PROBABILITY THEORY

Dr. Joschka Boedecker AG Maschinelles Lernen Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgement Slides courtesy of Martin Riedmiller

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg [Probability Theory](#page-26-0) (1) Probability Theory (1)

Probabilities

probabilistic statements subsume different effects due to:

 \triangleright convenience: declaring all conditions, exceptions, assumptions would be too complicated. Example: "I will be in lecture if I go to bed early enough the day before and I do not become ill and my car does not have a breakdown and ..." or simply: I will be in lecture with probability of 0.87

- \blacktriangleright lack of information: relevant information is missing for a precise statement. Example: weather forcasting
- ▶ intrinsic randomness: non-deterministic processes. Example: appearance of photons in a physical process

Probabilities (cont.)

- \triangleright intuitively, probabilities give the expected relative frequency of an event
- \triangleright mathematically, probabilities are defined by axioms (Kolmogorov axioms). We assume a set of possible outcomes Ω . An event A is a subset of Ω
	- \blacktriangleright the probability of an event A, $P(A)$ is a welldefined non-negative number: $P(A) > 0$
	- \blacktriangleright the certain event Ω has probability 1: $P(\Omega) = 1$
	- For two disjoint events A and B: $P(A \cup B) = P(A) + P(B)$

P is called probability distribution

 \triangleright important conclusions (can be derived from the above axioms): $P(\emptyset) = 0$ $P(\neg A) = 1 - P(A)$ if $A \subseteq B$ follows $P(A) \leq P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Probabilities (cont.)

- ► example: rolling the dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ Probability distribution (optimal dice): $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ probabilities of events, e.g.: $P({1}) = \frac{1}{6}$ $P({1, 2}) = P({1}) + P({2}) = \frac{1}{3}$ $P({1, 2} \cup {2, 3}) = \frac{1}{2}$ Probability distribution (manipulated dice): $P(1) = P(2) = P(3) = 0.13, P(4) = P(5) = 0.17, P(6) = 0.27$
- \triangleright typically, the actual probability distribution is not known in advance, it has to be estimated

Joint events

 \triangleright for pairs of events A, B, the joint probability expresses the probability of both events occuring at same time: $P(A, B)$ example:

 $P("Bayern München is losing", "Werder Bremen is winning") = 0.3$

 \triangleright Definition: for two events the conditional probability of A|B is defined as the probability of event A if we consider only cases in which event B occurs. In formulas:

$$
P(A|B) = \frac{P(A, B)}{P(B)}, P(B) \neq 0
$$

 \triangleright with the above, we also have

 $P(A, B) = P(A|B)P(B) = P(B|A)P(A)$

► example:
$$
P("caries" | "toothaches") = 0.8
$$

 $P("toothaches" | "caries") = 0.3$

Joint events (cont.)

 \triangleright a contigency table makes clear the relationship between joint probabilities and conditional probabilities:

B	$\neg B$	$P(A, B)$	$P(A, \neg B)$	$P(A)$	marginals
$\neg A$	$P(\neg A, B)$	$P(\neg A, \neg B)$	$P(\neg A)$	joint prob	
$P(B)$	$P(\neg B)$	joint prob			

with
$$
P(A) = P(A, B) + P(A, \neg B)
$$
,
\n $P(\neg A) = P(\neg A, B) + P(\neg A, \neg B)$,
\n $P(B) = P(A, B) + P(\neg A, B)$,
\n $P(\neg B) = P(A, \neg B) + P(\neg A, \neg B)$

conditional probability $=$ joint probability / marginal probability

Joint events (Example)

 \triangleright example of a contigency table: cars and drivers

e.g: I observed a blue car. How likely is the driver female? How to express that in probabilistic terms? $P('female'|'blue') = \frac{P('female', 'blue')}{P('blue')}$ How to access these values? P('female',' blue'): from table $P('blue') = P('blue', 'male') + P('blue', female') = 0.2 ('Marginalisation')$ Therefore, $P('female') = \frac{0.05}{0.2} = 0.25$ \Rightarrow joint probabilty table allows to answer arbitrary questions about domain.

Marginalisation

 \blacktriangleright Let $B_1,...B_n$ disjoint events with $\cup_i B_i = \Omega$. Then $P(A) = \sum_i P(A, B_i)$ This process is called marginalisation.

