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Abstract— In this paper, we suggest and analyze the use
of approximate reinforcement learning techniques for a new
category of challenging benchmark problems from the field
of Operations Research. We demonstrate that interpreting and
solving the task of job-shop scheduling as a multi-agent learning
problem is beneficial for obtaining near-optimal solutions and
can very well compete with alternative solution approaches. The
evaluation of our algorithms focuses on numerous established
Operations Research benchmark problems.

I. INTRODUCTION

The empirical evaluation of reinforcement learning (RL)
algorithms frequently focuses on established benchmark prob-
lems such as the cart-pole, the mountain car, or the bicycle
benchmark. These problems are clearly defined and allow
for a distinct comparison of RL methods, notwithstanding
the fact that, from a practitioner’s point of view, they are
still far away from the problem sizes to be tackled in real-
world problems. In this work, we want to bridge the gap
between focusing on artificial RL benchmark problems and
real-world applications. It is our goal to spotlight job-shop
scheduling problems as a new class of benchmark problems
of approximate RL algorithms that feature both the character
of standardized, well-defined task descriptions as well as the
property of representing application-oriented and extremely
challenging problems.

Job-shop scheduling problems (JSSPs) are well-known to be
NP-hard and have been in the focus of Operations Research
since decades. In between, numerous problem instances have
established as benchmarks and are frequently used to compare
different analytical solution methods against one another. In
this paper, we will start off by providing a thorough description
of these types of problems and delineate why they are well
suited to be employed as RL benchmarks, too. In this regard,
we also discuss different possibilities on how to model a JSSP
as a sequential decision problem. In Section II, we present
MAPS (Multi-Agent Production Scheduling), our framework
to solving job-shop scheduling problems with the help of RL
and describe the learning algorithms we are utilizing. Section
III presents our results of applying MAPS to the scheduling
benchmarks mentioned, and Section IV concludes.

A. What is Job-Shop Scheduling?

The goal of scheduling is to allocate a specified number
of jobs (also called tasks) to a limited number resources (also

Fig. 1. Simple 6 × 6 benchmark problem instance (ft6) and a Gantt chart
representation of an optimal solution.

called machines) in such a manner that some specific objective
is optimized. In job-shop scheduling n jobs must be processed
on m machines in a given order. Each job j (j ∈ {1, . . . , n})
consists of vj operations oj,1, . . . , oj,vj

that have to be handled
on a specific resource for a certain duration. A job is finished
after completion of its last operation (completion time cj).

Figure 1 shows a 6 × 6 (6 resources and 6 jobs, m =
n = 6) problem instance from [1]. In this example, job 2
must first be processed on resource 2 for 8 time units, then
go to resource 3 for 5 time steps, and so on. Resource 3
may start processing with job 1, 3, or 5. Over the years,
numerous benchmark problem instances like this have been
proposed and are publicly available (e.g. from the OR Library
[2]). Most of them are, of course, much more complex and
certain examples remained unsolved for decades. For other,
larger-scale instances there is still no optimal solution known.
Common characteristic of these JSSPs is that usually no
recirculation is allowed, i.e. that each job has to be processed
exactly once on each resource, implying that vj = m. Though
there are also stochastic scheduling problems, in the scope of
this work we focus on deterministic ones only.

In general, scheduling objectives to be optimized all relate
to the completion times of the jobs. For example, it may be
desired to minimize the jobs’ due date violations or the number
of jobs that are late. In this paper, however, we focus on the
objective of minimizing maximum makespan Cmax, which is
the length of the schedule (Cmax = max{cj}), since most
publications on results achieved for JSSP benchmarks focus
on that objective, too. The Gantt chart in Figure 1 shows an
optimal solution for that 6×6 benchmark (Cmax = 55).
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B. MDP vs. MMDP Modelling of Scheduling Problems

Basically, there are two ways of modelling a JSSP as
Markov Decision Process (MDP, [3]). The straightforward
alternative is to interpret a scheduling problems as a single
MDP. We can represent the state s(t) ∈ S of the system by the
situation of all resources as well as the processing status of all
jobs. Additionally, a terminal state sf describes the situation
when all jobs have been finished, i.e. sk(t) = sf for all
t ≥ Cmax. An action a(t) ∈ A describes the decision of which
jobs are to be processed next on the resources. Moreover, we
can say that the overall goal of scheduling is to find a policy
π� that minimizes production costs c(s, a, t) accumulated over
time

π� := min
π

Cmax∑
t=1

c(s, a, t). (1)

Costs may depend on the current situation, as well as on the
selected decision, and have to relate closely to the desired
optimization goal (e.g. they may occur when a job violates its
due date).

