Approximate Real-Time Optimal Control Based on
Sparse Gaussian Process Models

Joschka Boedecker*, Jost Tobias Springenberg*, Jan Wiilfing*, Martin Riedmiller
Machine Learning Lab, Department of Computer Science
University of Freiburg, 79110 Freiburg, Germany
Email: {jboedeck,springj,wuelfj,riedmiller} @informatik.uni-freiburg.de
*authors contributed equally

Abstract—In this paper we present a fully automated ap-
proach to (approximate) optimal control of non-linear systems.
Our algorithm jointly learns a non-parametric model of the
system dynamics — based on Gaussian Process Regression (GPR)
— and performs receding horizon control using an adapted
iterative LQR formulation. This results in an extremely data-
efficient learning algorithm that can operate under real-time
constraints. When combined with an exploration strategy based
on GPR variance, our algorithm successfully learns to control
two benchmark problems in simulation (two-link manipulator,
cart-pole) as well as to swing-up and balance a real cart-pole
system. For all considered problems learning from scratch, that
is without prior knowledge provided by an expert, succeeds in
less than 10 episodes of interaction with the system.

I. INTRODUCTION

Reinforcement Learning (RL) from scratch has seen some
impressive applications to real-world problems in recent years
(e.g. [1], [2], [3], see [4] for a recent survey of RL in robotics).
However, most RL methods either rely on global value function
approximation which requires complex regression models and
large amounts of samples for high dimensional problems, or
directly learn a policy using model-free policy search methods.
This circumvents the value function approximation problem,
but is typically data inefficient, requiring hundreds of episodes
before reaching a solution.

Model-based RL methods, on the other hand, hold the
promise of achieving both data efficiency as well as control
of complex dynamical systems. Among them, local trajectory
optimization methods [5], [6] based on the principles of
(stochastic) optimal control are an attractive alternative to
global RL methods since they are not directly affected by
the curse of dimensionality. Similarly, model-based policy
search methods can search the policy space offline using a
system model — hence minimizing the interactions with the
real system — and discover successful policies on complex
dynamical systems in as few as 10 episodes [7], [8]. These
methods usually assume the existence of an exact dynamics
model of the system to be controlled. Such models rely on —
and are restricted by — the insight of the controller designer.
Furthermore, model specification is a laborious process, and
difficulties arise if information on parts of the system is not
available, or subject to change.

A promising approach then is to use machine learning
techniques to identify a system model automatically from data
generated by interacting with the system. In addition to being
applicable to arbitrary system dynamics, learning methods can

be adaptive to changes in the system dynamics over time and
even account for effects that are hidden from a human observer
(such as material wear). Learned dynamics models have been
used successfully in a substantial number of cases (see [9]
for a relevant survey). However, any learned model will likely
be biased since only a limited number of data points can be
collected on most real systems. This leads to inaccuracies due
to undersampling of the state-space. Trajectory optimization
methods, are particularly vulnerable to inaccuracies in a system
model, since they rely on derivative information in addition
to forward predictions. As pointed out in [10], this can lead
to blow-ups during forward integration. Furthermore, for real-
time control and the small control intervals it requires, the
execution time for a given model quickly becomes a limiting
factor. These problems taken together have hampered the
successful application of model-based trajectory optimization
to learning from scratch (i.e. without including large amounts
of prior knowledge about the system).

In this work we present a fully automated approach for
(approximate) real-time optimal control that is applicable to
real-world systems. We propose an algorithm, which we dub
Approximate iterative LOR with Gaussian Processes (AGP-
iLQR), that is based on trajectory optimization with iLQR
(iterative Linear Quadratic Regulator) [5]. It uses a non-
parametric dynamics model based on Gaussian Processes
(GPs), estimated efficiently from interaction data. We show
how GPs can effectively be used in the iLQR framework,
and how a GP model can be learned alongside the trajectory
optimization using a sparse approximation. To fight model-
bias, we control the system in a receding horizon fashion and
use an exploration scheme based on the “optimism in the face
of uncertainty” principle [11] which uses the GP uncertainty
to guide trajectory optimization. To facilitate real-time control
we use one-step-ahead predictions of the optimal control law
(which can be computed concurrently to the control loop).

We demonstrate the efficacy of our approach on two
simulated tasks and on a real cart-pole system, which, to the
best of our knowledge, has not been solved from scratch with
optimal control approaches based on learned models before.

II. FOUNDATIONS

Before we describe our approach we formally introduce
the underlying control problem as well as the two key com-
ponents that constitute the basis of our algorithm: (1) iLQR, a
trajectory optimization algorithm from the differential dynamic
programming family; (2) GPR for estimating system dynamics.

