
.

Machine Learning

Generalisation in Multilayer perceptrons

Dr. Joschka Boedecker
AG Maschinelles Lernen und Natürlichsprachliche Systeme

Institut für Informatik
Technische Fakultät

Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgment
Slides courtesy of Martin Riedmiller

Overview of Today’s Lecture: Generalisation in MLPs

1. Motivation

2. Training and Validation

3. Regularisation Techniques

Motivation

Neural networks are very powerful function approximators:

Any boolean function can be realized by a MLP with one hidden layer.
Any bounded continuous function can be approximated with arbitrary
precision by a MLP with one hidden layer. Cybenko (1989)

Therefore, they incorporate the danger of overfitting.

• At first glance, the size of the network matters: the larger the
number of hidden neurons, the more powerful the representation
capacity.

• Tradeoff: being able to reasonably learn (avoid underfitting), but
not just memorize training data (overfitting)

• Unfortuntately, there is no analytical way to determine the right
network size out of the training data.

• couple of techniques are applied, most of which can also be applied
to other learning methods. These are discussed in the following.

Examples of Overfitting/ Underfitting

• overfitting/ underfitting in regression

underfitting - good match - overfitting

All models somehow represent the data - what is the problem?

⇒ Different answers to new query points - correct answer depends on
unknown true relationship

Overfitting/ Underfitting: Training/ validation error

behaviour

• example of overfitting:
validation error increases while training error decreases

• example of successful learning:
validation error and training error monotonically decrease

• example of underfitting:
validation and training error remain large

number of training epochs

av
er

ag
e

er
ro

r

validation

training

number of training epochs

av
er

ag
e

er
ro

r

training

validation

number of training epochs

av
er

ag
e

er
ro

r

validation

training

underfitting - good match - overfitting

Training and validation

• learning algorithms try to find a hypothesis that fits the training
data in the best way

• we would like to find a hypothesis that works well for all data sets
that can be derived from the true function f∗

• assume that the input patterns ~x are taken from some probability
distribution P

• the best hypothesis f should minimize the expected error
(generalization error):

E
[1

2

(

f(~x)− f∗(~x)
)2
]

(here: E means the expectation value over all possible ~x)

• Note: we cannot calculate the expected error since we don’t know
P and f∗

Training and validation

• if we are given a set of examples {(~x(1), d(1)), . . . , (~x(p), d(p))} with
~x(i) ∼ P and d(i) = f∗(~x(i)), we can approximate the expected
error by the mean error (training error):

1

p

p
∑

i=1

(1

2

(

f(~x(i))− d(i)
)2
)

• whether or not this approximation is good is discussed in the
Computational Learning Theory

• if the approximation is good, a hypothesis learned on the training
set will also perform well on other data sets

• if the approximation is bad, a hypothesis learned on the training set
will perform poorly on other data sets

Training and validation

(cont.)

• Validation is the process to check the performance of a learned
function on independent validation/test data.

• simple approach for validation:

– before training, split the available data set into two disjoint
subsets: training set and validation set

– apply training only on the training set
– apply testing the learned functions on the validation set

• disadvantage: only a subset of available patterns is used for
training, only a subset of available patterns is used for testing

Cross-validation

• k-fold cross validation:

Require: D, 2 ≤ k ≤ p

1: split D into k disjoint subsets of equal size: D1, . . . ,Dk

2: for i = 1 to k do
3: (re-) initialize neural network
4: train neural network on set D1∪ · · · ∪Di−1∪Di+1∪ · · · ∪Dk

5: calculate average test error ei on Di

6: end for
7: return 1

k

∑k
i=1 ei

• advantage: model is learned on k−1
k

p data points and evaluated on
all data points

• disadvantage: model has to be learned k times

• k-fold cross validation with k = p yields the leave-one-out error

Cross-validation

• example: D = {z1, . . . , z17}, 3-fold crossvalidation

• split training set randomly:

D1 = {z1, z2, z8, z13, z14, z15}

D2 = {z4, z5, z10, z11, z12, z17}

D3 = {z3, z6, z7, z9, z16}

• train MLP three times:

1. use D2 ∪ D3 for training, D1 for validation: average validation
error e1

2. use D1 ∪ D3 for training, D2 for validation: average validation
error e2

3. use D1 ∪ D2 for training, D3 for validation: average validation
error e3

• calculate average validation error:
e = e1·|D1|+e2·|D2|+e3·|D3|

|D| = 6e1+6e2+5e3
17

Regularization techniques (for neural networks)

• regularization techniques: approaches to improve generalization
implementing some preference rules

• four basic principles:

– smaller networks should be prefered (cf. Ockham’s razor)
the hypothesis set H of smaller networks is smaller than the
hypothesis set of large networks