The second modelling alternative extends the first one by
interpreting JSSPs as a multi-agent Markov Decision Process
(MMDP, [4]). Here, we associate to each of the m resources
an agent k that locally decides on elementary actions ak(t).
So, an element a(t) = (a1(t), . . . , am(t)) of the joint action
space is a vector composed of m elementary actions that are
assumed to be executed concurrently. For example, starting
to process the example in Figure 1 the agent associated to
resource k = 3 must decide which job to process next at this
resource, where its set of actions at t = 1 is A3(1) = {1, 3, 5}.

In scheduling theory, a distinction between predictive
production scheduling (also called analytical scheduling or
offline-planning) and reactive scheduling (or online control)
is made [5]. While the former assumes complete knowledge
over the tasks to be accomplished, the latter is concerned
with making local decisions independently. Obviously, a single
MDP modelling gives rise to analytical scheduling, whereas
the MMDP formulation corresponds to performing reactive
scheduling. In the following we prefer the MMDP modelling,
hence, doing reactive scheduling, for the following reasons.

• Reactive scheduling features the advantage of being able
to react to unforeseen events (like a machine break-
down) appropriately without the need to do complete re-
planning.

• Operations Research has to the bigger part focused on
analytical scheduling and yielded numerous excellent
algorithms (e.g. branch-and-bound) capable of finding the
optimal schedule in reasonable time when the problem
dimension (m × n) is not too large and when being
provided with complete knowledge over the entire prob-
lem. By contrast, reactive scheduling approaches are
decentralized by definition and, hence, the task of making
globally optimal decisions is aggravated. Accordingly,
many interesting open research questions arise.

• From a practical point of view, a centralized control can-
not always be instantiated, why the MMDP formulation

is of higher impact to real-world applications.

C. Related Work

Job-shop scheduling has received an enormous amount of
attention in the research literature. Classical approaches to
solving job-shop scheduling problems cover, for instance,
disjunctive programming, branch-and-bound algorithms, or the
shifting bottleneck heuristic—a thorough overview is given in
[6]. Moreover, there is a large number of local search proce-
dures to solve job-shop scheduling problems. These include
beam search, simulated annealing, or tabu search (see [7] for
details). Furthermore, various different search approaches have
been suggested based on genetic algorithms (e.g. [8] or [9]).

In contrast to these analytical methods yielding to search
for a single problem’s best solution, this paper’s focus is
on the class of reactive scheduling techniques. Most relevant
references for reactive scheduling cover simple as well as
complex dispatching priority rules (see [10] or [11]). Focusing
on job-shop scheduling with blocking and no-wait constraints,
in [12] the authors develop heuristic dispatching rules (such
as AMCC, cf. Section III) that are suitable for online control.

Using our reactive scheduling approach, the finally resulting
schedule is not calculated beforehand, viz before execution
time. Insofar, our RL approach to job-shop scheduling is
very different from the work of Zhang and Dietterich [13]
who developed a repair-based scheduler that is trained using
the temporal difference reinforcement learning algorithm and
that starts with a critical-path schedule and incrementally
repairs constraint violations. Mahadevan et al. have presented
an average-reward reinforcement learning algorithm for the
optimization of transfer lines in production manufacturing
which resembles a specialization of a scheduling problem.
They show that the adaptive resources are able to effectively
learn when they have to request maintenance [14], and that
introducing a hierarchical decomposition of the learning task
is beneficial for obtaining superior results [15].

II. REINFORCEMENT LEARNING FOR MULTI-AGENT

PRODUCTION SCHEDULING

In this section, we first introduce MAPS (multi-agent
production scheduling), our approach to solving job-shop
scheduling problems by adopting a multi-agent perspective.
The key concepts of MAPS provide possible answers to
questions regarding a suitable state and action modelling in
the considered multi-agent domain, as well as to questions
on how to benefit from employing a reinforcement learning
algorithm at the core of the approach. Besides a short review
on the basic ideas of our relevant previous work [16], [17], we
suggest several extensions to render MAPS applicable to the
types of large-scale benchmark problems we are considering
in this paper.

