
Machine Learning Lab
University of Freiburg

Clustering
Machine Learning 
Summer 2015

Dr. Joschka Boedecker

Slides courtesy of Manuel Blum



Supervised vs. Unsupervised Learning
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K-means Algorithm Example
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K-means Algorithm

input: K, {x(1), x(2), ..., x(m)}, x(i) ∊ Rn

randomly initialize K cluster controids μ1, μ2, ..., μK ∊ Rn

do 
for i = 1 to m

c(i) := index of cluster centroid closest to x(i)

for k = 1 to K
μk := mean of training patterns assigned to cluster k

until convergence



K-means Optimization Objective
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- cluster assignment step minimizes J  w.r.t. c(1), ..., c(m)

- moving the centroids minimizes J  w.r.t. μ1,..., μK

- the objective function is monotonically decreasing 
towards a local minimum of J

- K-means always converges within finite time 



Application: Color Quantization
- reduce the number of distinct colors in an image by clustering the pixels
- the pixels of the original image are used as training patterns x(i)

- K controls the number of colors in the output image
- K-means will learn the K most typical colors in the image
- the original pixels can be replaced by the closest prototypes after training 
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Random Initialization

- problem: the performance of K-means heavily depends on the 
initial cluster centers 

- simple solution: 
- run K-means multiple times using different random initializations
- choose the clustering that minimizes the cost function J

- Forgy‘s method:
- initialize centroids to K randomly picked training patterns

- the random partition method:
- randomly assign a cluster to each training pattern
- move centroids to the means of the randomly assigned points



How to choose K

- correct choice of k is often ambiguous
- most often K is specified by hand
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- the elbow method:
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Final Remarks
- results of K-means heavily depend on the scaling of 

the data  

- Euclidean distance must be a meaningful measure of 
similarity for the dataset

- K-means will rarely work for 
high dimensional data (d > 20)

- cluster centroids are also called  
prototypes or codebook vectors

- the set of prototypes is called  
codebook 