– smaller weights should be prefered
neurons with logistic activation function and small weights are
almost linear, networks of linear neurons can be replaced by a
single neuron

– better description of the task
better input features may simplify the learning task, e.g. make a
nonlinear problem linear

– ensemble techniques
combine several MLPs after learning

Regularization techniques - Overview

techniques to
reduce network
size:

• weight pruning

• topology
optimization

• weight sharing

• cascade
correlation

techniques to
prefer small
weights:

• small initial
weights

• early stopping

• weight decay

• Bayesian
learning

techniques for better
task description:

• provide more
training data

• filter training data

• use more/less/other
input features

ensemble
techniques:

• bagging

• boosting

Regularization techniques - weight initialisation

• small initial weights

initialize all weights with small values. Since initial steplength in
learning algorithms is small, the network has larger chance to
converge to a local minimum that is characterized by small weights

Per se not very powerful technique, useful especially when
combined with early stopping.

Regularization techniques - Early stopping

early stopping

• stop learning when the error on the
validation set has reached its minimum

• heuristic often used, needs perpetual
observation of the validation error, typically
combined with small initial weights

• often, training is already stopped after a
few iterations (10-30 iterations)

number of training epochs

av
er

ag
e

er
ro

r

validation

training

early stopping
stop training at this point

validation error
minimal

Regularization techniques - Weight decay

• weight decay

explicit preference of small weights. Modify the error term that is
minimized during learning:

E(~w;D;λ) := E(~w;D) +
1

2
λ||~w||2

λ ≥ 0 controls the importance of the preference: for λ = 0 we get
unregularized learning. Typical values for λ range between 0 and 10

very powerful technique, often used

disadvantage: λ must be adjusted manually

– λ is too small ⇒ overfitting
– λ is too large ⇒ underfitting

fits very smoothly into the gradient descent framework

Regularization techniques - Pruning

• weight pruning

after training a MLP check which connections do not contribute
much to the result. Remove these connections and retrain the
MLP.

several approaches:

– remove connections with the smallest weights (absolute value)
– optimal brain damage (OBD) ((LeCun, Denker, Solla 1990)), optimal

brain surgeon (OBS) ((Hassibi, Storck 1992)): remove weights

depending on second order information ∂2E
(∂wij)2

. Background:

remove weights whose removal has the smallest influence on the
network output

– evolutionary approaches

approaches are sometimes used, but not as standard

Pruning example: Monk’s problem (Thrun, 1992)

• boolean function, depending on few attributes

• unit-obs never deleted useful units, 100 % correct classification

Original MLP:

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9

Bias

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Unit 10 Unit 11 Unit 12 Unit 13 Unit 14 Unit 15 Unit 16 Unit 17

Unit 20Unit 19Unit 18

Unit 21

Pruned MLP using Unit-OBS + OBS (Stahlberger and Riedmiller, 1996):

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9

Bias

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Unit 10 Unit 11 Unit 12 Unit 13 Unit 14 Unit 15 Unit 16 Unit 17

Unit 20Unit 19Unit 18

Unit 21

Pruning example: Thyroid

• three class classification problem

• originally 21 inputs

algorithm # weights topology speedup cpu-time perf. test

no pruning 316 21-10-3 - - 98.4%
OBS 28 8-7-3 1.0 511 min. 98.5%

Unit-OBS 41 7-2-3 7.8 76 min. 98.4%
Unit-OBS + OBS 24 7-2-3 - 137 min. 98.5%

Table 1: The thyroid benchmark

Regularization techniques - Topology optimization

• topology optimization

vary the network size and structure, check the validation error, use
automated search engines (e.g. evolutionary algorithm)

• System based on learning + evolution: ENZO (Weisbrod, Braun, 1992)

Regularization techniques - weight sharing

• weight sharing

neurons of several subnetworks use the same weights ⇒ reduction
in the number of parameters and model complexity.

Useful to generate masks e.g. to detect objects in pictures etc.
(see example on next slides)

• Multi-Task learning

combine learning the primary task with learning related tasks
within the same neural network.

.

.

. target of related tasks

target of primary task

typical examples: timeseries prediction

Regularization techniques

• cascade correlation ((Fahlmann 1990))

Idea: start with a small MLP and iteratively add neurons from a
pool of candidate neurons. Whenever a new neuron is added to the
MLP, its weights are fixed.

– constructive method.
– danger to overfit.
– succesfully used in practice

Regularization techniques - more data

• provide more data

data analysts’ fundamental slogan:

there’s no data like more
data!

try to get more data; if not possible directly, think about related
sources of similar data

although trivial, one of the most important techniques to improve
ML models

Regularization techniques - filter training data

(cont.)

• training data often contain a subset of data that help much learning
the task and a subset that does not contribute much. Filtering
means, reducing the training set to the really important patterns
that help adjusting the classification boundary/regression curve.