A. Foundations of MAPS

As indicated, the global decision a(t) is a vector of single
decisions ak(t) that are made by agents associated to the
m resources. For an agent taking an action means deciding
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which job to process next out of the set Ak(t) of currently
waiting jobs at the corresponding resource k. Accordingly,
an agent cannot take an action at each discrete time step t,
but only after its resource has finished one operation, because
each resource can only work on processing one job at a time.
Therefore, the agent makes its decisions after time intervals
whose lengths ∆tk are determined by the durations of the
operations processed.

While in the previous work mentioned we primarily con-
sidered settings where only one learning agent was part of
the system, we now turn to real multi-agent settings. In the
multi-agent literature, there is a distinction between joint-
action learners and independent learners [18]. The former
can observe their own, as well as the other agents’ action
choices. Consequently, in that case the MMDP can be reverted
to a single-agent MDP with an extended action set and be
solved by some standard method. In this paper, however, we
concentrate on the case of independent learners, where each
agent k knows only its own contribution to the joint action.

The global view s(t) on the plant, including the situation
at all resources and the processing status of all jobs, would
allow some classical solution algorithm (like a branch-and-
bound method), being run within each agent, to construct a
disjunctive graph for the problem at hand and solve it. In this
respect, however, we introduce a significant aggravation of the
problem: First, we require a reactive scheduling decision in
each state to be taken in real-time, i.e. we do not allot arbitrary
amounts of computation time. Second, we restrict the amount
of state information the agents get. Instead of the global view,
each agent k has a local view sk(t) only, containing condensed
information about its associated resource and the jobs waiting
there. On the one hand, this restriction increases the difficulty
in finding an optimal schedule. On the other hand, it allows for
complete decentralization in decision-making since each agent
is provided with information only that are relevant for making
a local decision at resource k. This is particularly useful in
applications where no global control can be instantiated and
where communication between distributed working centers is
impossible. Nevertheless, the number of features provided to
a single agent, viz the local view, is still large and forces us
tackle a high-dimensional continuous state-action space.

B. Using RL to Learn Dispatching Policies

When there is no explicit model of the environment avail-
able, Q learning [19] is one of the reinforcement learning
methods of choice to learn a value function for the problem
at hand, from which a control policy can be derived. The Q
function Q : S × A → R expresses the expected costs when
taking a certain action in a specific state. The Q update rule
directly updates the values of state-action pairs according to

Q(s, a) := (1− α)Q(s, a) + α(c(s, a, s′) + γ min
b∈A(s′)

Q(s′, b))

(2)
where α is the learning rate, γ the discount factor, and where
the successor state s′ and the immediate costs c(s, a, s′) are
generated by simulation or by interaction with a real process.

Since our approach enforces a distributed decision-making
by independent agents, the Q update rule is implemented
within each learning agent and adapted to the local decision
process (α = 1 for better readability):

Qk(sk(t), ak(t)) := c(s, a, t) (3)

+γ min
b∈Ak(tnext)

Qk(sk(tnext), b)

This learning rule establishes a relation between the local
dispatching decisions as made by agent k and the overall
optimization goal, since the global immediate costs are taken
into consideration (e.g. costs caused due to a tardy job in the
system).

A crucial precondition for MAPS to learning to make
sophisticated scheduling decisions is that the global direct
costs (as feedback to the learners) coincide with the our over-
all objective of scheduling (minimizing maximal makespan
Cmax). It is well-known that the makespan of a schedule is
minimized, if as many resources as possible are processing
jobs concurrently and if as few as possible resources with
queued jobs are in the system: Usually, a high utilization of
the resources implies a minimal makespan [7]. This argument
gives rise to defining

c(s, a, t) :=
m∑

k=1

|{j | j queued at k}| (4)

so that high costs are incurred when many jobs that are waiting
for further processing are in the system and, hence, the overall
utilization of the resources is poor.

If we assume convergence of Qk to the optimal local
value function Q�

k, we obtain a predictor of the expected
accumulated global costs that will arise, when in state sk a
job denoted by ak would be processed next. Then, a policy π
that exploits Qk greedily will lead to optimized performance
of the scheduling agent. A policy greedily exploiting the value
function chooses its action ak(t) as follows

ak(t) := π(sk, ak, t) = min
b∈Ak(t)

Qk(sk(t), b) (5)

We distinguish between the learning and the application
phases of the agents’ dispatching policies. During the latter,
the learned Qk function is exploited greedily according to
Equation 5. During the former, however, updates to Qk are
made (cf. Equation 4) and an exploration strategy is pursued
which chooses random actions with some probability.