A. Problem Definition

We consider the control of dynamical systems of the form
Xt+1 :f(xtaut)+wa WNN(Ov Ew)v (1)

where states x € RP, controls u € R as well as control
noise w are continuous-valued, and f is an arbitrary dynamics
function. The goal of stochastic optimal control then is to
find (locally) optimal controls uj.,- for the limited horizon
T, which realize a corresponding optimal trajectory, x7. by
maximizing the expected reward of the trajectory

J(xur,unr) = Bp[Y r(x,)], 2)

t=1

where 7(x;,u;) € R is the immediate reward function and
Ef[-] = By, —f(x;,u)+wl] is the expectation under known
dynamics f. The time-dependent value function V;, corre-
sponding to this optimization problem, can then be written

as

Vi(x¢) = max J (X7, uer). 3)

B. Trajectory Optimization with iLQR

Iterative LQR [5] is a powerful trajectory optimization
method from the family of differential dynamic programming
(DDP) [12] algorithms. The core idea behind DDP is to find
a locally optimal trajectory (and optimal local controls), for
known system dynamics f and rewards 7 using an iterative
procedure. It proceeds by, first, linearizing f forward in time
around the current best trajectory for which a locally optimal
control law can then be computed backwards in time. This
gives rise to an improved trajectory, which can again be opti-
mized using the described forward and backward calculations.
These steps are then repeated until convergence to the locally
optimal trajectory [5].

Formally, following the derivation from [13], let X;.7 =
[X1,...,X7] denote a reference trajectory given as a sequence
of states and u;.;r = [uy,...,ur] denote the corresponding
actions. We obtain an approximate model of the system dy-
namics at time ¢ w.r.t. the reference trajectory by linearization
as

Xepl — X1 R frr (X0 — X)) + fur(0e — 1), 4)

and a quadratic model of the rewards via a second-order Taylor
expansion

T(Xt, llt) =~ T()_(t, ﬁt) =+ 53;7“,4 —+ 5Etrut
1 1
+ §6zt7ﬂxxt6xt + i(sgtruut6ut (5)
+ 53; T'xutcsuta

where 0y, = (Xt — X¢t), 0y, = (us — @) are deviations from
the reference trajectory and the terms with subscripts denote
Jacobian and Hessian matrices of their respective functions.

In combination this linear-quadratic formulation now can
be used to compute a quadratic approximation to the time-
dependent value function V; (and its corresponding state-action
value function @);) by, again, taking a Taylor expansion along
the trajectory. The individual Jacobian and Hessian terms

(which can be computed recursively backwards in time starting
at time-point t) are:

Qxxt = Txxt + f;z;vxxt+lf'>ct
Quut = Iyut + fz;vxxt-&-lfut
qut = Tuxt + flj;tvxxt-&-lfxta

Qxt = Iyt + f;{tvxt+1
Qut =Tyt + fEtht-H

(6)
and corresponding value function terms:
Vit = Qut — Qi Quuut Que (7)

T —1
Vxxt = Qxxt - qutQuthuxt~
—next

The reference controls ;.7 can then be improved to uj%;
using a (deterministic) policy 7 given as the locally linear
feedback controller:

ﬁgeXt ﬁ(Xt) = l_lt + gt + G’t(xt -)_(t)7
with gains g = — Qo Qut, ®)
G = _Q;&tQUXt'
—next

Finally, u}%; can be applied forward in time (using dynamics
f) to retrieve a new reference trajectory X

In order to arrive at uj,, and x7.,- this procedure is iterated
until convergence. Notice that this will result in a locally
optimal open loop control sequence uj.,- which — when applied
to a real system — might not realize x],, due to inaccuracies
in the assumed system model.

To achieve robust control we therefore adopt a model
predictive control approach using the receding horizon scheme
introduced in [14]. That is, in a given state x;, instead
of using the open loop controls uj.,, we only execute
uj, observe the real next state x;y; and warm-start an-
other iLQR optimization using the time-shifted controls

T =[ub,...,uf, uk] and corresponding reference trajec-
tory K1 = [Xet1,X5- .., X, f(x5, Wh)]. If we assume
that f is sufficiently accurate then the deviation ||x¢4+1 — x5]|2
will be small and the warm-started optimization will converge
in few iterations (1-2 in practice) since ﬁ’{:T is already close
to the optimal controls.

C. Learning a Model with Gaussian Process Regression

Gaussian Processes (GPs) are a popular choice for model
learning [15], [16], [2], which are extremely data efficient
(utilizing available training data in a Bayes-optimal way) and
hence are well suited for our needs for learning a dynamics
model. We therefore adopt a Gaussian Process Regression
(GPR) model for f following the formulation from [2].

1) Learning the dynamics function of the system: Let
f denote the dynamics function as defined in Eq. (1) and
X1..~N = [X1...Xy] denote the given training data consisting
of an observed sequence of N states, where system states x
and controls u are combined to form the vector of extended
states X = [x, u]T. In order to specify a GP, we need to define
a mean function m(-) and a covariance function (also called
kernel) k(,-). Different functions can be used depending on
the problem at hand. Here, we use m = 0 and the squared
exponential kernel with automatic relevance determination
defined as

- 1 Tip — Tjp)>
k(x;, %) = 0')2c exp <—2 Z (plQ“j)> + (5ij05,. 9)
P

p

The characteristic length-scales [y, ...Ilp4+p are hyperparam-
eters that need to be optimized (see Section III-D). Further
hyperparameters are o2 and o2, for the variance of the latent
dynamics function f and the system noise w. Rather than
training the GP model M to predict next states X;;; from
X; we train it to predict changes in the system state given
applied controls, i.e. for a given X, the training target is A; =
X¢4+1 — X;. Predicting state differences instead of next states
was previously found to be advantageous [2]. Importantly, it
makes efficient use of the GPs zero mean prior, resulting in
an implicit prior mean function over states m(x) = x. That is,
for unknown inputs, the GP will assume that the system state
does not change. For the high-frequency control loops we are
aiming for, this is a reasonable assumption, which can also
help generalization to novel states and thus eliminate spurious
predictions.

