
Probability Theory

Dr. Joschka Boedecker
AG Maschinelles Lernen

Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgement
Slides courtesy of Martin Riedmiller

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Probability Theory (1)



Probabilities

probabilistic statements subsume different effects due to:

◮ convenience: declaring all conditions, exceptions, assumptions would be
too complicated.
Example: “I will be in lecture if I go to bed early enough the day before
and I do not become ill and my car does not have a breakdown and ...”
or simply: I will be in lecture with probability of 0.87

◮ lack of information: relevant information is missing for a precise statement.
Example: weather forcasting

◮ intrinsic randomness: non-deterministic processes.
Example: appearance of photons in a physical process
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Probabilities (cont.)

◮ intuitively, probabilities give the expected relative frequency of an event
◮ mathematically, probabilities are defined by axioms (Kolmogorov axioms).

We assume a set of possible outcomes Ω. An event A is a subset of Ω
◮ the probability of an event A, P(A) is a welldefined non-negative number:

P(A) ≥ 0
◮ the certain event Ω has probability 1: P(Ω) = 1
◮ for two disjoint events A and B: P(A ∪ B) = P(A) + P(B)

P is called probability distribution

◮ important conclusions (can be derived from the above axioms):
P(∅) = 0
P(¬A) = 1− P(A)
if A ⊆ B follows P(A) ≤ P(B)
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
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Probabilities (cont.)

◮ example: rolling the dice Ω = {1, 2, 3, 4, 5, 6}
Probability distribution (optimal dice):
P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1

6

probabilities of events, e.g.:
P({1}) = 1

6

P({1, 2}) = P({1}) + P({2}) = 1
3

P({1, 2} ∪ {2, 3}) = 1
2

Probability distribution (manipulated dice):
P(1) = P(2) = P(3) = 0.13,P(4) = P(5) = 0.17,P(6) = 0.27

◮ typically, the actual probability distribution is not known in advance, it has
to be estimated
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Joint events

◮ for pairs of events A,B, the joint probability expresses the probability of
both events occuring at same time: P(A,B)
example:
P(“Bayern München is losing”, “Werder Bremen is winning”) = 0.3

◮ Definition: for two events the conditional probability of A|B is defined as
the probability of event A if we consider only cases in which event B
occurs. In formulas:

P(A|B) =
P(A,B)

P(B)
,P(B) 6= 0

◮ with the above, we also have

P(A,B) = P(A|B)P(B) = P(B|A)P(A)
◮ example: P(“caries”|“toothaches”) = 0.8

P(“toothaches”|“caries”) = 0.3
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Joint events (cont.)

◮ a contigency table makes clear the relationship between joint probabilities
and conditional probabilities:

B ¬B
A P(A,B) P(A,¬B) P(A)
¬A P(¬A,B) P(¬A,¬B) P(¬A)

P(B) P(¬B)

with P(A) = P(A,B) + P(A,¬B),
P(¬A) = P(¬A,B) + P(¬A,¬B),
P(B) = P(A,B) + P(¬A,B),
P(¬B) = P(A,¬B) + P(¬A,¬B)

marginals

joint prob

conditional probability = joint probability / marginal probability
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Joint events (Example)

◮ example of a contigency table: cars and drivers

red blue other

male 0.05 0.15 0.35 0.55
female 0.2 0.05 0.2 0.45

0.25 0.2 0.55 1

marginals

joint prob

e.g: I observed a blue car. How likely is the driver female?
How to express that in probabilistic terms?

P(′female′|′blue′) = P(′female′,′blue′)
P(′blue′)

How to access these values?
P(′female′,′ blue′): from table
P(′blue′) = P(′blue′,′ male′)+P(′blue′, female′) = 0.2 (’Marginalisation’)
Therefore, P(′female′|′blue′) = 0.05

0.2
= 0.25

⇒ joint probabilty table allows to answer arbitrary questions about
domain.
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Marginalisation

◮ Let B1, ...Bn disjoint events with ∪iBi = Ω. Then
P(A) =

∑

i P(A,Bi )
This process is called marginalisation.
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Productrule and chainrule

◮ from definition of conditional probability:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

◮ repeated application: chainrule:

P(A1, . . . ,An) = P(An, . . . ,A1)

= P(An|An−1, . . . ,A1)P(An−1, . . . ,A1)

= P(An|An−1, . . . ,A1)P(An−1|An−2, . . . ,A1)P(An−2, . . . ,A1)

= . . .

