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Motivation

dimensionality reduction transforms a n-dimensional 
dataset to a k-dimensional dataset with k < n  

- dataset compression
- less memory storage consumption
- machine learning algorithms run faster on low-

dimensional data

- data visualization 
- high-dimensional data can be transformed to 2D or 

3D for plotting
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Example:

- original 2D dataset containing 
features weight and height

- projection on vector u 

- most commonly used dimensionality reduction method
- projects the data on k orthogonal bases vectors u that 

minimize the projection error

u



PCA Algorithm
input: x(1), x(2), ..., x(m)

preprocessing:
- mean normalization

1.   compute mean of each feature j

2.  subtract the mean from data

- feature scaling
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PCA Algorithm

diagonalize covariance matrix (using SVD)
S = U�1⌃U

compute covariance matrix ⌃ =
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U is the matrix of Eigenvectors 
S a diagonal matrix containing the Eigenvalues

dimensionality reduction from n to k dimensions:
project the data onto the Eigenvectors corresponding to the 
k largest Eigenvalues
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Reconstruction
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the reconstruction of compressed data points is an 
approximation of the original data



Choosing k
average squared projection error:

total variation in the data:
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to retain 99% of the variance, choose k to be the smallest 
value, such that
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Example using Real-world Data

http://archive.ics.uci.edu/ml/

- offers 223 datasets 
- datasets can be used for the evaluation of ML methods
- results can be compared to those of other researchers

http://archive.ics.uci.edu/ml/


Iris Data Set  
Download: Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936 

Data Set Characteristics:   Multivariate  Number of Instances:  150   Area:    Life 

Attribute Characteristics:  Real    Number of Attributes:  4   Date Donated   1988-07-01 

Associated Tasks:   Classification  Missing Values?   No   Number of Web Hits:  348488 

Source: 

Creator: R.A. Fisher  

 
Donor: Michael Marshall (MARSHALL%PLU '@' io.arc.nasa.gov) 

Data Set Information: 

This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this 
day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly 
separable from the other 2; the latter are NOT linearly separable from each other.  
 
Predicted attribute: class of iris plant.  
 
This is an exceedingly simple domain.  
 
This data differs from the data presented in Fishers article (identified by Steve Chadwick, spchadwick '@' espeedaz.net ). The 35th sample should be: 
4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature. The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third 
features. 

Attribute Information: 

1. sepal length in cm  
2. sepal width in cm  
3. petal length in cm  
4. petal width in cm  
5. class:  Iris Setosa, Iris Versicolour, Iris Virginica

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names


PCA on the Iris dataset

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

 

 
Iris Setosa
Iris Versicolour
Iris Virginica

U =

0

BB@

�0.5224 �0.3723 0.7210 0.2620
0.2634 �0.9256 �0.2420 �0.1241
�0.5813 �0.0211 �0.1409 �0.8012
�0.5656 �0.0654 �0.6338 0.5235

1

CCA

given: data matrix X

preprocessing: 
- mean normalization
- feature scaling

compute covariance matrix:

S =
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compute eigenvectors and eigenvalues:

reduce U to k components
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Final Remarks

- PCA assumes that most of the information is contained  
in the direction with the highest variance
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- PCA is an unsupervised method - when used as a 
preprocessing step for supervised learning the 
performance can drop significantly

- there exist nonlinear extensions (Kernel PCA)
- PCA can only realize linear transformations

- PCA-transformed data is uncorrelated

- PCA is often used to reduce the noise in a signal