The posterior paq(A|%,) of the GP model M is a Gaus-
sian random variable with mean

Em[A] =mm(x) =kl (K+o,D) 'y (10)
and variance
Vm[A] = kww — kI (K + 621) k., (11)

with k, = [k(X,X1),. .., k(X, iN)]T, ke = k(X,%),and K €
RN >N s the covariance matrix whose entries are defined as
K;; = k(X;,X;j).

To use the GP Model M for estimating the dynamics f we
can now observe that for any input x;, the predictive posterior
for the successor state x;y; is also a Gaussian distributed
random variable, i.e.

Prm(Xep] Xe) = N(Xep1 | X+ Em[Ad], Vu[AL]). (12)
Therefore f from Eq. (1) can be approximated as:

F(xe,up) = Epq[xep|xe, ug] = x¢ + Epq[Ay]. (13)

It should be noted that in general, our targets are multivari-
ate and we train one GP per target dimension. These individual
GPs are conditionally independent for given test inputs.

III. REAL-TIME GAUSSIAN PROCESS BASED ILQR

Building on the foundations from Section II we will now
describe our proposed method for receding-horizon closed loop
control.

A. Gaussian Process based iLOR

In order to use a GP model within iLQR we need to be able
to efficiently compute the individual Q-terms from Section II-B
above. In turn, this requires a closed-form approximation for
the derivatives f,; of the dynamics function. Under the GP
approximation this reduces to computing derivatives of the
posterior of the dynamics p(x¢41|X¢) as estimated by the GP.
Since taking a derivative is a linear operation, the derivative
of a GP is another, dependent, GP [17]. This derived GP
can be used to make predictions for f,.;. Note that these are
predictions of spatial derivatives w.r.t. x; and u; which are
therefore not equivalent to the differences A; used as targets
for the GP model.

1) Generating derivative information: Formally, let M be
the GP model for predicting state differences A with mean
Em[A¢] and variance V o([A¢]. The derivative GP Model de-
noted as M’ computes predictions for A} which are Gaussian
distributed with mean:

OE m[AY]
0Xy
where J is the Jacobian matrix of partial first derivatives of the
kernel function w.r.t. the components of vector X;. Hence the

ith column of J is the derivative 2E&-Xi)

5%~ » or more precisely
1 Tep—Tip)t\ . Al
Jei = a]% exp (—2 Z (t’plz'p)> (X — %;)A L 15)
) P

Enm[A]] = =J'K+oiDy, (14

where A = diag[lF, ... I}, ;]

Similarly the variance of the derivative GP M’ is given as
Var[A)=H-JTK™'J, (16)

where H is the Hessian matrix containing partial second
derivatives of the kernel function w.r.t. the input variables.
Note that for computing the derivatives, generally, we need
to consider the cross-covariances between the original predic-
tions A; and the derivative predictions A} (contained in the
Jacobian), as well as the covariances between elements of the
derivative predictions themselves (contained in the Hessian)
— the computation of which can be quite involved (see [17]
for details). Fortunately, for our case the computation of the
Hessian reduces to H = 07A ™",

Finally, analogously to Eq. (12), the predictive posterior
for the partial derivatives is Gaussian, i.e.

IEMm[A]]
P\ Tox, |
E A o
:N<g4~t I+EM/[A;]7VM’[A;&]>'
Xt

The identity matrix I above is included since we need to cal-
culate derivatives for the actual dynamics function, and not the
GP target function which maps to state differences. Hence, we
need to include our implicit prior in the derivative. The partial
derivatives fyx; and fy; can then readily be approximated as
the mean of this posterior

fxt ~ M{At] . ,
[fut}N]E{ 0%, :|I+]EM’[At]' (18)

2) Using the GP Model with iLQR: With these definitions
in place iLQR can now be used in conjunction with the GP
model M by approximating the system dynamics f in the
forward-pass using the GP mean prediction from Eq. (13) as
well as replacing the system derivatives fx; and fu: in the
recursive (backward) estimation of the locally optimal controls
with the GP mean prediction from Eq. (18). It is important
to note that this strategy does not take the variance of the
prediction into account. It is hence susceptible to severe model
bias, as using only the mean functions results in overconfident
predictions in areas of the state space where the posteriors
from Eq. (12) and Eq. (17) have high variance. While we
propose to exploit the uncertainty of the GP as guidance
for exploration in Section III-C, using uncertainty directly

within the trajectory optimization algorithm could lead to a
more principled formulation. We discuss possible extensions
in Section V.

