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Abstract

Traditional approaches to solving job-shop schedulin@pjerms assume
full knowledge of the problem and search for a centralizelditam
for a single problem instance. Finding optimal solutionswaver, re-
quires an enormous computationdloet, which becomes critical for
large problem instance sizes and, in particular, in situativhere fre-
quent changes in the environment occur. In this article, daptan al-
ternative view on production scheduling problems by maadgthem as
multi-agent reinforcement learning problems. In fact, weiipret job-
shop scheduling problems as sequential decision procasdexdtach to
each resource an adaptive agent that makes its job dispgtdécisions
independently of the other agents and improves its dispajdiehavior
by trial and error employing a reinforcement learning aidpon. The
utilization of concurrently and independently learningeaty requires
special care in the design of the reinforcement learningrédtgn to
be applied. Therefore, we develop a novel multi-agent legralgo-
rithm, that combines dataffecient batch-mode reinforcement learning,
neural network-based value function approximation, arduge of an
optimistic inter-agent coordination scheme. The evatuedif our learn-
ing framework focuses on numerous established Operatiessdrch
benchmark problems and shows that our approach can verycorH
pete with alternative solution methods.
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1 Introduction

The basic idea behind reinforcement learning (RL) is to $efftvare)
agents acquire a control policy on their own on the basisiaf &and error
by repeated interaction within their environment [33]. Tdmapirical evalu-
ation of reinforcement learning algorithms frequentlyses on established
benchmark problems such as the cart-pole, the mountairocane bicycle
benchmark. These problems are clearly defined and allow diistenct com-
parison of RL methods, notwithstanding the fact that, frompractitioner’s
point of view, they are still far away from the problem sizesbe tackled in
real-world problems. In this work, we aim at bridging the dsgiween fo-
cusing on artificial RL benchmark problems and real-worlgdli@ations. We
spotlight job-shop scheduling problems (JSSPs), a spat#ss of problems
from the field of production scheduling, as an interestinmetef benchmark
problems that feature both the character of standardizetdsfined task de-
scriptions as well as the property of representing applinatriented and ex-
tremely challenging problems.

In production scheduling, tasks have to be allocated to isddmumber of
resources in such a manner that one or more objectives aneizgd. Though
various classical approaches can be shown to provide dohaions to vari-
ous scheduling problem variants, they typically do notesgath problem size,
sufering from an exponential increase in computation time.révious work
[32, 13], we have explored a novel alternative approachadymtion schedul-
ing that performs reactive scheduling and is capable ofymmog) approximate
solutions in minimal time. Here, each resource is equippitd avscheduling
agent that makes the decision on which job to process negtltssely on its
local view on the plant. As each agent follows its own decigiolicy, thus
rendering a central control unnecessary, this approachrtgplarly suitable
for environments where unexpected events, such as thalasfimew tasks or
machine breakdowns, may occur and, hence, frequent reiparvould be
required.

We employ reinforcement learning to let the scheduling egyadapt their
behavior policy, based on repeatedly collecting expedenithin their envi-
ronment and on receiving positive or negative feedbackf@getement sig-
nals) from that environment. After thégarning phase, each agent will have
obtained a purposive, reactive behavior for the respeetivéronment. Then,

during theapplicationphase, e.g. during application in a real plant, each agent

can make its scheduling decisions very quickly by utilizitsgreactive behav-
ior.
Reinforcement learning and job-shop scheduling depicttwe central



concepts covered in this article. Accordingly, in Sectiow@ start ¢f by
briefly introducing notation and reviewing some basics of &id job-shop
scheduling. Moreover, we discuss basic modelling altaresfor solving job-
shop scheduling problems by means of using reinforcemamitey, point to
related work, and clarify similarities andffirences between our approach to
solving JSSPs and other techniques from the fields of OpesatResearch
and Artificial Intelligence. Section 3 presents in detail awlti-agent rein-
forcement learning approach for performing reactive satieg. In Section

4, we we focus on diierent advanced research questions that arise when aim-
ing at the application of our learning framework for largede problems of
current standards of filiculty. The experimental part of this article (Section
5) concentrates on established Operations Research baricpnoblems for
job-shop scheduling and contrasts the performance of captee approach
to several analytical and heuristic ones. Furthermore,vedyae the general-
ization capabilities of the learned dispatching policdiscuss the results, and
prospect important topics for future work.

2 Foundations

This article is concerned with a number offfdrent lines of research.
Therefore, this section introduces the notation used suiesdly and cov-
ers basics of reinforcement learning, job-shop schedulargl multi-agent
scheduling that are relevant in the scope of this articletheamore, relevant
related work is highlighted.

2.1 Basicsof Reinforcement Learning

One of the general aims of machine learning is to producdigeat soft-
ware systems, sometimes called agents, by a process oinigamnd evolv-
ing. Reinforcement learning represents one approach thgtba employed
to reach that goal. In an RL learning scenario the agentdatgwith its ini-
tially unknown environment, observes the results of itsoast and adapts its
behavior appropriately. To some extent, this imitates thg biological beings
learn.