= Πn
i=1P(Ai |A1, . . . ,Ai−1)
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Conditional Probabilities

◮ conditionals:
Example: if someone is taking a shower, he gets wet (by causality)
P(“wet”|“taking a shower”) = 1
while:
P(“taking a shower”|“wet”) = 0.4
because a person also gets wet if it is raining

◮ causality and conditionals:
causality typically causes conditional probabilities close to 1:
P(“wet”|“taking a shower”) = 1, e.g.
P(“score a goal”|“shoot strong”) = 0.92 (’vague causality’: if you shoot
strong, you very likely score a goal’).
Offers the possibility to express vagueness in reasoning.
you cannot conclude causality from large conditional probabilities:
P(“being rich”|“owning an airplane”) ≈ 1
but: owning an airplane is not the reason for being rich
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Bayes rule

◮ from the definition of conditional distributions:

P(A|B)P(B) = P(A,B) = P(B|A)P(A)

Hence:

P(A|B) =
P(B|A)P(A)

P(B)

is known as Bayes rule.

◮ example:

P(“taking a shower”|“wet”)=P(“wet”|“taking a shower”)
P(“taking a shower”)

P(“wet”)

P(reason|observation) = P(observation|reason) P(reason)

P(observation)
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Bayes rule (cont)

◮ often this is useful in diagnosis situations, since P(observation|reason)
might be easily determined.

◮ often delivers suprising results
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Bayes rule - Example

◮ if patient has meningitis, then very often a stiff neck is observed
P(S |M) = 0.8 (can be easily determined by counting)

◮ observation: ’I have a stiff neck! Do I have meningitis?’ (is it reasonable
to be afraid?)
P(M|S) =?

◮ we need to now: P(M) = 0.0001 (one of 10000 people has meningitis)
and P(S) = 0.1 (one out of 10 people has a stiff neck).

◮ then:

P(M|S) = P(S |M)P(M)

P(S)
=

0.8 × 0.0001

0.1
= 0.0008

◮ Keep cool. Not very likely
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Independence

◮ two events A and B are called independent, if

P(A,B) = P(A) · P(B)

◮ independence means: we cannot make conclusions about A if we know B

and vice versa. Follows: P(A|B) = P(A), P(B|A) = P(B)

◮ example of independent events: roll-outs of two dices

◮ example of dependent events: A =’car is blue’, B =’driver is male’
→ (from example)
P(′blue′)P(′male′) = 0.2 · 0.55 = 0.11 6= P(′blue′,′ male′) = 0.15
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Random variables

◮ random variables describe the outcome of a random experiment in terms
of a (real) number

◮ a random experiment is a experiment that can (in principle) be repeated
several times under the same conditions

◮ discrete and continuous random variables

◮ probability distributions for discrete random variables can be represented in
tables:
Example: random variable X (rolling a dice):

X 1 2 3 4 5 6

P(X ) 1
6

1
6

1
6

1
6

1
6

1
6

◮ probability distributions for continuous random variables need another
form of representation
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Continuous random variables

◮ problem: infinitely many outcomes

◮ considering intervals instead of single real numbers: P(a < X ≤ b)

◮ cumulative distribution functions (cdf):
A function F : R → [0, 1] is called cumulative distribution function of a
random variable X if for all c ∈ R hold:

P(X ≤ c) = F (c)

◮ Knowing F , we can calculate P(a < X ≤ b) for all intervals from a to b

◮ F is monotonically increasing, limx→−∞ F (x) = 0, limx→∞ F (x) = 1

◮ if exists, the derivative of F is called a probability density function (pdf).
It yields large values in the areas of large probability and small values in
the areas with small probability. But: the value of a pdf cannot be
interpreted as a probability!
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Continuous random variables (cont.)

◮ example: a continuous random variable that can take any value between a

and b and does not prefer any value over another one (uniform
distribution):

X

cdf(X) pdf(X)

0

1

a b

0

a b
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Gaussian distribution

◮ the Gaussian/Normal distribution is a very important probability
distribution. Its pdf is:

pdf (x) =
1√
2πσ2

e
−

1
2

(x−µ)2

σ2

µ ∈ R and σ2 > 0 are parameters of the distribution.
The cdf exists but cannot be expressed in a simple form
µ controls the position of the distribution, σ2 the spread of the distribution

cdf(X)

X

pdf(X)

0

1

0
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Statistical inference

◮ determining the probability distribution of a random variable (estimation)

◮ collecting outcome of repeated random experiments (data sample)
◮ adapt a generic probability distribution to the data. example:

◮ Bernoulli-distribution (possible outcomes: 1 or 0) with success parameter p

(=probability of outcome ’1’)
◮ Gaussian distribution with parameters µ and σ

2

◮ uniform distribution with parameters a and b

◮ maximum-likelihood approach:

maximize
parameters

P(data sample|distribution)
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Statistical inference (cont.)