Productrule and chainrule

 \blacktriangleright from definition of conditional probability:

$$
P(A, B) = P(A|B)P(B) = P(B|A)P(A)
$$

▶ repeated application: chainrule:

$$
P(A_1, ..., A_n) = P(A_n, ..., A_1)
$$

= $P(A_n | A_{n-1}, ..., A_1) P(A_{n-1}, ..., A_1)$
= $P(A_n | A_{n-1}, ..., A_1) P(A_{n-1} | A_{n-2}, ..., A_1) P(A_{n-2}, ..., A_1)$
= ...
= $\prod_{i=1}^n P(A_i | A_1, ..., A_{i-1})$

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg [Probability Theory](#page-0-0) (9) Probability Theory (9)

Conditional Probabilities

```
\triangleright conditionals:
  Example: if someone is taking a shower, he gets wet (by causality)
  P("wet"| "taking a shower") = 1while:
   P("taking a shower" | "wet") = 0.4because a person also gets wet if it is raining
\blacktriangleright causality and conditionals:
  causality typically causes conditional probabilities close to 1:
   P("wet"| "taking a shower" ) = 1, e.g.P("score a goal" | "shoot strong") = 0.92 ('vague causality': if you shoot
  strong, you very likely score a goal').
  Offers the possibility to express vagueness in reasoning.
  you cannot conclude causality from large conditional probabilities:
   P("being rich"|"owning an airplane") \approx 1but: owning an airplane is not the reason for being rich
```
Bayes rule

 \triangleright from the definition of conditional distributions:

$$
P(A|B)P(B) = P(A,B) = P(B|A)P(A)
$$

Hence:

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

is known as Bayes rule.

 \blacktriangleright example:

 $P("taking a shower" | "wet") = P("wet" | "taking a shower") \frac{P("taking a shower")}{P("wet")}$ $P(\mathsf{reason}|\mathsf{observation}) = P(\mathsf{observation}|\mathsf{reason})\frac{P(\mathsf{reason})}{P(\mathsf{observation})}$

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg [Probability Theory](#page-0-0) (11)

Bayes rule (cont)

- \triangleright often this is useful in diagnosis situations, since $P(\text{observation}|\text{reason})$ might be easily determined.
- \triangleright often delivers suprising results

Bayes rule - Example

- \triangleright if patient has meningitis, then very often a stiff neck is observed $P(S|M) = 0.8$ (can be easily determined by counting)
- ▶ observation: 'I have a stiff neck! Do I have meningitis?' (is it reasonable to be afraid?) $P(M|S) = ?$
- ► we need to now: $P(M) = 0.0001$ (one of 10000 people has meningitis) and $P(S) = 0.1$ (one out of 10 people has a stiff neck).
- ► then:

$$
P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
$$

 \triangleright Keep cool. Not very likely

Independence

 \triangleright two events A and B are called independent, if

$$
P(A, B) = P(A) \cdot P(B)
$$

- \triangleright independence means: we cannot make conclusions about A if we know B and vice versa. Follows: $P(A|B) = P(A)$, $P(B|A) = P(B)$
- ▶ example of independent events: roll-outs of two dices
- ► example of dependent events: $A = 'car$ is blue', $B = 'driver$ is male' \rightarrow (from example) $P('blue') P('male') = 0.2 \cdot 0.55 = 0.11 \neq P('blue', 'male') = 0.15$

Random variables

- ▶ random variables describe the outcome of a random experiment in terms of a (real) number
- ▶ a random experiment is a experiment that can (in principle) be repeated several times under the same conditions
- \blacktriangleright discrete and continuous random variables
- ► probability distributions for discrete random variables can be represented in tables:

Example: random variable X (rolling a dice):

 \triangleright probability distributions for continuous random variables need another form of representation

Continuous random variables

- \blacktriangleright problem: infinitely many outcomes
- ► considering intervals instead of single real numbers: $P(a < X < b)$
- \triangleright cumulative distribution functions (cdf): A function $F : \mathbb{R} \to [0, 1]$ is called cumulative distribution function of a random variable X if for all $c \in \mathbb{R}$ hold:

$$
P(X \leq c) = F(c)
$$

- ► Knowing F, we can calculate $P(a < X < b)$ for all intervals from a to b
- F is monotonically increasing, $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- \triangleright if exists, the derivative of F is called a probability density function (pdf). It yields large values in the areas of large probability and small values in the areas with small probability. But: the value of a pdf cannot be interpreted as a probability!

Continuous random variables (cont.)

 \triangleright example: a continuous random variable that can take any value between a and b and does not prefer any value over another one (uniform distribution):

Gaussian distribution

▶ the Gaussian/Normal distribution is a very important probability distribution. Its pdf is:

$$
pdf(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}
$$

 $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are parameters of the distribution. The cdf exists but cannot be expressed in a simple form μ controls the position of the distribution, σ^2 the spread of the distribution cdf(X) X pdf(X) Ω 1 Ω

Statistical inference

- \triangleright determining the probability distribution of a random variable (estimation)
- \triangleright collecting outcome of repeated random experiments (data sample)
- \triangleright adapt a generic probability distribution to the data. example:
	- ▶ Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p (=probability of outcome '1')
	- \blacktriangleright Gaussian distribution with parameters μ and σ^2
	- \blacktriangleright uniform distribution with parameters a and b
- \blacktriangleright maximum-likelihood approach:

 $maximize$ P (data sample|distribution) parameters

- \triangleright maximum likelihood with Bernoulli-distribution:
- ▶ assume: coin toss with a twisted coin. How likely is it to observe head?
- ▶ repeat several experiments, to get a sample of observations, e.g.: 'head', 'head', 'number', 'head', 'number', 'head', 'head', 'head', 'number', 'number', ...