B. Approximate GPR based iLOR

We ultimately aim to use our algorithm for solving con-
trol tasks on real world systems with small targeted control
intervals §; (with typical values §; < 0.05s for the systems we
target). In such a scenario we have to ensure that the algorithm
runtime stays well below §;. The bulk of this time will be
spent computing the iLQR optimization. Each receding horizon
control step requires 1-2 iLQR iterations. For NV iterations,
T % (2N + 1) calls to the model are required (trajectory
length 7" multiplied by the number of required forward and
backward passes). Given that each such call is in in O(N)
(i.e. linear in the number of acquired training points, if the
inverse (K + 021)~! is pre-computed), these queries quickly
become the bottleneck of the algorithm — necessitating two
approximations to make real-time execution possible.

1) Approximate GPR: First, to enable fast computation
of the learned forward dynamics (and derivatives) we use a
sparse approximation to the trained GP model by employing
the Subset of Regressors (SoR) approximation as proposed by
[18], [19] (we refer the reader to [20, chapter 8] for a detailed
derivation). Concretely, given the GP model M trained on data
X1, n (i.e. for which hyperparameters were already optimized)
we compute an approximation to the covariance matrix K

using a set of M reference points X2 , =[x ... %] as:

K ~ KpKKZE, (19)

where K € RV*M i the covariance matrix between training
inputs X1y and reference points X ;, and K € RM*M jg
the covariance matrix between reference points. This yields
an approximation 7z (X) to the true posterior mean E[A¢]
from Eq. (10),

Em[A] = (%) = k- (KEKr + 05, K) "KLy, (20)
with kgt = [k(x,x1),... k(x,x)], as well as an approxi-
mation V to the posterior variance V,

Vul[A] =~ V[A] =02 kE (KEKR + 02 K) kg (21)

Analogously to Eq. (14) and Eq. (17) we can also compute an
approximate derivative GP with mean

Env[Af] = Exe[A]] = JT(KEKR + 0o K) T KRy, (22)
and variance

VAl & Vag[A]] = 05, 3" (KEKR + 03 K) 71T, (23)
where J is the Jacobian of the covariance function between Xy
and the reference points calculated identically to Eq. (15).

To use this approximation in practice it remains to specify
how the M reference points are selected. While we could,
in principle, select a subset of the IV training points (or use
M clusters extracted among them) we found that randomly
sampling reference points according to the length scales A
performed equally well in our experiments:

Xy = [~ N(0,A)|Vi € [1, M]]. (24)

This has two advantages. First, random sampling prevents
over-representing common regions of the state space. Second,
the sampling approach is independent of the training data,
enabling efficient online updates to the GP posterior without
re-selection of the reference points. It should be noted that this
choice might be unsuitable for even more complex problems.

2) One-Step-Ahead Receding Horizon Planning: Second,
to increase the overall time available for computing the iLQR
sequence we propose to (asynchronously) pre-compute the
receding horizon controls uj.,- for the next state x;;; in state
x;. This is possible due to the fact that given a control sequence
uy.7 — i.e. the controls that were pre-computed in the previous
step using the same procedure we will now outline — and
corresponding X;.p starting in x; (i.e. X; ~ X;) we can simply
compute the prediction

Xir1 R Xip1 = X¢ + Ty ([ﬁj) (25)

from the measured x; according to Eq. (20). We can then
proceed with the standard receding-horizon iLQR optimization
warm-started with time-shifted controls (and corresponding
time-shifted reference trajectory)

Wi = (@, ..., 07, Ay (26)
Kt = [X2, X3, .., Xy, X7 41), 27)
where X711 = X7 + mm([Xr,tr]T) and %o = %44

is the prediction from (25). This then yields the desired
controls G},,. This one-step-ahead planning can be executed
asynchronously while waiting for §; in order to observe the
current actions effect.

Once ¢; time has passed uj is a valid control signal for
the measured state x;4; and can be applied immediately.
However, recall that uj does not yet include a correction
term for differences between the prediction X;;; and x;y1.
Executing it would therefore correspond to open-loop control
(including model errors), which is problematic for systems
requiring high accuracy control. Assuming that the learned
model is reasonably accurate (e.g. ||Xtyr1 — Xep1/2 < €) we
can, nonetheless, achieve closed loop control by computing a
corrected action u using gains g} and G according to Eq. (8),
ie.,

u < IAJIT + g}‘ + GT(XH_l — }A(H_l). (28)

C. Variance-Based Exploration

When model-based iLQR (or model-based RL in general)
is applied to a real system without incorporating prior knowl-
edge about the system dynamics — that is, no informative
prior over models is used and the model is learned using
a general function approximator — special care has to be
taken to avoid bias in the optimization due to overconfident
predictions. Such predictions can occur when the policy visits
parts of the state space that are not sufficiently described by
the training examples. In that case the model predictions can
become arbitrarily bad and the greedy iLQR optimization fails,
as it assumes perfect accuracy of the model (and does not take
uncertainty into account).