In each time step, an RL agent observes the environmentalasid makes
a decision for a specific action, which, on the one hand, meyrisome im-
mediate costs(also called reinforcement) generated by the agent’s @mvir

1The notion ofrewardsis basically equal to the notion of costs we are employingst€o
correspond to negative rewards.



ment and, on the other hand, transfers the agent into somessar state. The
agent's goal is not to minimize the immediate costs, bubitgtterm, expected
costs. To do so it must learn a decision policthat is used to determine the
best action for a given state. Such a policy is a function iips the current
states € S to an actiora from a set of viable actiona.

The basic reinforcement learning paradigm is to learn thpping = :
S — Aonly on the basis of the reinforcement signals the agentfgets its
environment. By repeatedly performing actions and obagrebrresponding
costs, the agent tries to improve and fine-tune its policysedech in RL has
brought about a variety of algorithms that specify how eigrare from past
interaction is used to adapt the policy. Assuming thatfégent amount of
states has been observed and ¢mstsards have been received, the optimal
decision policy will have been found and the agent followihgt policy will
behave perfectly in the particular environment.

The standard approach to modelling reinforcement learpnadplems is
to use Markov Decision Processes (MDP). An MDP is a 4-tuples(c, p)
whereS and A denote the state and action spaces, respectipelys x A X
S — [0, 1] is a probabilistic state transition function wiglfs, a, s') describing
the probability to end up irs when taking actiora in states. Moreover,
c: Sx A — Ris a cost function that denotes the immediate costs tha aris
when taking a specific action in some state. In search of dmapbehavior,
the learning agent mustftierentiate between the value of possible successor
states or the value of taking a specific action in a certaite sfEypically, this
kind of ranking is made by computing a state or state-actabne/functiony :
S - RorQ:SxA— R, which bear information about the prospective value
of states or state-action pairs, respectively. Havingrdeted the optimal
value function, i.e. the one that correctly reflects the etquk costs to go for
a state or state-action pair for the respective environjriig function can
easily be employed to induce the best action in a given stajeby evaluating
arg min,., Q(s, b). For more basics and a thorough review of state-of-the-art
reinforcement learning methods we refer to [33].

2.2 Basicsof Job-Shop Scheduling

The goal of scheduling is to allocate a specified number & {also called
tasks) to a limited number resources (also called machines)ch a manner
that some specific objective is optimized. In job-shop salied n jobs must
be processed om machines in a given order. Each jgh(j € {1,...,n})
consists ofvj operationsoj, ..., 0jy; that have to be handled on a specific
resource for a certain duration. A job is finished after catiph of its last



operation (completion time;).
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Figure 1. A simple job-shop scheduling problem instance (ft6) witleaurces and
6 jobs and a Gantt chart representation of an optimal solutio

Figure 1 shows a%6 (6 resources and 6 job®,= n = 6) problem instance
from [22]. In this example, job 2 must first be processed oouese 2 for 8
time units, then go to resource 3 for 5 time steps, and so ogolRee 3 may
start processing with job 1, 3, or 5. Over the years, numdoeashmark prob-
lem instances like this have been proposed and are publialiable (e.g. from
the OR Library [4]). Most of them are, of course, much more ptax and cer-
tain examples remained unsolved for decades. For othgertacale instances
there is still no optimal solution known. Common charactariof these JSSPs
is that usually no recirculation is allowed, i.e. that easihljas to be processed
exactly once on each resource, implying that= m. Though there are also
stochastic scheduling problems, in the scope of this workasas on deter-
ministic ones only.

In general, scheduling objectives to be optimized all eetatthe comple-
tion times of the jobs. For example, it may be desired to mirénthe jobs’
due date violations or the number of jobs that are late. khper, however,
we focus on the objective of minimizing maximum makesfan, which is
the length of the schedul€{ax = maxc;}), since most publications on results
achieved for JSSP benchmarks focus on that objective, to® Glantt chart in
Figure 1 shows an optimal solution for thatbenchmark@,.x = 55) whose
makespan is 55. For further details on scheduling theoryitarapplications
the reader is referred to [27].



2.3 Multi-Agent View on Job-Shop Scheduling Problems

Basically, there are two ways of modelling a JSSP as a Markesidibn
Process (MDP, [29]). The straightforward alternative isnterpret a schedul-
ing problems as singleMDP. We can represent the stag) € S of the system
by the situation of all resources as well as the processatgsof all jobs. Ad-
ditionally, a terminal states; describes the situation when all jobs have been
finished, i.e.s(t) = s for all t > Chax An actiona(t) € A describes the de-
cision of which jobs are to be processed next on the resauMerseover, we
can say that the overall goal of scheduling is to find a potityhat minimizes
production costs(s, a, t) accumulated over time

Cmax

n* = rr]TinZ c(sat). (1)
t=1

Costs may depend on the current situation, as well as on lhetesg decision,
and have to relate closely to the desired optimization gagl they may occur
when a job violates its due date).

The second modelling alternative extends the first one leypntting JSSPs
as amulti-agentMarkov Decision Process (MMDP, [10]). Here, we associate
to each of them resources an ageftthat locally decides on elementary ac-
tionsak(t). So, an elemerd(t) = (ai(t), ..., am(t)) of the joint action space is
a vector composed oh elementary actions that are assumed to be executed
concurrently. For example, starting to process the exarmpkigure 1 the
agent associated to resourkce= 3 must decide which job to process next at
this resource, where its set of actiong at1 is A3(1) = {1, 3,5}.