Assuming a typical m× n job-shop scheduling problem, it
is easy to see that the transition graph of the system is acyclic
and the number of states till reaching sf is finite. Therefore,
all policies are always proper and the problem horizon is finite,
which is why γ can safely be set to one (no discounting).

When considering a single job-shop problem, the number
of possible states is, of course, finite since we consider
deterministic JSSPs. The motivation of our research, however,
is not to just focus on individual problem instances, but on
arbitrary ones. Accordingly, we need to assume the domain of
Q to be infinite or even continuous and will have to employ
function approximation mechanisms to represent it.
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C. Representing the State-Action Value Function

Since we consider value functions Qk with infinite domain,
we need to employ some function approximation technique
to represent it. In this work, we use multi-layer perceptron
neural networks to represent the state-action value function.
On the one hand, feed-forward neural networks are known to
be capable of approximating arbitrarily closely any function
f : D → R that is continuous on a bounded set D [20].
On the other hand, we aim at exploiting the generalization
capabilities of neural networks yielding general dispatching
policies, i.e. policies which are not just tuned for the situations
encountered during training, but which are general enough to
be applied to unknown situations, too.

1) Net In-/Output: Input to the neural net is the local
view, i.e. the features describing the situation of the resource
as well as single waiting jobs. The neural network’s output
value Qk(sk, ak) directly reflects the priority value of the job
corresponding to action ak depending on the current state sk.

We represent states sk ∈ S and actions/jobs ak ∈ Ak by
feature vectors generated by the resources’ local view. A
thorough feature description is beyond the scope of this paper.
We note, however, that the features have to exhibit some
relation to the future expected costs, hence to the makespan,
and must allow for a comprehensive characterization of the
current situation. So, state features depict the current situation
of the resource describing its processing state and the set Ak

of jobs currently waiting at that resource. Action features ak

characterize single jobs from Ak currently selectable by k.
Here, we aim at describing makespan-oriented properties of
individual jobs (like processing time or relative waiting time
indices) as well as immediate consequences to be expected
when processing that job next.

2) Fitted Q Iteration: In Section II-B, we have pointed to
the distinction between the learning and the application phase
of MAPS. During learning, a set SL of scheduling problem
instances is given—these problems are processed on the plant
repeatedly, where the agents are allowed to schedule jobs
randomly with some probability, obtaining new experiences
that way. In principle, it is possible to perform an update on
the state-action value function according to Equation 4 after
each state transition. However, to foster fast improvements of
the learned policy by exploiting the training data as efficiently
as possible, we make use of fitted Q iteration.

Fitted Q iteration denotes a batch (also termed off-line)
reinforcement learning framework, in which an approximation
of the optimal value function is computed from a finite set of
four-tuples [21]. The set of four-tuples T = {(si, ai, ci, si)|i =
1, . . . , p} may be collected in any arbitrary manner and
corresponds to single “experience units” made up of states si,
the respective actions ai taken, the immediate costs ci incurred,
as well as the successor states si entered.

The basic algorithm takes T, as well as a regression algo-
rithm as input, and after having initialized Q̃ and a counter

q to zero, repeatedly processes the following three steps until
some stop criterion becomes true:

• increment q
• build up a training set F for the regression algorithm

according to: F := {(ini, outi)|i = 1, . . . , p} where
ini = (si, ai) and outi = ci + γ minb∈A(si) Q̃q−1(si, b)

• use the regression algorithm and the training set F to
induce an approximation Q̃q : S × A → R

Subsequently, we consider neural fitted Q iteration (NFQ,
[22]), a realization of fitted Q iteration where multi-layer
neural networks are used to represent the Q function and
an enhanced network weight update rule is employed. NFQ
is an effective and efficient reinforcement learning method
for training a Q value function that requires reasonably few
interactions with the scheduling plant to generate dispatching
policies of high quality. We will develop an optimistic version
of NFQ to be used in the scope of this work in Section II-D.

3) Convergence Problems: A critical question concerns the
convergence of the learning technique to a (near-)optimal
decision policy when used in conjunction with value function
approximation. In spite of a number of advantages, neural
networks are known to belong to the class of “exaggerating”
value function approximation mechanisms [23] and as such
feature the potential risk of diverging. There are, however,
several methods for coping with the danger of non-convergent
behavior of a reinforcement learning method and to reduce the
negative effects of phenomenons like chattering and policy
degradation. Since a thorough discussion of that concern is
beyond the scope of this paper, we refer to relevant literature
[24]–[26].