To counter this model-bias we propose to use the variance
of the GP posterior to drive exploration of the state space.
In a nutshell, we augment the reward function r with a term

rewarding actions that cause high-variance predictions; and
hence, when sampled, will improve the model. Formally, we
propose to replace the original reward function r(x;,u;) by
augmented rewards

’F(Xt, llt) = T(Xt, llt) +)\V[At], (29)

where) is a weighting factor trading off real rewards with
exploration. Since iLQR requires quadratic rewards the second
term — corresponding to the prediction variance — V[A,] in (29)
must be approximated around the reference trajectory Xi.p
using a Taylor expansion,

o - IV[A] oV[A]
VI[A;] = V[A st T
[A¢] [A] + 0%, 9%, % o,
1 OV[A,] 1. 0V[A] 30
2% 0%, + 261_” Pu, Oa, (30)
7 OV[A] 5
*t 6xtut ue

This is analogous to the approximation of the original reward
function in Eq. (5) and can be computed analytically using the
terms from Eq. (23).

D. Combined Algorithm

The algorithm for the complete method which we dub
Approximate iLQR with GPs (AGP-iLQR) implementing the
previously described details is given in Algorithm 1. As listed
we perform online model learning, concurrently updating the
model during execution. In practice we interleave episodes
of AGP-iLQR with optimization of the GP hyperparameters,
where we iteratively maximize the marginal log-likelihood of
the GP observations using conjugate gradient descent. For the
algorithm to perform as advertised the concurrent computation
of the one-step-ahead controls in line 12 must be completed
before the next action execution (line 6). This is in general
not guaranteed — although for the typical control interval we
encounter in the following experiments (0; = 0.05s) this
was always the case. To ensure fail-safe operation one could
circumvent this drawback in practice by executing a default
action (e.g. u = 0) when the concurrent execution does not
finish in time.

IV. EXPERIMENTS

We evaluate our algorithm on several benchmark problems
in simulation (two-link manipulator, cart-pole swing-up) and
on a real system (cart-pole swing-up). We consistently used
a quadratic reward function based on the distance to a pre-
defined goal state (with optional augmentation for variance-
based exploration) in all our experiments:

r(xe,uy) = (x¢ —x,)TD(x® — x;) + ul Hu,. 31)

A. Two-Link Manipulator

To check the validity of our approach, we performed a
preliminary experiment with the two-link manipulator which
simulates a simple robotic arm consisting of two actuated
rigid links in a horizontal plane. The manipulator has to be
controlled towards a goal configuration from arbitrary initial
configurations. The state vector x is hence 4-dimensional

Algorithm 1 Approximate iLQR with GPs (AGP-iLQR)

Input: initial state x;; number of iLQR iterations s; receding-
horizon length T'; episode length E (or E = oo for true
online control); GP hyperparameters A, 0, o,; reward

function r(x¢,u;); initial controls u; with corresponding
g1 and Gy (e.g. up = g1 = G; =0)

1. xE,, « Sample as [x; ~ N(0,A)|Vi € [1, M]]
2: ul.p < [ug,0,...,0]
3 X7 x1
4: for t <1 to E do
5: Get measurement from system: x;
6: Execute: u < uj + g7 + Gi(x¢ — x7)
7. concurrently do
8: At — (Xt—l — Xt)
9: M < update model with (X;_1, Ay)
10: Predict: X2 + x: + Eaq[A¢]
11: 17 < [ud, . uk, ul]
12: Solve for one-step-ahead controls with iLQR

(using Egs. (6-8)):

<U*7X*) € arg ma’XEM [Z /F(Xtaut) |)A(QaﬁlzT]
L: ui.T,X1.T =1
with 7(ug, x¢) = 7(X¢, ur) + AV[A4]

13: end
14: end

(the angle of both links as well as their velocities)!. The
manipulator is controlled by setting torques for the motors
between the two links (i.e. we have 2-dimensional actions u).
For the exact physical properties we refer to Busoniu et al.
[21].

We set the goal xg = [0,0,0,0]7 (i.e. the arm is
in a fully stretched resting position, pointing upwards) use
reward weighting terms D = diag[—10,—1,—10,—1] and
H = diag[—1, —1] and used a set of 25 fixed random starting
configurations in the interval [—m,7) for testing after each
learning episode. Since this experiment was designed as an
initial test we evaluated the most basic configuration of our
algorithm — using the full GP Model (without approximation)
and not enabling variance-based exploration. We compare
this to receding horizon iLQR using the true model of the
simulation. We used an episode length of £ = 120 and a
horizon of 7' = 10 in both settings. Hyperparameters of the
GP were optimized for 100 steps between episodes.

The results of running this experiment are depicted in
Figure 1. As expected, in the beginning of the experiment our
approach performed worse than receding horizon iLQR using
the real dynamics (RH-iLQR true model) but quickly found a
good model of the system, catching up to the performance of
RH-ILQR after a single episode (or 120 steps) of interacting
with the system.

B. Simulated Cart-Pole Swing-Up

We next turn to the cart-pole system, which consists of a
cart to which a free swinging pole is attached. The cart is fixed

ITo circumvent problems with non discontinuities at angle positions 7
we expand the state to a complex representation of the angles before feeding
the extended state to the GP.