In scheduling theory, a distinction betwegredictiveproduction schedul-
ing (also called analytical scheduling dflme-planning) andeactiveschedul-
ing (or online control) is made [9]. While the former assurcesiplete knowl-
edge over the tasks to be accomplished, the latter is costamth making
local decisions independently. Obviously, a single MDP allin gives rise
to analytical scheduling, whereas the MMDP formulationresponds to per-
forming reactive scheduling. In the following we prefer M&DP modelling,
hence, doing reactive scheduling, for the following reason

¢ Reactive scheduling features the advantage of being albéatb to un-
foreseen events (like a machine breakdown) appropriatélyout the
need to do complete re-planning.

e Operations Research has to the bigger part focused oniaahighedul-
ing and yielded numerous excellent algorithms (e.g. braamahbound)



capable of finding the optimal schedule in reasonable timenathe
problem dimensionnd x n) is not too large and when being provided
with complete knowledge over the entire problem. By comjngactive
scheduling approaches are decentralized by definition lzenke, the
task of making globally optimal decisions is aggravated.cakdingly,
many interesting open research questions arise.

e From a practical point of view, a centralized control canalstays be
instantiated, why the MMDP formulation is of higher impaotreal-
world applications.

2.4 Related Work

Job-shop scheduling has received an enormous amount ofi@ttén the
research literature. As mentioned in Section 2.3, reseamtoduction schedul-
ing traditionally distinguishes predictive and reactieéusion approaches. As-
suming complete knowledge about the entire schedulinglgmoko be solved
(thus about all jobs, their operations and belonging donatias well as about
the resources and which operations must be executed on vdsobrce), and
aiming at the achievement of global coherence in the prooiEgsd dispatch-
ing, Operations Research has brought about a variety oifgbisedscheduling
algorithms that yield optimal solutions for individual fmlem instances — at
least up to certain problem sizes, since the computatidiiait escales expo-
nentially with problem size. By contrast, reactive schaduhpproaches sup-
port decentralized, local decision making, which is bemagfighen no central-
ized control can be instantiated (e.g. when a factory’suesodoes not know
about the current workload at any other resource) or wherkqeisponses to
unexpected events are required. Most of the approachestiiied ideas from
research in Artificial Intelligence to solve scheduling ldeams belong to the
realm of predictive scheduling.

Classical, predictive approaches to solving job-shop dudiey problems
cover, for instance, disjunctive programming, branch-badnd algorithms
[2], or the shifting bottleneck heuristic [1]—a thorougheoview is given in
[28]. Moreover, there is a large number of local search miooes to solve
job-shop scheduling problems. These include beam seads¢hsjthulated an-
nealing [34], tabu search [23], greedy randomized adag&aech procedures
(GRASP, [8]), as well as squeaky wheel optimization [16]rtR@rmore, var-
ious diterent search approaches have been suggested based oeapjut
techniques and genetic algorithms (e.qg. [3] or [24]).

In contrast to these analytical methods yielding to seasch single prob-



lem’s best solution, our RL-based approach belongs to #esabf reactive
scheduling techniques. Most relevant references forikeastheduling cover
simple as well as complex dispatching priority rules (ség {2 [7]). Focusing
on job-shop scheduling with blocking and no-wait constsggim [20] the au-
thors develop heuristic dispatching rules (such as AMCCSettion??) that
are suitable for online control. but that benefit from havinglobal view onto
the entire plant when making their dispatch decisions.

Using our reactive scheduling approach, the finally resglschedule is
not calculated beforehand, viz before execution time. farsmur RL ap-
proach to job-shop scheduling is venftdrent from the work of Zhang and
Dietterich [38] who developed a repair-based scheduldrithaained using
the temporal dterence reinforcement learning algorithm and that staris avi
critical-path schedule and incrementally repairs coirdtiaolations. Mahade-
van et al. have presented an average-reward reinforceeemirig algorithm
for the optimization of transfer lines in production marattaing which re-
sembles a simplifying specialization of a scheduling peabl They show that
the adaptive resources are able fizetively learn when they have to request
maintenance [19], and that introducing a hierarchical demmsition of the
learning task is beneficial for obtaining superior resuds][ Another repair-
based approach relying on an intelligent computing allgorits suggested by
[37] who make use of case-based reasoning and a simplifiatbreement
learning algorithm to achieve adaptation to changing ogation criteria.

3 A Multi-Agent Reinforcement L earning Approach to
Reactive Production Scheduling

In this section, we propose an approach to production sdingduroblems
that allows to combine the desire for obtaining near-opltsoéutions with the
ability to perform reactive scheduling, realized by reseducoupled schedul-
ing agents that make their dispatching decisions in rea-tiThe dispatching
rules implemented by the agents are, however, not fixed rbutigonomously
adapted instead by getting feedback of the overall dynami@atior of the
whole production plant.

