors

◮ if human driver makes no errors, no information about how to do
corrections is available

◮ generation of artificial training data by shifting and rotating images

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (60)

Summary

◮ MLPs are broadly applicable ML models

◮ continuous features, continuos outputs

◮ suited for regression and classification

◮ learning is based on a general principle: gradient descent on an error
function

◮ powerful learning algorithms exist

◮ likely to overfit ⇒ regularisation methods

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (61)