0

= —500 5

<

E —1,000 =

. —1,500 - =

20 RH-ILQR true model

< —2,000 - —e— GP-iLQR Full GP ||
T T T T
1 2 3 4

Episodes
Fig. 1: Evaluation of GP based iLQR, on the Two-Link

Manipulator averaged over a fixed set of 25 randomly sampled
starting positions. We also plot the performance of using the
true dynamics model as a baseline.

on a rail on which it can freely move left and right. Starting
from a configuration where the pole is facing downwards, the
goal of the swing-up task is to swing it upwards and balance
it with the cart centered on the rail. The state x; of the system
is modeled using four continuous variables: the angle of the
pole 0 (which, as before, is represented using sine and cosine
components), its angular velocity 6, the cart position p and
the cart velocity p. The continuous one-dimensional action u,
determines motor force. We implemented the same differential
equations and used the same parameter settings as in [22],
deviating only in one regard: setting the control interval to §; =
0.05 rather than using d; = 0.1. This ensures both that local
linearization of the dynamics succeeds and that the control
interval is closer to the one of the real cart-pole in the next
experiment (facilitating transfer of hyperparameter settings).

We assess the influence of several parameters of our
algorithm as well as its overall ability to cope with a more
difficult control problem on this benchmark. We used reward
weighting terms D = diag[—40, 0, —80,0] and H = diag[—1]
in our experiments. Episode length was 150 control cycles,
and no variance based exploration was used. Hyperparameters
of the GP were optimized for 100 steps between each episode.
All results are averaged over 25 runs, accounting for variance
due to the randomly chosen first action as well as random
sampling of the reference points.

1) Influence of GP approximation: Fig. 2 shows the perfor-
mance on the cart-pole using a varying number of reference
points M together with two baselines (iLQR using the true
model, as well as performance using the full GP model).
The planning horizon was fixed at 15. As for the Two-Link
experiment our algorithm using the full GP model quickly
learned a good model, reached the performance of iLQR based
on the true system model and successfully learned a swing-
up behavior after 2-3 episodes (Avg. Reward > —13000).
Introducing the sparse approximation did not result in a
performance decrease — but rather stabilized performance in
the first two iterations — even when only a moderate amount
of 100-150 reference points were used. Further decreasing the
number of reference points to M = 50 then resulted in sub-
optimal trajectories. We also experimented with using a larger
number (200-250) reference points which, however, did not
result in a significant improvement.

-10%

0 ! !
—1 L
=
<
5 -2 -
~ T ==
b RH-iLQR true model
é —34 —+— AGP-iILQR M = 150 | [
—e— AGP-ILQR M = 100
4 —a— AGP-iLQR M = 50 |
—e— GP-iLQR Full GP

T
12 3 4 5 6 7 8 9 10
Episodes

Fig. 2: Evaluation of AGP-iLQR, on the simulated cart-
pole, using varying number of reference points M in the GP
approximation. Results are averaged over 25 runs. As baselines
we also plot the performance of using the full GP model
without approximation, and of iLQR using the true model.

104

—e— AGP-iILQR M = 150

Avg. Reward
|
[\
|

5 10 15 20 25
Receding Horizon Length

Fig. 3: Performance on the simulated cart-pole with changing
receding horizon length after 10 episodes of training. Results
are averaged over 25 evaluations. M = 150 reference points
were sampled for each evaluation.

2) Influence of planning horizon: Fixing the number of
reference points to M = 150, Fig. 3 shows the influence of
varying receding horizon lengths (combined with two iLQR
iterations for each setting). It shows that choosing a short
horizon (< 10) resulted in a controller that fails to perform
the task. Furthermore, increasing the horizon beyond 15 did
not result in better controllers and we hence fixed it to 15 in
further experiments.

3) Overall performance: Overall the best configuration of
our algorithm, using 150 reference points and a planning
horizon of 15, learned a successful swing-up and balance
controller in 2-3 episodes or 12-18 seconds of interaction with
the system (corresponding to 240-360 transition samples). It
is thus similarly data-efficient as other recent work on using
GP models for control [22], [2]. Notably, in this (noise-free)
simulation setting we did not encounter problems with model-
bias despite using only the GP posterior mean.

C. Real Cart-Pole Swing-Up

As a final experiment we applied the proposed architecture
to a real cart-pole system as depicted in Fig. 4. The real system
we used in our experiments consists of a cart with mass of

104

0
—1 -
=
= -2 | -
o)
(a7
oh —3 n
E AGP-iLQR no gain correction
—4 —m— AGP-iLQR -
—o— AGP-iLQR (V expl.,, A = 0.5)

1 2 3 4 5 6 7 8 9 10
Episodes

Fig. 5: Reward achieved by AGP-iLQR, with and without
variance based exploration (V expl.), when evaluated on the
real cart-pole system. Results are averaged over 10 trials.

approximately 1lkg and a pole with mass of approximately
0.1kg and length 0.38m. The 1-dimensional action in this setup
directly controls the voltage of a motor driving the cart and
can be set between —10 and 10 volts. We set the maximum
length of each episode to 150 control cycles. Due to the
limited length of the rail in the real setup the cart cannot move
further than 0.3m to each side. The swing-up problem on this
system is thus more complicated than the one we considered
in simulation; as two swings are necessary to bring the pole
upright. Further, for the task to succeed, the control interval
may not exceed 0.05s which drastically limits computation
time. To circumvent this problem we used an approximated
GP model with 150 reference points in combination with
Predictive Receding Horizon Planning (see Sections III-B2
and III-B1). As before the hyperparameters of the GP were
optimized for 100 steps between each episode.