◮ maximum likelihood with Bernoulli-distribution:

◮ assume: coin toss with a twisted coin. How likely is it to observe head?

◮ repeat several experiments, to get a sample of observations, e.g.: ’head’,
’head’, ’number’, ’head’, ’number’, ’head’, ’head’, ’head’, ’number’,
’number’, ...
You observe k times ’head’ and n times ’number’ Probabilisitic model:
’head’ occurs with (unknown) probability p, ’number’ with probability
1− p

◮ maximize the likelihood, e.g. for the above sample:

maximize
p

p ·p · (1−p) ·p · (1−p) ·p ·p ·p · (1−p) · (1−p) · · · · = p
k(1−p)n
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Statistical inference (cont.)

maximize
p

p · p · (1− p) · p · (1− p) · p · p · p · (1− p) · (1− p) · · · · = p
k(1− p)n

Trick 1: Taking logarithm of function does not change position of minima
rules: log(a · b) = log(a) + log(b), log(ab) = b log(a)

Trick 2: Minimizing -log() instead of maximizing log()

This yields:

minimize
p

− log(pk(1− p)n) = −k log p − n log(1− p)

calculating partial derivatives w.r.t p and zeroing: p = k

k+n

⇒ The relative frequency of observations is used as estimator for p
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Statistical inference (cont.)

◮ maximum likelihood with Gaussian distribution:

◮ given: data sample {x (1), . . . , x (p)}
◮ task: determine optimal values for µ and σ2

assume independence of the observed data:

P(data sample|distribution) = P(x (1)|distribution) · · · · ·P(x (p)|distribution)

replacing probability by density:

P(data sample|distribution) ∝ 1√
2πσ2

e
−

1
2

(x(1)−µ)2

σ2 ·· · · · 1√
2πσ2

e
−

1
2

(x(p)−µ)2

σ2

performing log transformation:
p

∑

i=1

(
log

1√
2πσ2

− 1

2

(x (i) − µ)2

σ2

)
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Statistical inference (cont.)

◮ minimizing negative log likelihood instead of maximizing log likelihood:

minimize
µ,σ2

−
p∑

i=1

(
log

1√
2πσ2

− 1

2

(x (i) − µ)2

σ2

)

◮ transforming into:

minimize
µ,σ2

p

2
log(σ2) +

p

2
log(2π) +

1

σ2

(1

2

p
∑

i=1

(x (i) − µ)2
) (1

2

p
∑

i=1

(x (i) − µ)2
)

︸ ︷︷ ︸

sq. error term

◮ observation: maximizing likelihood w.r.t. µ is equivalent to minimizing
squared error term w.r.t. µ
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Statistical inference (cont.)

◮ extension: regression case, µ depends on input pattern and some
parameters

◮ given: pairs of input patterns and target values (~x (1), d (1)), . . . , (~x (p), d (p)),
a parameterized function f depending on some parameters ~w

◮ task: estimate ~w and σ2 so that d (i) − f (~x (i); ~w) fits a Gaussian
distribution in best way

◮ maximum likelihood principle:

maximize
~w,σ2

1√
2πσ2

e
−

1
2

(d(1)−f (~x(1) ;~w))2

σ2 · · · · · 1√
2πσ2

e
−

1
2

(d(p)−f (~x(p);~w))2

σ2
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Statistical inference (cont.)

◮ minimizing negative log likelihood:

minimize
~w ,σ2

p

2
log(σ2)+

p

2
log(2π)+

1

σ2

(1

2

p
∑

i=1

(d (i)−f (~x (i); ~w))2
) (1

2

p
∑

i=1

(d (i) − f (~x (i);w

︸ ︷︷

sq. error term

◮ f could be, e.g., a linear function or a multi layer perceptron

x

y f(x)

◮ minimizing the squared error term can be interpreted as maximizing the
data likelihood P(trainingdata|modelparameters)
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Probability and machine learning

machine learning statistics

unsupervised learning we want to create a model
of observed patterns

estimating the probability
distribution P(patterns)

classification guessing the class from an
input pattern

estimating
P(class|input pattern)

regression predicting the output from
input pattern

estimating
P(output|input pattern)

◮ probabilities allow to precisely describe the relationships in a certain
domain, e.g. distribution of the input data, distribution of outputs
conditioned on inputs, ...

◮ ML principles like minimizing squared error can be interpreted in a
stochastic sense
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