3.1 System Architecture

As described in Section 2.3 we adopt a multi-agent persgecin per-
forming job-shop scheduling. So, to each of the resourceattaeh an adap-
tive agent that is capable of improving its dispatching berawvith the help of



reinforcement learning. The agents’ task is to decide wjaiblo process next
out of the set of jobs that are currently waiting for furtheogessing at some
resource. Accordingly, an agent cannot take an action atdiacrete time step
t, but only after its resource has finished one operation. éfbe, the agent
makes its decisions after time intervals whose lenditysare determined by
the durations of the operations processed.

The global views(t) on the plant, including the situation at all resources
and the processing status of all jobs, would allow some iclalssolution al-
gorithm (like a branch-and-bound method) to construct pddive graph for
the problem at hand and solve it. In this respect, howeverjniveduce a
significant aggravation of the problem: First, we requireactive scheduling
decision in each state to be taken in real-time, i.e. we daahot arbitrary
amounts of computation time. Second, we restrict the amolstate infor-
mation the agents get. Instead of the global view, each &Jjeas a local view
s(t) only, containing condensed information about its assedisesource and
the jobs waiting there. On the one hand, this partial ob&diyaincreases the
difficulty in finding an optimal schedule. On the other hand, dvadl for com-
plete decentralization in decision-making, since eacmiageprovided with
information only that are relevant for making a local demisat resourcek.
This is particularly useful in applications where no globahtrol can be in-
stantiated and where communication between distributedking centers is
impossible. Nevertheless, the number of features providedsingle agent,
viz the local view, is still large and forces us tackle a hdgmensional contin-
uous state-action space.

The feature vectors representing stadgs S and actiongobs ax € Ay,
as generated by the resources’ local view, have to exhibieselation to the
future expected costs, hence to the makespan, and mustfal@avcompre-
hensive characterization of the current situation. Moeeoit is advisable to
define features that represent properties of typical proldsses instead of
single problem instances, so that acquired knowledge isrgeand valid for
similar problems as well. With respect to the desired rimagtapplicability
of the system, the features should also be easy to compubliren a max-
imum degree of reactivity. State features depict the ctirsgnation of the
resource by describing its processing state and theé\seff jobs currently
waiting at that resource. That job set characterizatiotudes the resource’s
current workload, an estimation of the earliest possibbegompletion times,
or the estimated makespan. Furthermore, we capture chastcs of A by
forming relations between minimal and maximal values ofairrjob proper-
ties over the job set (like operation duration times or renmgj job processing



times). Action features characterize single japfrom Ay currently selectable
by k. Here, we aim at describing makespan-oriented properfiedividual
jobs (like processing time indices), as well as immediatesequences to be
expected when processing that job next, viz the properfisegob’s remain-
ing operations (e.g. the relative remaining processingYinpart from that,
action features cover the significance of the next operatiphex: of job j
(e.g. its relative duration).

3.2 Detailsof the Learning Algorithm

When there is no explicit model of the environment and of th&t struc-
ture available, Q learning [36] is one of the RL methods ofichdo learn a
value function for the problem at hand, from which a controliqy can be
derived. The Q functior : S x A — R expresses the expected costs when
taking a certain action in a specific state. The Q update ruéetty updates
the values of state-action pairs according to

Q(sa) :=(1-a)Q(s a) + a(c(sas) +y brenAi(r;) Q(3 b)) (2

whereq is the learning ratey the discount factor, and where the successor state
Sand the immediate costgs, a,S) are generated by simulation or by interac-
tion with a real process. For the case of finite state andrasfiaces where
the Q function can be represented using a look-up tables #rerconvergence
guarantees that say that Q learning converges to the optahad functionQ*,
assumed that all state-action pairs are visited infinitéigroand thatr dimin-
ishes appropriately. Given convergencé&Xy, the optimal policyr* can be in-
duced by greedy exploitation @ according tor*(s) = arg min,a Q*(s ).

Since our approach enforces a distributed decision-makingndepen-
dent agents, the Q update rule is implemented within eachitgpagent and
adapted to the local decision process<1 for better readability):

Qu(s(D) a(1)) = Csalt, Al) 3

+ min t+ Aty), b

Y oA Qu((sx( k), b)
This learning rule establishes a relation between the ttisphtching decisions
and the overall optimization goal, since the global immidi@osts are taken
into consideration (e.g. costs caused due to tardy jobsteS resource is not
allowed to take actions at each discrete time%t€p, collects the immediate

2After having started operatiap), the resource remains busy until that operation is finished.



global costs arising betweeand the next decision time poitit Aty according

to
t+Aty

Caalt. M) = ) C(s ). (4)
i=t

If we assume convergence Qk to the optimal local value functio®;, we
obtain a predictor of the expected accumulated global dbstiswill arise,
when in states, a job denoted by, would be processed next. Then, a policy
that exploitsQk greedilywill lead to optimized performance of the scheduling
agent. A policy greedily exploiting the value function ckes its actioray(t)
as follows

A(t) := m(s &, 1) = bg;ikra) Qk(s«(t), b). ()

As indicated in the Introduction, we distinguish betweea larning and the
application phases of the agents’ dispatching policiesririguthe latter, the
learnedQy function is exploited greedily according to Equation 5. iDgrthe
former, updates tQy are made (cf. Equation 4) and an exploration strategy is
pursued which chooses random actions with some probability

Assuming a typicaim x n job-shop scheduling problem, it is clear that the
transition graph of the system is acyclic and the numberagésttill reaching
st is finite. Therefore, all policies are always proper and ttabjem horizon
is finite, why+y can safely be set to one (no discounting).