The results of running AGP-iLQR with a receding horizon
of 15 on this system are shown in Fig. 5. Note that we do
not have a high accuracy ground truth model of the system
and hence cannot apply iLQR to this problem without our
learning algorithm. As can be seen, both the version with
variance-based exploration as well as the version without
quickly learned a good model of the environment. Qualitatively
(not shown in plot) both managed to achieve successful swing-
up and balancing trajectories after 4-7 episodes. However,
when variance-based exploration was not used, the iLQR
optimization became overly optimistic (i.e. model learning
often failed to sufficiently reduce model uncertainty about the
dynamics). Since the iLQR optimization itself is agnostic to
model uncertainty, this results in sub-optimal controllers and
thus in higher variance in the Figure. We also plot the effect
of removing the local gain correction (Line 6 in Algorithm 1)
after learning a successful controller. We observed that with
this change performance degraded, resulting in a controller
that cannot reliably balance the pole upright, due to overcon-
fidence in the one-step-ahead prediction. As a control we also
experimented with executing a pre-planned trajectory of length
150 based (i.e. not using the receding horizon scheme) on the
model learned with AGP-iLQR which, however, did not result
in a successful swing-up behavior. This indicates that one-
step-ahead receding horizon control is a crucial ingredient for
success on this real system. A successful trajectory executed

TABLE I: Required number of episodes for AGP-iLQR until
a successful trajectory for the three considered benchmarks.

DOMAIN # EPISODES | TIME # SAMPLES
Two-LINK 1 68 120
CART-POLE SIM. 2-3 12-18s | 240-360
CART-POLE REAL | 4-7 20-42s | 480-840

by our algorithm is depicted in Fig. 4 a video of a complete
learning run can be found at http://goo.gl/04j8sX. A summary
of our algorithms performance is given in Table I.

V. DISCUSSION AND RELATED WORK

Our approach is related to a large body of work on both
trajectory optimization with (stochastic) optimal control and
dynamics model learning for robotics. In the following we
give a brief overview of its connection to existing work as
well as possibilities for improvements.

For performing online trajectory optimization we employ a
receding horizon variant of the iterative LQR (iLQR) algorithm
[5], [14]. In contrast to standard differential dynamic program-
ming [12] iLQR does not use second-order information of the
dynamics function. As calculating second order information
is usually costly this is advantageous in a real-world control
setting. The key difference of our algorithm compared to
standard iLQR is that we do not assume the availability of
a true system model but rather learn a non-parametric model
from data. Furthermore, differing from [14] we employ a one
step ahead predictive control scheme — using the learned model
— which enables real-time control.

Combining iLQR with a learned model is a well established
research problem in the control and reinforcement learning
communities. An early approach was presented by Schaal and
Atkeson [23]. They explored learning of models of a robot arm
for offline trajectory optimization with DDP. They however
encountered situations were learning fails due to model bias
as they neither employed online learning nor receding horizon
planning. More recently Mitrovic et al. [24] combined iLQR
with an adaptive model based on Locally Weighted Projection
Regression. Similar to the work we present, they use analytic
derivatives of the learned model w.r.t the input variables for
the iLQR optimization steps. However as in [23] they did not
use a receding horizon scheme for online re-planning which
makes their approach inapplicable for the control problems we
consider (cf. Section IV-C).

Among the attempts to combine DDP with a learned model
the work closest to ours is that of Coates and colleagues
[1]. They identify a model for an autonomous helicopter and
use it to optimize a feedback controller using online receding
horizon DDP [1]. Their algorithm for model identification [25]
is very efficient but requires considerable expert knowledge
about the system to be controlled. In contrast, our GP-based
model learning algorithm is computationally more expensive,
but relies on less prior knowledge and provides estimates about
the uncertainty of its predictions.

For model learning we build on existing work for em-
ploying Gaussian Processes Regression in order to estimate

—— e e

1 P
[=

[= z
———a——

4

e

5 6
5 2 z

L =
—

Fig. 4: Depiction of a successful trajectory on the real cart-pole. Two swings are necessary to swing-up the pole on this system.
We only show the last swing due to space constraints. We refer to the video (http://goo.gl/04j8sX) for a full run of the algorithm.

the transition function of the dynamical system: Kuss and
Rasmussen [26] use a GP dynamics model in combination with
a GP based value function approximation for reinforcement
learning. GPs have recently also been used for (inverse)
dynamics model learning in robotics (see e.g. [15], [16]). The
formulation we present in this paper is directly based on recent
work by Deisenroth et al. [2], where the authors use GPs to
learn the dynamics, and estimate expected long term rewards
in a policy-search approach based on these models.

Augmenting the reward function with a variance-based
term has previously been considered e.g. in [27] and [28].

