MACHINE LEARNING

Reinforcement Learning

Dr. Joschka Boedecker
AG Maschinelles Lernen und Natirlichsprachliche Systeme
Institut fur Informatik
Technische Fakultat
Albert-Ludwigs-Universitat Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgment
Slides courtesy of Martin Riedmiller

Motivation

Can a software agent learn to play Backgammon by itself?

Learning from success or failure

Neuro-Backgammon:
playing at worldchampion level
(Tesauro, 1992)

Can a software agent learn to balance a pole by itself?

Learning from success or failure

Neural RL controllers:
noisy, unknown, nonlinear (Riedmiller

et.al.)

Can a software agent learn to cooperate with others by itself?

Learning from success or failure

Cooperative RL agents:
complex, multi-agent, cooperative

(Riedmiller et.al.)

Reinforcement Learning

has biological roots: reward and punishment 'Happy Programming’

no teacher, but:

. z . .
actions + goal =" algorithm/ policy

Action 1
Action 2
Y Goal
/\@ :, -
- ;
Agent \—/2 o

Actor-Critic Scheme (Barto, Sutton, 1983)

Actor Critic Ext;rnal reward <—]
Internal
= Critic
S
- —- World —
N

ACTOR-CRITIC SCHEME:

e Critic maps external, delayed reward in internal training signal

e Actor represents policy

Overview

| Reinforcement Learning - Basics

A First Example

Goal

REPEAT
Choose: Action a €{—,+«+, 1}
UNTIL Goal is reached

The '"Temporal Credit Assignment’ Problem

/”—\\
7’ \
/ \
* : :
=N s O
‘ \ Goal

Which action(s) in the sequence has to be changed?
= Temporal Credit Assignment Problem

Sequential Decision Making

Examples:
Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92)
Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics

and control, . ..

Three Steps

= Describe environment as a Markov Decision Process (MDP)

= Formulate learning task as a dynamic optimization problem

= Solve dynamic optimization problem by dynamic programming
methods

1. Description of the environment

S: (finite) set of states
A: (finite) set of actions O

Behaviour of the environment 'model’
p:SxSxA—]0,1] |
p(s',s,a) Probability distribution of
transition

For simplicity, we will first assume a deterministic environment.
There, the model can be described by a transition function

f:SxA—=S, s=f(s,a)

'‘Markov' property: Transition only depends on current state and
action

PT(St—|—1|3ta at) — PT(St+1|St, Aty St—1,At—1,S5t—2,A¢t—2, . -)

2. Formulation of the learning task

every transition emits transition costs,
'immediate costs’, c: S x A — R
(sometimes also called 'immediate reward’, r) |

Now, an agent policy # : S — A can be
evaluated (and judged):
Consider pathcosts:

J7(s) = 2y c(st,m(s1)), 80 = s

Wanted: optimal policy 7*: S — A
where J™ (s) = ming{) _, c(s¢, 7(5¢))|s0 = s}

= Additive (path-)costs allow to consider all events
= Does this solve the temporal credit assignment problem? YES!

Choice of immediate cost function ¢(+) specifies policy to be learned
Example:

0 , if ssuccess (s € Goal)
c(s) =< 1000 , if s failure (s € Failure)

1 , else

T JW(Sstart) =12
JW(Sstar,«t) — 1004
N
| % |
Q* & =) Goal
[

= specification of requested policy by c¢(-) is simple!

3. Solving the optimization problem

For the optimal path costs it is known that

J*(s) = min{c(s,a) + J7(f(s,a));

(Principle of Optimality (Bellman, 1959))

=-Can we compute J* (we will see why, soon)?

Computing J*: the value iteration (VI) algorithm

Start with arbitrary Jy(s)
for all states s : Jiy1(s) := mingea{c(s,a) + Jp(f(s,a))}

Convergence of value iteration

Value iteration converges under certain assumptions, i.e. we have
limg _oody = J©

— Discounted problems: J™ (s) = min{>_, v'c(ss, 7(s¢))|s0 = s}
where 0 < v < 1 (contraction mapping)

— Stochastic shortest path problems:

e there exists an absorbing terminal state with zero costs

e there exists a 'proper’ policy (a policy that has a non-zero chance
to finally reach the terminal state)

e every non-proper policy has infinite path costs for at least one state

Ok, now we have J*

= when J* is known, then we also know an optimal policy:

7 (s) € argmin, 4{c(s,a) + J*(f(s,a))}

Back to our maze

11 0
Start ? : Goal
11 ? 91001 1000

Overview of the approach so far

Description of the learning task as an MDP W ________

S, A, T, f, C * | : | :

c specifies requested behaviour/ policy Corm - K 5
I

iterative computation of optimal pathcosts J*: + D Ziel

Vs € S Jgr1(s) = mingea{c(s,a) + Jp(f(s,a))}

Computation of an optimal policy from J*
m*(s) € argmin,e 4{c(s,a) + J*(f(s,a))}

value function ('costs-to-go') can be stored in a table

Overview of the approach: Stochastic Domains

e value iteration in stochastic environments:
Vs e S: Jpi1(s) = minaeA{ZS,esp(s, s’ a) (c(s,a) + Ji(s))}

e Computation of an optimal policy from J*
m*(s) € argminge 4{> (s, 8", a) (c(s,a) + Ji(s))}

e value function J ('costs-to-go') can be stored in a table

Reinforcement Learning

Problems of Value lteration:

for all s € S :Jgy1(s) = mingea{c(s,a) + Jp(f(s,a))}
problems:

e Size of S (Chess, robotics, ...) = learning time, storage?

e 'model’ (transition behaviour) f(s,a) or p(s’,s,a) must be known!

Reinforcement Learning is dynamic programming for very large state
spaces and/ or model-free tasks

Important contributions - Overview

e Real Time Dynamic Programming
(Barto, Sutton, Watkins, 1989)

e Model-free learning (Q-Learning,(Watkins, 1989))

e neural representation of value function (or alternative function
approximators)

Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

|dea:

instead For all s € S now For some s € § . ..
= learning based on trajectories (experiences)

N /’N\
\ ,’ \
1, \\
} '.' 1
Q*«::’——"— O
\\
S Goal
~
N
|
/
/

Q-Learning

ldea (Watkins, Diss, 1989):
In every state store for every action the expected costs-to-go.
Q- (s,a) denotes the expected future pathcosts for applying action a

in state s (and continuing according to policy 7):
Qx(s,a) == > p(s',s,a)(c(s,a) + Jx(s))
s'eS

where J(s") expected pathcosts when starting from s’ and acting
according to

Q-learning: Action selection

is now possible without a model:

. _ Q: state-action evaluation
Original VI: state evaluation Action selection:

Action selection:
7 (s) = argmin Q" (s, a)

7 (s) € argmin{c(s,a)+J (f(s,a))}

5
1

-7

02

Learning an optimal Q-Function

To find %, a value iteration algorithm can be applied

Qr+1(s,u) == ZPS s,a)(c(s,a) + Ji(s))

where Jy(s) = ming e 4¢s) @r (s, a’)

¢ Furthermore, learning a Q-function without a model, by
experience of transition tuples (s,a) — s’ only is possible:

(Q-LEARNING (Q-Value lteration + Robbins-Monro stochastic
approximation)

Qr+1(s:a) == (1 — @) Qu(s,a) + a(c(s, a) + min Qr(s’,a))

Summary Q-learning

Q-learning is a variant of value iteration when no model is available
it Is based on two major ingredigents:

e uses a representation of costs-to-go for state/ action-pairs Q(s, a)

e uses a stochastic approximation scheme to incrementally compute
expectation values on the basis of observed transititions (s,a) — ¢’

& converges under the same assumption as value iteration + ‘every
state/ action pair has to be visited infinitely often’ + conditions for
stochastic approximation

Q-Learning algorithm

REPEAT
start in arbitrary initial state sg; t =0
REPEAT
choose action greedily u; := argmin, . 4, Qr(st, a)
or u; according to an exploration scheme
apply u¢ in the environment: s;i1 = f(s¢, g, wy)
learn Q-value:
Qrt1(56,ur) == (1 — @) Qr(s¢, ur) + ale(se, up) + Ji(se41))
where Ji(s;11) := minge 4 Qx(Si11, a)
UNTIL Terminal state reached
UNTIL policy is optimal ('enough’)

Representation of the path-costs in a function
approximator

ldea: neural representation of value function (or alternative function
approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

J(x)

= few parameters (here: weights) specify value function for a large

state space

/ 2
= learning by gradient descent: % _ 9(J(s)_Ca(i{‘f)_J(SD
(¥ 17

Example: learning to intercept in robotic soccer

\
%
\

e as fast as possible (anticipation of intercept
position)

e random noise in ball and player movement ® °
— need for corrections

N
e sequence of TURN(f)and DASH(v)- JEEN
commands required (] O

=-handcoding a routine is a lot of work, many parameters to tune!

Reinforcement learning of intercept

Goal: Ball is in kickrange of player

e state space: S“°"" = positions on pitch
e ST: Ball in kickrange

e 5 : e.g. collision with opponent

0 , s€8*
o c(s) = 1, se€8°
0.01 , else
e Actions: TURN(10°), TURN(20°), . .. TURN(360°), . .. DASH(10),

DASH(20), . . .

e neural value function (6-20-1-architecture)

Learning curves

100 02 ————
"ick stat' u 311 ———
90 - 018 ff B
8o b
0.16 | 1
70 1
014]
60 | 1
012 1
s0 | 1
0.1 4
40 1
008 | 1
30 1
006 |]
20 1
10 1 004 | 1
o e 0.02 C
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Percentage of successes Costs (time to intercept)