When considering a single job-shop problem, the number sdipte states
is, of course, finite. The focal point of our research, howeienot to con-
centrate just on individual problem instances, but on eahjtones. Hence,
we need to assume the domain of Q to be infinite or even conig)amnd will
have to employ a function approximation mechanisms to ssporeit.

A crucial precondition for our adaptive agent-based apgrda learning
to make sophisticated scheduling decisions is that theagldiect costs (as
feedback to the learners) coincide with the overall objeatif scheduling. We
define the global costs to be the sum of the costs that are associated with the
resources (sum ové and jobs (sum ovd):

m n
Clsat) =) u(sat+ > ri(sat) (6)
k=1 i=1
When focusing on minimizing overall tardiness, it is poksiio setuy = 0 and
to letr;; capture the tardinesk; = maxQ0, ¢;, — d;,) of the jobs by

Tj; . if ji is being finished att

fi(san ::{ 0 , else @



A disadvantage of that formulation is that the cost functitmes not reflect
when the tardiness actually occurs. Since that informatiag help the learn-
ing algorithm, we prefer the following, equivalent formtidem, which assigns
costs at each time step during processing:

1, if jjistardy att
0, else

ri(sat):= { (8)
Equations 7 and 8 are no longer useful when the overall dbgeist to mini-
mize the makespa@nax Of the resulting schedule. Accordingly, information
about tardy jobs or finishing times, of individual jobs provide no meaningful
indicator relating to the makespan. However, the makesp#measchedule is
minimized, if as many resources as possible are processirgyconcurrently
and if as few as possible resources with queued jobs are sy#tem: Usually,
a high utilization of the resources implies a minimal malkes{27], i.e. the
minimal makespan of a non-delay scheduachieved when the number of
time steps can be minimized during which jobs are waitingpimrcessing at
the resources’ queues. This argument gives rise to settiag0 and to defin-
ing

u(s at) := I{ji | ji queued akj| 9)
so that high costs are incurred when many jobs, that arengaiitir further
processing, are in the system and, hence, the overallatiiiz of the resources
is poor.

3.3 Value Function Approximation with Neural Networks

Since an agent’s value functidpx has an infinite domain, we need to em-
ploy some function approximation technique to represerinithis work, we
use multilayer perceptron neural networks to represenstide-action value
function. On the one hand, feed-forward neural networkskamvn to be
capable of approximating arbitrarily closely any functibn D — R that is
continuous on a bounded d8t[15]. On the other hand, we aim at exploiting
the generalization capabilities of neural networks yigdjjeneral dispatching
policies, i.e. policies which are not just tuned for the aiitons encountered
during training, but which are general enough to be appledgnknown situ-
ations, too. Input to a neural net are the features (cf. @®@&il) describing
the situation of the resource as well as single waitingjofd#us, the neural

3Concerning the discussion of considering non-delay vaydsthedules we refer to Section
5.5.

4In the experiments whose results we describe in Section Gnade use of seven state
features and six action features, hence having 13 inpulwetodural network.



network’s output valu€y (s, ax) directly reflects the priority value of the job
corresponding to actioa, depending on the current stage(see Figure 2).

| State and Action Features (s,,a,)

: Job 4
7 Job &
\( ; é z Selection of

Agent 2 @, o Desthcton |

Job2

Feature
Generation

Figure 2. Representing the state-action value function with a neweddork whose
input are state and action features describing the resewwgent situation. The first
operation of each of the jobs 2, 4, and 6 has to be processegsonrce ;.

A critical question concerns the convergence of the legrtéchnique to
a (near-)optimal decision policy when used in conjunctiathwalue func-
tion approximation. In spite of a number of advantages, alengtworks are
known to belong to the class of “exaggerating” value functmproximation
mechanisms [14] and as such feature the potential risk efgiing. There are,
however, several methods for coping with the danger of mmwergent behav-
ior of a value function-based reinforcement learning methiod to reduce the
negative &ects of phenomenons like chattering and policy degradagarce
a thorough discussion of that concern is beyond the scopeiatticle, we
refer to relevant literature [5, 6, 21].

In order to be able to safely apply our learning approachdotige schedul-
ing to complex benchmark problems, we rely molicy screeninga straight-
forward, yet computationally intensive method for selegthigh-quality poli-
cies in spite of oscillations occurring during learningggasted by Bertsekas
and Tsitsiklis [5]): We let the policies generated undergoadditional eval-
uation based on simulation (by processing problems fromparage set of
screening scheduling problenss;), which takes place in between single iter-
ations of the NFQ learning algorithm (see Section 4.1). Assalt, we can
determine the actual performance of the policy represdmdtie Q function
in each iteration of the algorithm and, finally, detect artdnrethe best policy
created.



4 Fitted Q Iteration with Neural Networks and Opti-
mistic Assumption

In Section 3, we have outlined the general characteristidssaveral de-
sign decision of our learning framework. The important ésefihow to update
the agents’ state-action value functio@g, however, has been touched only
briefly: Equation 4 provides an adaptation of the general d@niag update
rule to the type of learning problems we are considering, leams of which
data-indficient online Q learning without an attempt to enforce camation
between multiple agents may be realized. In the followirmyyédver, we ad-
dress the problems of utmosffieient training data utilization and adequate
inter-agent coordination, which are of fundamental imgaice for obtaining
learning results of high quality.