In order to be able to safely apply our learning approach to
reactive scheduling to complex benchmark problems, we rely
on policy screening, a straightforward, yet computationally
intensive method for selecting high-quality policies in spite of
oscillations occurring during learning (suggested by Bertsekas
and Tsitsiklis [24]): We let the policies generated undergo
an additional evaluation based on simulation (by processing
problems from a separate set of screening scheduling problems
SS), which takes place in between single iterations of the NFQ
learning algorithm. As a result, we can determine the actual
performance of the policy represented by the Q function in
each iteration of the algorithm and, finally, detect and return
the best policy created.

D. Optimistic Neural Fitted Q Iteration

Remember that we take a fully distributed view on multi-
agent scheduling: The agents are completely decoupled from
one another, get local state information, and are not allowed to
share information via communication. Thus, unless the poli-
cies of other agents are stable, the environment as experienced
by a single agent appears to be non-stationary. Furthermore,
a crucial problem of cooperative independent learners is their
inability to attribute the global costs correctly to different joint
actions: Taking some action ak in some state may at different
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times incur different costs/state transitions depending on the
other agents’ action choices.

Given the fact that the scheduling benchmarks to which
we intend to apply MAPS are deterministic, we can employ
a powerful mechanism for cooperative multi-agent learning
during the learning phase permitting all agents to learn in
parallel. Lauer and Riedmiller [27] suggest an algorithm for
distributed Q learning of independent learners using the so
called optimistic assumption (OA). Here, each agent assumes
that all other agents act optimally, i.e. that the combination of
all elementary actions forms an optimal joint-action vector.
Given the standard prerequisites for Q learning, it can be
shown that the optimistic assumption Q iteration rule (with
current state s, action a, successor state s′)

Qk(s, a) := max{Qk(s, a), r(s, a)+γ max
b∈A(s′)

Qk(s′, b)} (6)

to be applied to agent-specific local Q functions Qk converges
to the optimal Q� function in a deterministic environment,
if initially Qk ≡ 0 for all k and if the immediate rewards
r(s, a) are always larger or equal zero. Hence, the basic idea
of that update rule is that the expected returns of state-action
pairs are captured in the value of Qk by successively taking
the maximum. For more details on that algorithm and on the
derivation of coordinated agent-specific policies we refer to
[27].

For the benchmark problems we are tackling in this work,
we have to take the following two facts into consideration:
First, we are using the notion of costs instead of rewards,
so that small Q values correspond to “good” state-action pairs
incurring low expected costs (though we assume all immediate
global costs to be larger or equal zero, cf. Equation 4).
Second, we perform batch-mode learning by first collecting
a large amount of training data (state transition tuples) and
then calculating updated values to the Q functions.

To comply with these requirements, we suggest an offline
reinforcement learning method that adapts and combines neu-
ral fitted Q iteration and the optimistic assumption Q update
rule. In Figure 2, we give a pseudo-code realization of neural
fitted Q iteration using the optimistic assumption (OA-NFQ).
The distinctive feature of that algorithm lies in step 1 where a
reduced (optimistic) training set O with |O| = p′ is constructed
from the original training tuple set T (|T| = p ≥ p′).
In a deterministic environment where scheduling scenarios
from a fixed set SL of problems are repeatedly processed,
the probability of entering some state sk more than once is
larger than zero. If in sk a certain action ak ∈ A(sk) is
taken again when having entered sk for a repeated time, it
may eventually incur very different costs because of different
elementary actions selected by other agents. The definition
of O basically realizes a partitioning of T into p′ clusters
with respect to identical values of sk and ak (steps 1a and
1b). In step 1c the optimistic assumption is applied which
corresponds to implicitly assuming the best joint action vector
covered by the experience collected so far, i.e. assuming the
other agents have taken optimal elementary actions that are

Input: number of Q iterations N ∈ N, training set
Tk = {(sk(t), ak(t), c(s, a, t), sk(tnext))

| t ∈ set of decision time points}
for better readability abbreviated as Tk = {(si, ai, ci, si)|i = 1, . . . , p}
Output: state-action value function Q

