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Abstract. Reinforcement Learning has established as a framework that
allows an autonomous agent for automatically acquiring – in a trial and
error-based manner – a behavior policy based on a specification of the
desired behavior of the system. In a multi-agent system, however, the
decentralization of the control and observation of the system among in-
dependent agents has a significant impact on learning and it complexity.
In this survey talk, we briefly review the foundations of single-agent re-
inforcement learning, point to the merits and challenges when applied
in a multi-agent setting, and illustrate its potential in the context of an
application from the field of manufacturing control and scheduling.
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Decentralized decision-making has become an active research topic in arti-
ficial intelligence [32]. In a distributed system, a number of individually acting
agents coexist. If they strive to accomplish a common goal, i.e. if the multi-agent
system is a cooperative one, then the establishment of coordinated cooperation
between the agents is of utmost importance [18]. With this in mind, our focus
is on multi-agent reinforcement learning methods which allow for automatically
acquiring cooperative policies based solely on a specification of the desired joint
behavior of the whole system. Most of the content presented in this survey is
based on the author’s work on learning in cooperative multi-agent systems [5].



Research in distributed systems has pointed out that the decentralization of
the control of the system and of the observation of the system among independent
agents has a significant impact on the complexity of solving a given problem [3].
Therefore, we have addressed the intricacy of learning and acting in multi-agent
systems by the two following complementary approaches.

Many practical problems exhibit some structure whose exploitation may ease
the task of finding solutions [2, 17]. For this reason, we have identified a subclass
of general decentralized decision-making problems, the class of decentralized
Markov decision processes with changing action sets and partially ordered tran-
sition dependencies, which features certain regularities in the way the agents
interact with one another [14]. We have shown that the complexity of optimally
solving a problem instance from this class is provably lower than solving a general
one [6].

Even though a lower complexity class may be entered by sticking to certain
subclasses of a general multi-agent problem [26], the computational complexity
may be still so high that optimally solving it is infeasible. This holds, in partic-
ular, when intending to tackle problems of larger size that are of relevance for
practical problems. Given these facts, our goal has not been to develop optimal
solution algorithms that are applicable to small problems only [15], but to look
for techniques capable of quickly obtaining approximate solutions in the vicinity
of the optimum [19, 33]. To this end, we have developed and successfully uti-
lized various model-free reinforcement learning approaches [13, 22]. In contrast
to offline planning algorithms which aim at finding optimal solutions in a model-
based manner, reinforcement learning [29] allows for employing independently
learning agents and, hence, for a full decentralization of the problem [10].

As a matter of fact, many large-scale applications are well-suited to be for-
mulated in terms of spatially or functionally distributed entities [24, 31, 23, 7,
16, 21]. Thus, multi-agent approaches are of high relevance to various real-world
problems [4, 1, 27, 30, 28, 25]. Job-shop scheduling [20] is one such application
stemming from the field of factory optimization and manufacturing control. It
has been our particular goal to interpret job-shop scheduling problems as dis-
tributed sequential decision-making problems [8] and to employ the multi-agent
reinforcement learning algorithms we propose for solving such problems [9, 12].
Moreover, we have successfully evaluated the performance of our learning ap-
proaches in the scope of various established scheduling benchmark problems
[11].
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