4.1 Training Data Utilization

In Section 3.2 we have pointed to the distinction betweendhming and
the application phase of our adaptive scheduling approBefiing the learn-
ing phase, a se%_ of scheduling problem instances is given — these problems
are processed on the plant repeatedly, where the agentBcavechto sched-
ule jobs randomly, i.e. to not greedily exploit th€), with some probability,
obtaining new experiences that way. In principle, it is flassto perform an
update on the state-action value function according to &mud# after each
state transition. However, in the light of problem dimensidhat are consid-
erable from a reinforcement learning perspective, it isitable to foster fast
improvements of the learned policy by exploiting the trafnilata asficiently
as possible. For this purpose, we revert to nefittald Q iteration

Fitted Q iteration denotes a batch (also termédine) reinforcement learn-
ing framework, in which an approximation of the optimal jgglis computed
from a finite set of four-tuples [12]. The set of four-tuples: {(s, d, c,3)|i =
1,..., p} may be collected in any arbitrary manner and correspondmdpes
“experience units” made up of statgsthe respective actiora taken, the im-
mediate costs' incurred, as well as the successor st@emntered. The basic
algorithm takedT, as well as a regression algorithm as input, and after having
initialized Q and a counteq to zero, repeatedly processes the following three
steps until some stop criterion becomes true:

1. incremeng

2. build up a training sef for the regression algorithm according to:
F:={@in,out)li=1,...,p}



wherein' = (s, a) andout = ¢ +y Minya) Q4 (3, b)

3. use the regression algorithm and the trainingfdetinduce an approxi-
mationQ%: SxA—>R

Subsequently, we consider neural fitted Q iteration (NFQ])[3 realization
of fitted Q iteration where multi-layer neural networks ased to represent
the Q function and an enhanced network weight update rulm@ayed (step
3). NFQ is an éective and #icient RL method for training a Q value function
that requires reasonably few interactions with the scliegudlant to generate
dispatching policies of high quality. We will discuss an piddion of NFQ to
be used in the scope of this work in the next section.

4.2 Inter-Agent Coordination

In the literature on multi-agent learning, a distinctionvibeen joint-action
learners and independent learners is made [11]. The forareolsserve their
own, as well as the other agents’ action choices. Consdguénthat case
the multi-agent MDP can be reverted to a single-agent MDR aritextended
action set and be solved by some standard method. Here, Bgwe/concen-
trate on independent learners because of the followingnsas

1. We want to take a fully distributed view on multi-agentedtling. The
agents are completely decoupled from one another, getdtata infor-
mation, and are not allowed to share information via comcation.

2. Decision-making shall take place in a distributed, rigachanner. Hence,
no agent will be aware of the jobs being processed next orr othe
sources.

3. The consideration of joint-action learners with globigvvon the plant
would take us nearer to giving all agents the ability to,,eegnstruct a
disjunctive graph for the scheduling problem at hand andsasee clas-
sical solution method to solve it. With respect to 1) andI2¢,intended
application of learned scheduling policies to unknownatittns and in
presence of unexpected events, this is exactly what wedriteavoid.

We are, of course, aware that the restrictions that we impasaur learning
agents depict a significant problem aggravation when coadptar the task of
finding an optimal schedule with some analytical algorithmd &ull problem
knowledge.



Given the fact that the scheduling benchmarks to which venihto apply
our learning framework are deterministic, we can employ \aqyful mecha-
nism for cooperative multi-agent learning during the l@agrphase permitting
all agents to learn in parallel. Lauer and Riedmiller [17jgest an algorithm
for distributed Q learning of independent learners usiegsthcalled optimistic
assumption (OA). Here, each agessumeshat all other agents act optimally,
i.e. that the combination of all elementary actions formejgtimal joint-action
vector. Given the standard prerequisites for Q learnirggritbe shown that the
optimistic assumption Q iteration rule (with current stgtactiona, successor
states’)

Qk(s @) := maxQ(s,a),r(s a) +y [max Qk(s’, b)} (10)

to be applied to agent-specific local Q functid@g converges to the optimal
Q* function in a deterministic environment, if initiallQ), = 0 for all k and

if the immediate rewards(s, a) are always larger or equal zero. Hence, the
basic idea of that update rule is that the expected returstaté-action pairs
are captured in the value Qi by successively taking the maximum. For more
details on that algorithm and on the derivation of coordidatgent-specific
policies we refer to [17].

For the benchmark problems we are tackling in this work, wesha take
the following two facts into consideration: First, we aréngsthe notion of
costs instead of rewards, so that small Q values corresmotgbbd” state-
action pairs incurring low expected costs (though we assalnienmediate
global costs to be larger or equal zero, cf. Equation 9). Seécae perform
batch-mode learning by first collecting a large amount dhing data (state
transition tuples) and then calculating updated valuekdd} functions.