(top)
k

init Q
(0)
k ≡ 0

for q = 0 to N − 1 //Q iterations

1) generate optimistic training set
O = {(inj , outj)|j = 1, . . . , p′} with p′ ≤ p

with (a) ∀inj ∃i ∈ {1, . . . , p} with inj = (si, ai)
(b) ini �= inj ∀i �= j (i, j ∈ {1, . . . , p′})
(c)

outj := min
(si,ai,ci,si)∈Tk,

(si,ai)=inj

(
ci + γ min

b∈A(s′)
Q

(q)
k (s′i, b)

)

2) train neural network given O to induce a new Q
function Q

(q+1)
k

3) do policy screening to evaluate π
Q

(q+1)
k

and memorize

Q
(top)
k := Q

(q+1)
k in case of a policy improvement

Fig. 2. OA-NFQ, a realization of neural fitted Q iteration in deterministic
multi-agent settings based on the optimistic assumption. The value function’s
superscripts in Q(q) denote the number q of the respective Q iteration, the
subscripts k indicate the agent.

most appropriate for the current state and the agent’s own
elementary action ak. Thus, the target value outj for some
state-action pair inj = (sj , aj) is the minimal sum of the
immediate costs and discounted costs to go over all tuples
(sj , aj , ·, ·) ∈ T.

After having constructed the training set O any suitable
neural network training algorithm can be employed for the
regression task at hand (e.g. standard backpropagation or the
faster Rprop algorithm [28] we use). Apart from those net
training issues, the pseudo-code of OA-NFQ in Figure 2
reflects also the policy screening technique (cf. Section II-
C): In between individual Q iterations we let the current
value function Q

(q)
k and the corresponding dispatching policy,

respectively, undergo an additional evaluation based on simu-
lating a number of screening scheduling problems from a set
SS . Via that mechanism the best Q iteration and its belonging
Q function Q

(top)
k is detected and finally returned.

We need to stress that in presence of using a neural
value function approximation mechanism to represent Q and
providing agents with local view information only, neither the
convergence guarantees for certain (averaging) types of fitted
Q iteration algorithms (see Ernst et al. [21] for a thorough
discussion), nor the convergence proof of the OA Q learning
algorithm (supporting finite state-action spaces, only) endure.
Nevertheless, it is possible to obtain impressive empirical
results despite the approximations we employ, as we will show
in Section III.

III. BENCHMARKING

In this section, we evaluate the use of approximate rein-
forcement learning for the Operations Research benchmark
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problems that are in the center of our interest. In particular,
we want to address the questions, if it is possible to use the
MAPS approach, utilizing the algorithms we have described in
Section II, to let the agents acquire high-quality dispatching
policies for problem instances of current standards of diffi-
culty. Furthermore, we want to investigate, whether the learnt
policies generalize to other, similar benchmark problems, too.

Benchmark problems abz7-9 were generated by Adams et
al. [29], problems orb1-9 are from Applegate and Cook [30],
and finally, problems la01-20 are due to Lawrence [31].

A. Preliminary Remarks

Within this evaluation, we compare three different types of
algorithms to solve scheduling problems, each of them being
subject to different restrictions.

1) Global View Dispatching Rules perform reactive
scheduling and correspond to the MMDP view on job-
shop scheduling. They take local dispatching decisions
at the respective resources, but are allowed to get hold of
more than just local state information. Instances of this
group are the SQNO rule (heuristic violating the local
view restriction by considering information of the queue
lengths at the resources where the waiting jobs will
have to be processed next) or the powerful AMCC rule
(heuristic to avoid the maximum current Cmax based
on the idea to repeatedly enlarge a consistent selection,
given a general alternative graph representation of the
scheduling problem [12]).

2) Local View Dispatching Rules perform reactive
scheduling as well and make their decisions which job
to process next based solely on their local view on
the respective resource. In the following, we consider
three instances of this group (LPT/SPT rule chooses
operations with longest/shortest processing times first,
FIFO rule considers how long operations had to wait at
some resource).

3) The MAPS approach presented in this paper.

Additionally, for each benchmark considered, we provide
the theoretical optimum, i.e. the makespan of a schedule
with minimal makespan. Regarding the restrictions MAPS is
subject to (MMDP interpretation of a JSSP with local view)
a comparison to group 2) is most self-evident. However, by
approaching or even surpassing the performance of algorithms
from group 1), we can make a case for the power of the MAPS
approach.