You observe k times 'head' and n times 'number' Probabilisitic model: 'head' occurs with (unknown) probability p , 'number' with probability $1-p$

 \blacktriangleright maximize the likelihood, e.g. for the above sample:

maximize $p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot \cdots = p^k (1-p)^n$ p

$$
\underset{p}{\text{maximize}} \ p \cdot p \cdot (1-p) \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot \cdots = p^{k} (1-p)^{n}
$$

Trick 1: Taking logarithm of function does not change position of minima rules: $log(a \cdot b) = log(a) + log(b), log(a^b) = b log(a)$

Trick 2: Minimizing -log() instead of maximizing log()

This yields:

$$
\underset{p}{minimize} - \log(p^{k}(1-p)^{n}) = -k \log p - n \log(1-p)
$$

calculating partial derivatives w.r.t p and zeroing: $p = \frac{k}{k+n}$ \Rightarrow The relative frequency of observations is used as estimator for p

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg [Probability Theory](#page-0-0) (21)

- \triangleright maximum likelihood with Gaussian distribution:
- ► given: data sample $\{x^{(1)}, \ldots, x^{(p)}\}$
- \blacktriangleright task: determine optimal values for μ and σ^2 assume independence of the observed data:

 $P(\text{data sample}|\text{distribution}) = P(x^{(1)}|\text{distribution}) \cdot \cdot \cdot \cdot P(x^{(p)}|\text{distribution})$

replacing probability by density:

$$
P(\text{data sample}| \text{distribution}) \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(1)}-\mu)^2}{\sigma^2}} \cdots \cdots \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x^{(p)}-\mu)^2}{\sigma^2}}
$$

performing log transformation:

$$
\sum_{i=1}^{p} \Big(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \Big)
$$

▶ minimizing negative log likelihood instead of maximizing log likelihood:

$$
\underset{\mu, \sigma^2}{\text{minimize}} - \sum_{i=1}^{p} \big(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^2}{\sigma^2} \big)
$$

 \blacktriangleright transforming into:

$$
\text{minimize } \frac{p}{2} \log(\sigma^2) + \frac{p}{2} \log(2\pi) + \frac{1}{\sigma^2} \Big(\frac{1}{2} \sum_{i=1}^p (x^{(i)} - \mu)^2\Big) \underbrace{\Big(\frac{1}{2} \sum_{i=1}^p (x^{(i)} - \mu)^2\Big)}_{\text{sq. error term}}
$$

 \triangleright observation: maximizing likelihood w.r.t. μ is equivalent to minimizing squared error term w.r.t. μ

- Extension: regression case, μ depends on input pattern and some parameters
- ► given: pairs of input patterns and target values $(\vec{x}^{(1)}, d^{(1)}), \ldots, (\vec{x}^{(p)}, d^{(p)}),$ a parameterized function f depending on some parameters \vec{w}
- ► task: estimate \vec{w} and σ^2 so that $d^{(i)} f(\vec{x}^{(i)}; \vec{w})$ fits a Gaussian distribution in best way
- \blacktriangleright maximum likelihood principle:

$$
\text{maximize } \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(d^{(1)} - f(\vec{x}^{(1)}\cdot\vec{w}))^2}{\sigma^2}} \cdot \dots \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(d^{(p)} - f(\vec{x}^{(p)}\cdot\vec{w}))^2}{\sigma^2}}
$$

 \triangleright minimizing negative log likelihood:

$$
\underset{\vec{w}, \sigma^2}{\text{minimize}} \frac{\rho}{2} \log(\sigma^2) + \frac{\rho}{2} \log(2\pi) + \frac{1}{\sigma^2} \Big(\frac{1}{2} \sum_{i=1}^{\rho} (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^2\Big) \underbrace{\Big(\frac{1}{2} \sum_{i=1}^{\rho} (d^{(i)} - f(\vec{x}^{(i)}; \vec{w}))^2\Big)}_{\text{sq. error term}}
$$

 \triangleright f could be, e.g., a linear function or a multi layer perceptron

▶ minimizing the squared error term can be interpreted as maximizing the data likelihood P(trainingdata|modelparameters)

Probability and machine learning

- \triangleright probabilities allow to precisely describe the relationships in a certain domain, e.g. distribution of the input data, distribution of outputs conditioned on inputs, ...
- ► ML principles like minimizing squared error can be interpreted in a stochastic sense

References

- ▶ Norbert Henze: Stochastik für Einsteiger
- ▶ Chris Bishop: Neural Networks for Pattern Recognition