To comply with these requirements, we suggest fiiine reinforcement
learning method that adapts and combines neural fitted @titar and the
optimistic assumption Q update rule. In Figure 3, we giveeupds-code real-
ization of neural fitted Q iteration using the optimistic @sption (OA-NFQ).
The distinctive feature of that algorithm lies in step 1 weharreduced (opti-
mistic) training setO with |O| = p’ is constructed from the original training
tuple setT (|T| = p = p'). In a deterministic environment where schedul-
ing scenarios from a fixed s&y of problems are repeatedly processed during
the learning phase, the probability of entering some siateore than once is
larger than zero. If irg; a certain actiomy € A(Sq) is taken again, when having
entereds for a repeated time, it may eventually incur veryfeient costs be-
cause of dterent elementary actions selected by other agents. Thatidefin
of O basically realizes a patrtitioning @finto p’ clusters with respect to iden-
tical values ofs, anday (steps 1a and 1b). In step 1c the optimistic assumption



is applied which corresponds to implicitly assuming the st action vector
covered by the experience collected so far, i.e. assumigttier agents have
taken optimal elementary actions that are most approdoatle current state
and the agent’s own elementary acta Thus, the target valueut! for some
state-action paiin! = (s, al) is the minimal sum of the immediate costs and
discounted costs to go over all tuples, @, -,-) € T.

Input: number of Q iteration®l € N, training set

Tk = {(s(®), (1), c(s a 1), Sc(thex))
| t € set of decision time poin}s

for better readability abbreviated @g = {(s,a,c,8)i=1,..., p}

Output: state-action value functioQ(ktOp)

init Q¥ =0
forg=0toN -1 /Q iterations
1. generate optimistic training set
O={(int,out)j=1,...,ptwithp <p
with (a) Yinl 3i € {1,..., p} with inJ = (s, d)
(b)in"#intvi#j@,je{l,...,p}
(©) outt :=  min (g +y min Qg b)) (11)
(s.4.0 3)eT. beA(s) "
(8,d)=inl
2. train neural network give® to induce a new Q functioQ(kq+1)

3. dopolicy screening to evalual%(kqﬂ) and memoriz@&om = Q(kq+1)

in case of a policy improvement

Figure 3. OA-NFQ, a realization of neural fitted Q iteration in detenitic multi-
agent settings based on the optimistic assumption. The Yahction’s superscripts
in Q@ denote the numbey of the respective Q iteration, the subscribiadicate the
agent.

After having constructed the training sétany suitable neural network
training algorithm can be employed for the regression tasiand (e.g. stan-
dard backpropagation or the faster Rprop algorithm [31] s&).uApart from
those net training issues, the pseudo-code of OA-NFQ inrEigueflects also
the policy screening technique (cf. Section 3.3): In betwiedividual Q iter-
ations we let the current value functi@ﬁ(q) and the corresponding dispatching
policy, respectively, undergo an additional evaluatiosdohon simulating a



number of screening scheduling problems from a%etVia that mechanism
the best Q iteration and its belonging Q functi@ﬁom is detected and finally
returned.

We need to stress that in presence of using a neural valugdnrapprox-
imation mechanism to represent Q and providing agents wathl lview infor-
mation only, neither the convergence guarantees for cefgaieraging) types
of fitted Q iteration algorithms (see Ernst et al. [12] for arthugh discussion),
nor the convergence proof of the OA Q learning algorithm peupng finite
state-action spaces, only) endure. Nevertheless, it Elgegso obtain impres-
sive empirical results despite the approximations we eyple we will show
in Section 5.

5 Empirical Evaluation

In this section, we evaluate the use of approximate reiefoent learning
for the Operations Research benchmark problems that ahe icenter of our
interest. In particular, we want to address the questidrisisipossible to use
our approach, utilizing the algorithms we have describe8éuotion 4, to let
the agents acquire high-quality dispatching policies fmbfem instances of
current standards of fliculty. Furthermore, we want to investigate, whether
the learned policies generalize to other, similar benchmpesblems, too.

Benchmark problems abz5-9 were generated by Adams et gbrfijlems
orb01-09 were generated by Applegate and Cook [2], and ¥inatbblems
la01-20 are due to Lawrence [18]. Although these benchnmenkef diferent
sizes, they have in common that no recirculation occurs aadgach job has
to be processed on each resource exactly once (m,i € {1,...,n}).

5.1 Experiment Overview

Within this evaluation, we compare fourfiifirent types of algorithms to
solve scheduling problems, each of them being subjectffierdnt restrictions
and following diferent paradigms in generating schedules.

1. Analytical Scheduling Algorithms that perform predictive scheduling
and interpret a given JSSP as a single MDP of which they hale fu
knowledge. They find the solution for one specific problentainse,
being unable to generalize. Since our focus is not on piigdisthedul-
ing, we do not consider individual example algorithms o&tgroup.
Instead we let this group be represented by a JSSP’s opthalan



(minimal makespan) that may in principle be found by varianalyti-
cal scheduling algorithms, when given infinite computadiaesources.