B. Example Benchmark

We start with the notorious problem ft10 proposed by Fisher
and Thompson published in the book by Muth and Thompson
[1], that had remained unsolved for more than twenty years.
Here, during the learning phase, MAPS processes SL =
{ft10} repeatedly on the simulated plant, where the agents
associated to the ten resources follow ε-greedy strategies (ε =
0.5) and sample experience while adapting their behaviors
using the OA-NFQ algorithm in conjunction with the policy
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Fig. 3. Learning process for the notorious ft10 problem.

screening method (we set SL = SS , i.e. the screening set
contains the same problems as the training set).

Figure 3 visualizes the learning progress for the ft10 in-
stance. We compare the performance the three groups of meth-
ods listed in Section III-A plus a purely random dispatching
policy. The best solution found by MAPS was discovered after
2920 repeated processings of SL. The makespan Cmax = 960
of the corresponding schedule thus has a relative error of
3.2% compared to the optimal schedule. We note that we have
detected the optimal learned dispatching policy (represented
by the agents’ neural networks representing their Q functions)
by means of the policy screening method described in Section
II-C.

C. Benchmark Suites

Next, we studied the effectiveness of our agent-based
scheduling approach for a large number of different-sized
benchmark problem suites, ranging from job-shop scheduling
problems with five resources and ten jobs to fifteen resources
and twenty jobs. We allowed the agents to sample training data
tuples in an ε-greedy manner for maximally 25000 processings
of SL with SL = SS and permitted intermediate calls to OA-
NFQ (N = 20 iterations of the Q iteration loop) in order to
reach the vicinity of a near-optimal Q function as quickly as
possible.

For a better illustration of the findings we have grouped the
results on individual benchmark problems into classes with
respect to the numbers of resources and jobs to be processed
(Figure 4). For the 5 × 15 (la6-10) and 5 × 20 (la11-15)
benchmark problems, the optimal solution can be found by
our learning approach in all cases, and for the 5 × 10 (la1-5)
and 10× 10 (la16-20, orb1-9) sets, only a small relative error
of less than ten percent compared to the optimal makespan
remains (3.4/4.0/7.2%). As to be expected, dispatching rules,
even those disposing of more than just local state information
(like AMCC or SQNO), are clearly outperformed. For the
larger benchmarks (abz) involving 15 resources and 20 jobs
per problem instance the relative error increases to 10.6%, but
the rule-based schedulers can be outperformed still.

D. Generalization Capabilities

To empirically investigate the generalization capabilities
of the learned dispatching policies, we designed a further
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Fig. 4. For different sets of benchmark problems with equal size, this figure visualizes the average performance of different approaches in terms of minimized
makespan of the resulting schedules. The results are given relative to the makespan of the optimal schedule (100%, black data series). Data series colored
in light gray correspond to static rules having local state information only (group 2), whereas medium gray-colored ones are not subject to that restriction
(group 1). The dark gray-colored data series corresponds to the MAPS approach we have suggested (group 3, performance reported belongs to the makespan
achieved when training for single benchmark problems), which is restricted to the local view, too. Error bars indicate the standard deviations of the relative
errors over the problem instances within the respective benchmark problem sets.

Benchmark Suite Name S5×15
la S10×10

orb

Problem Instances la06, . . . , la10 orb1, . . . , orb9

Local View FIFO 1003.6 9.4% 1164.3 29.6%
LPT 1108.8 20.9% 1226.1 36.5%
SPT 1054.0 14.9% 1142.6 27.1%

Global View AMCC 955.6 4.2% 977.1 8.8%
SQNO 1065.4 16.1% 1163.3 29.5%

MAPS (local view) 951.6 3.7% 1065.1 18.6%
with Cross-Validation 5-fold 3-fold
Avg. Optimum (Cavg

max,opt) 917.6 898.2

TABLE I

GENERALIZATION CAPABILITIES: DURING ITS APPLICATION PHASE,

MAPS’ LEARNED DISPATCHING POLICIES ARE USED FOR PROBLEMS NOT

COVERED DURING TRAINING. AVERAGE MAKESPAN AND REMAINING

ERRORS RELATIVE TO THE OPTIMUM ARE PROVIDED.

experiment. Here, the learning agents were presented three
sets of scheduling problems

• the training set SL for the learning phase,
• the screening set SS for intermediate policy screening

rollouts (as before, we set SL = SS),
• and an application set SA containing independent prob-

lem instances to evaluate the quality of the learning
results on problem instances the agents have not seen
before (SL ∩ SA = ∅).