• techniques: oversampling, subsampling, outlier rejection, jitering

• appropriate technique must be chosen problem-specific.

• frequent problem: unbalanced data in classification

Regularization techniques - input features

• use more/less/other input features

• removing features may reduce overfitting. Helps to avoid that MLP
concentrates on pseudo relationships

• adding features may improve generalization if it is related to
desired output

• performing non-linear transformations on the features may also be
appropriate

• there are techniques for semi-automated feature selection and
dimensionality reduction (principle component analysis,
independent component analysis, mutual information)

• appropriate techniques must be chosen problem-specific.

Regularization techniques - Committees

• committee/ensemble
approaches:

• if you ask an expert, expert may
fail

• ask a committee of experts: the
majority has a better chance to
be right. premise: experts are
experienced and diverse.

Committees -Bagging (Breimann, 1996)

• building a committee:

• train several MLPs on bootstrap samples of the training data

• data is drawn randomly with replacements ⇒ some patterns may
occur twice or more, others don’t occur at all

• average the ouput of all the MLPs

• single members of the committee might produce a higher test-set
error; however in general the diversity of the committee
compensates for this effect and therefore the committee error
improves over the error of the individuals

learned hypothesis

committee

averaging

bootstrap samples

training

training

training
training data

samplingwith replacement

samplingwith replacement

sampling

with replacement

Committees - Boosting (Freund & Schapire, 1995)

• ensemble technique like bagging, but MLPs are not trained
independently

– second MLP is learned on the training data that are not well
learned by the first MLP

– third MLP is learned on the training data that are not well
learned by the first and second MLP

– ...

• step by step, we get better commitees on the training set

• boosting is successfully used in practice

• good generalisation capabilities on low-noise data

• overfitting might occur on noisy data

Recipe for learning

given a real world problem:

• decide on the principle modeling (classification, regression,
unsupervised approach)

• collect data

• generate and select features

• create training patterns

• train MLP

• change regularization parameters (weight decay), net topology and
repeat training

• eventually change features, create training patterns again and
repeat training

• test MLP on new data (test data) and report results

Example: digit recognition

• refers to work of Yann LeCun et. al. (1995)

• background:
US postal service is interested in automated
recognition of zip codes, they provided a
large database of digits observed with a
digital camera from letterns and postcards.
The images are labeled manually. Each
image consists of a 20× 20 pixel array with
black and white pixels.

• task: multi-class classification (10 classes)

• preprocessing: finding correct clipping of
image, rescaling number to equal size,
centering digits within 20 × 20 clipping,
deslanting digits

• input coding: 400 binary features

• output coding: 1-of-10 vector

Example: digit recognition

(cont.)

• baseline approach: learning a linear model (no hidden neurons)

400 · 10 + 10 = 4010 weights, 60 000 training patterns

8.4% misclassified test patterns out of 10 000 test patterns

• second approach: MLP with one hidden layer, 400-300-10 topology

300 · (400 + 1) + 10 · (300 + 1) = 123 310 weights

• best result: 1.6% misclassified test patterns

learned with gradient descent.

Yann LeCun et al. (1995):

It remains somewhat of a mystery that networks with such a
large number of free parameters manage to achieve reasonably
low error rates on the test set, even though comparing their
size to the number of training samples makes them appear
grossly over-parameterized.

Example: digit recognition

(cont.)

• third approach: weight sharing
large MLP, 4 hidden layers,
several subnetworks share their
weights ⇒ reduces number of
free parameters

• LeNet1: 3000 free parameters,
test error: 1.7%

• LeNet4: 17 000 free
parameters, test error: 1.1%

• LeNet5: 60 000 free
parameters, test error: 0.9%

share
weights

inp
ut

 la
ye

r fir
st

hid
de

n
lay

er

se
co

nd
 h

idd
en

 la
ye

r

share
weights

Example: digit recognition

• fourth approach: boosting

• using principle approach of LeNet4, use boosting algorithm to
improve results

• test error of boosted LeNet4: 0.7%

Example: digit recognition

• boosted LeNet4 gave the overall best results in 1995, even
compared to other machine learning approaches

• in 2002, DeCoste and Schölkopf could improve the performance
using a support vector machine (SVM): test error: 0.56%

• human performance: approx. 0.2%

• training time (on Sun Sparc 10):

– linear model: half a day
– LeNet1: 3 days
– LeNet4: 14 days
– boosted LeNet4: 35 days

• do you like to compete?
here are the data: http://yann.lecun.com/exdb/mnist/

Summary

• important insight: you cannot learn without inductive bias
(preference rule, incomplete hypothesis sets)

• regularization techniques: realizations of preference rule

• most important ideas for regularization:

– prefer small weights
– prefer small networks
– improve task description
– ask several networks, not only one (ensembles)