Despite the computational efficiency of using the instanta-
neous variance of our GP predictions it would be desirable to
incorporate the GP uncertainty into the trajectory optimization
in a more principled manner. One possible way to achieve this
would be to integrate our GP-based model in the Approxi-
mate Inference Control (AICO) [6] framework. AICO casts
the trajectory optimization problem as one of probabilistic
inference, which uses local messages passed between random
variables along a trajectory. This would be a natural fit for the
probabilities of state transitions output by our GP models.

VI. CONCLUSION

We presented AGP-iLQR, an algorithm for joint model
learning and optimal control of non-linear dynamical systems
based on Gaussian Process models and an adapted iLQR
formulation. It achieves real-time control capability through
(1) asynchronous, predictive, one-step-ahead planning and (2)
a sparse approximation of the GP. It addresses model-bias
through variance-based exploration. Our experiments show that
the presented algorithm is highly data-efficient, learning to
control three benchmark problems in few system interactions.
Most notably our algorithm successfully learned to control a
real cart-pole system with unknown dynamics from scratch.

ACKNOWLEDGMENTS

This work was supported by DFG project number R1923/7-
1. Support also came from the BrainLinks-BrainTools cluster
of excellence, DFG-EX-C1086. We thank Christof Schoetz for
help with the implementation, Thomas Lampe for help with
the real cart-pole system, Manuel Blum for developing libgp,
and the three anonymous reviewers for helpful comments.

REFERENCES
[1] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for Control from Multiple
Demonstrations,” in ICML, 2008.

[2] M. Deisenroth and C. Rasmussen, “PILCO: A Model-Based and Data-
Efficient Approach to Policy Search,” in ICML, 2011.

[3] R. Hafner and M. Riedmiller, “Reinforcement Learning in Feedback
Control,” Machine Learning, 2011.

(4]

(5]

(6]
(71
(8]
(91
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in
Robotics: A Survey,” IJRR, 2013.

W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design for
Nonlinear Biological Movement Systems,” in ICINCO (1), 2004, pp.
222-229.

M. Toussaint, “Robot Trajectory Optimization using Approximate In-
ference,” in ICML, 2009.

S. Levine and V. Koltun, “Variational Policy Search via Trajectory
Optimization,” in NIPS, 2013.
——, “Learning Complex Neural Network Policies with Trajectory
Optimization,” in /CML, 2014.

D. Nguyen-Tuong and J. Peters, “Model Learning for Robot Control:
A Survey,” Cognitive Processing, vol. 12, no. 4, pp. 319-340, 2011.

S. Schaal and C. Atkeson, “Learning Control in Robotics,” Robotics
Automation Magazine, IEEE, vol. 17, no. 2, pp. 20-29, June 2010.

R. I. Brafman and M. Tennenholtz, “R-max - A General Polynomial
Time Algorithm for Near-optimal Reinforcement Learning,” JMLR,
vol. 3, pp. 213-231, 2003.

D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
New York: Elsevier, 1970.

Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization of
Complex Behaviors Through Online Trajectory Optimization,” in /ROS,
2012.

Y. Tassa, T. Erez, and W. D. Smart, “Receding Horizon Differential
Dynamic Programming,” in NIPS, 2008.

C. Hartmann, J. Boedecker, O. Obst, S. Ikemoto, and M. Asada, ‘“Real-
Time Inverse Dynamics Learning for Musculoskeletal Robots based on
Echo State Gaussian Process Regression,” in R:SS. MIT Press, 2013.
D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model Learning with
Local Gaussian Process Regression,” Advanced Robotics, 2009.

E. Solak, R. Murray-smith, W. E. Leithead, D. J. Leith, and C. E.
Rasmussen, “Derivative Observations in Gaussian Process Models of
Dynamic Systems,” in NIPS, 2003.

G. Wahba, Spline Models for Observational Data.
Industrial and Applied Mathematics], 1990.

T. Poggio and F. Girosi, “Networks for Approximation and Learning,”
Proceedings of the IEEE, 1990.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA: MIT Press, 2006.

L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, 2010.

M. P. Deisenroth, “Efficient Reinforcement Learning using Gaussian
Processes,” Ph.D. dissertation, 2010.

C. G. Atkeson and S. Schaal, “Robot Learning from Demonstration,”
in ICML, 1997, pp. 12-20.

D. Mitrovic, S. Klanke, and S. Vijayakumar, “Optimal Control with
Adaptive Internal Dynamics Model,” in ICINCO, 2008.

P. Abbeel, V. Ganapathi, and A. Y. Ng, “Learning Vehicular Dynamics,
with Application to Modeling Helicopters,” in NIPS, 2006.

M. Kuss and C. E. Rasmussen, “Gaussian Processes in Reinforcement
Learning,” in NIPS, 2004.

A. Simpkins, R. De Callafon, and E. Todorov, “Optimal Trade-Off
Between Exploration and Exploitation,” in Proceedings of the American
Control Conference, 2008.

J. Sorg, S. P. Singh, and R. L. Lewis, “Variance-Based Rewards for
Approximate Bayesian Reinforcement Learning,” in UAZ, 2010.

SIAM [Society for