Of course, it would be unrealistic to expect the dispatching
policies that were trained using, for instance, a training set
with 5 × 15 problems, to bring about reasonable schedul-
ing decisions for very different problems (e.g. for 10 × 10
benchmarks). Therefore, we have conducted experiments for
benchmark suites S consisting of problems with identical sizes
that were provided by the same authors. From an applicatory
point of view, this assumption is appropriate and purposeful,
because it reflects the requirements of a real plant where
usually variations in the scheduling tasks to be solved occur
according to some scheme and depending on the plant layout,

but not in an entirely arbitrary manner.
Moreover, since |S| is rather small under these premises, we

performed ν-fold cross-validation on S, i.e. we disjointed S
into SL and SA, trained on SL and assessed the performance of
the learning results on SA, and finally, repeated that procedure
ν times to form average values.

In Table I we summarize the learning results for a bench-
mark suite of 5× 15 problems S5×15

la = {la06, . . . , la10}
as well as for the more intricate suite of 10×10 problems
S10×10

orb = {orb1, . . . , orb9}. We emphasize that the average
makespan values reported for MAPS correspond to its perfor-
mance on independent test problem instances, i.e. to schedul-
ing scenarios that were not included in the respective training
sets SL

1 during cross-validation. From that numbers (average
remaining errors of 3.7%/18.6% compared to the theoretic
optimum) it is obvious that all static local view dispatchers,
to which MAPS must naturally be compared, are clearly
outperformed. Interestingly, for the S5×15

la problem suite not
just dispatching rules working under the same conditions as
MAPS, but even the AMCC rule is beaten, which exhaustively
benefits from its global view on the plant. For the S10×10

orb suite,
AMCC brings about better performance than MAPS which is
logical since it was capable of yielding nearly the same results
when training MAPS for single 10×10 problem instances in
the experiment described in Section III-C.

We expect that, in future work, we will be able to further
boost the performance of MAPS. In its current version MAPS
can generate schedules of the class Sn of non-delay schedules
exclusively: If a resource has finished processing one operation
and has at least one job waiting, the dispatching agent immedi-
ately continues processing by picking one of the waiting jobs.
From scheduling theory, however, it is known that for certain
scheduling problem instances the optimal schedule may be

1Concerning the performance on the training problem instances from SL

(these values are not included in Table I), MAPS achieves a relative remaining
error of only 0.3% for the la problems and 13.1% for the orb problems.
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a delay schedule from the set of active schedules Sa � Sn,
i.e. a schedule where some resource has to remain idle for
some time units in order to achieve minimal makespan. As a
consequence, MAPS is currently able to produce near-optimal
schedules from Sn and may miss the best schedule possible,
though in many cases the optimum is indeed found (cf. Figure
4). Yet, an extension of MAPS towards delay schedules depicts
an important and promising issue for future work.

IV. CONCLUSION

Numerous instances of job-shop scheduling problems have
established themselves as prevalent benchmark problems in
the field of Operations Research. In this paper, we suggested
the interpretation of JSSPs as sequential decision processes
and to use them as a new class of benchmark problems for
approximate reinforcement learning methods.

Although it is possible to adopt a global view on a given
scheduling problem and model it as a single MDP, we decided
to interpret and solve it as a multi-agent learning problem
using our MAPS approach relying on reinforcement learning.
On the one hand, we therefore have to cope with a problem
complication due to independently learning agents. But, on
the other hand, we derive the benefit of being enabled to
perform reactive scheduling including the capability to react
to unforeseen events. Furthermore, a decentralized view on
a scheduling task is of higher relevance to practice since a
central control cannot always be instantiated.

In addition to introducing the integral concepts and mod-
elling specifics of MAPS we also presented a new rein-
forcement learning method for deterministic multi-agent en-
vironments (OA-NFQ). This algorithm realizes a combination
of data-efficient batch-mode reinforcement learning in con-
junction with neural value function approximation, and the
utilization of an optimistic inter-agent coordination.

Despite the numerous approximations that we have made,
the empirical part of this paper contains several convincing re-
sults for classical OR benchmarks. Obviously, the dispatching
policies our learning agents acquire clearly surpass traditional
dispatching rules and, in some cases, are able to reach the
theoretically optimal solution. Moreover, the acquired policies
feature generalization capabilities, being adequate for similar
scheduling problems not covered during the learning phase.
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