2. Global View Dispatching Rules perform reactive scheduling and cor-
respond to the MMDP view on job-shop scheduling. They takallo
dispatching decisions at the respective resources, butllareed to get
hold of more than just local state information. Instanceisfgroup are
the SQNO rule (heuristic violating the local view restiictiby consider-
ing information of the queue lengths at the resources wierevaiting
jobs will have to be processed next) or the powerful AMCC (hleuris-
tic to avoid the maximum currer@max based on the idea to repeatedly
enlarge a consistent selection, given a general altemgtigph repre-
sentation of the scheduling problem [20]).

3. Local View Dispatching Rules perform reactive scheduling as well and
make their decisions which job to process next based soleltheir
local view on the respective resource. In the following, veasider
three instances of this group (LFSPT rule chooses operations with
longestshortest processing times first, FIFO rule considers how lon
operations had to wait at some resource).

4. Our approach to adaptive reactive job-shop schedulirig Réinfor ce-
ment L earning Agents.

Regarding the restrictions our approach is subject to (MNH& pretation of
a JSSP with local view) a comparison to group 3) is most setfemt. How-
ever, by approaching or even surpassing the performancigaftams from
group 2) or by reaching the theoretical optimum, we can masasa for the
power of our approach.

5.2 Example Benchmark

To start with, we consider the notorious problem ft10 pregoby Fisher
and Thompson [22], that had remained unsolved for more tivanty years.
Here, during the learning phas8, = {psi10} is processed repeatedly on the
simulated plant, where the agents associated to the tenroesofollow e-
greedy strategies (= 0.5) and sample experience while adapting their behav-
iors using neural fitted Q iteration with optimistic assuimmptand in conjunc-
tion with the policy screening method (we st = Ss, i.e. the screening set
contains the same problems as the training set).

We compare the performance of eighffelient scheduling algorithms



1350

1300 k LPT Rule; 1295 -

1250 Random: 1253 |

SQNO; 1209
1200 |2 FIFO Rule: 1184 y

1150 [H ooy

1100 | ¢

1050

Makespan on ft10

1000 AMCC Global View: 985

950 - Theoretical Optimum: 930

900 - 1

Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000
Learning Episodes

Figure4. Learning process for the notorious ft10 problem.

a purely random dispatcher

three basic local view dispatching rules (LPT, SPT, and KFIFO

two more sophisticated global view dispatching rules (SRNOAMCC)

our adaptive agent-based approach to reactive scheduling
e the theoretical optimunGmaxopt = 930)

Figure 4 visualizes the learning progress for the ft10 msta The best
solution found by the learning approach was discovered 28820 repeated
processings ofS_ (see Figure 4). The makesp&iax = 960 of the corre-
sponding schedule thus has a relative error.2¢#8compared to the optimal
schedule. We note that we have detected the optimal leapdidhing policy
(represented by the agents’ neural networks represemteig@ functions) by
means of the policy screening method described in Secti®in 3.

5.3 Benchmark Results

Next, we studied theftectiveness of our agent-based scheduling approach
for a large number of dlierent-sized benchmark problems, ranging from job-
shops with 5 resources and 10 jobs to 15 resources and 20\\dbsllowed
the agents to sample training data tuples ir-@reedy manner for maximally
25000 processings @& with S| = Ss and permitted intermediate calls to
NFQ with optimistic assumptionN = 20 iterations of the Q iteration loop) in
order to reach the vicinity of a near-optimal Q function agkly as possible.



Name & Sizd 1) Simple DPRs [2) Cmplx.DPRI3) Central. Methods#) Adaptive Remain|
FIFO LPT SPTSQNO AMCQGRASP OptimunRL Agents Err.(%

ft 6x6 65 77 8¢ 73 55 55 55 57 3.64
ft10 10x 10| 1184 1295 1074 1209 985 938 930 960 3.23
ft20 5x 20 1645 1631 1267 1476 1338 1169 11685 1235 6.01
abz5 10x 10|| 1467 1586 1352 1397 1318 1238 1234 1293 4.78
abz6 10x 10|| 1045 1207 1097 1124 985 947 943 981 4.03
abz7 15x 20 803 903 849 823 753 723 667 723 8.40
abz8 15x 20 877 949 929 842 783 729 670 741  10.6Q
abz9 15x 20 946 976 88 865 777 758 691 779  12.74
Avg. abz [|1033.6 1124.2 1022{8010.2 923.2 879.0 841.0 903.4 8.11
la01 5x 10 772 822 751 988 666 666 666 666 0.00
la02 5x 10 830 990 821 841 694 655 655 687 4.89
la03 5x 10 755 825 672 770 734 604 597 648 8.54
la04 5x 10 695 818 711 668 679 590 590 611 3.56
la05 5x 10 610 693 610 671 593 593 593 593 0.0Q
Avg. lascio || 732.4 829.6 713]0787.6 673.4 621.6 620.2 641.0 3.40
la06 5x 15 926 1125 120p 1097 926 926 926 926 0.00
la07 5x 15 1088 1069 1034 1052 984 890 890 890 0.00
1a08 5x 15 980 1035 94p 1058 873 863 863 863 0.0Q
la09 5x 15 1018 1183 1045 1069 986 951 951 951 0.00
lal0 5x 15 1006 1132 1049 1051 1009 958 958 958 0.00
Avg. lasyis ||1003.6 1108.8 1054/0065.4 955.6 917.6 917.6 917.6 0.00
lall 5x 20 1272 1467 1473 1515 1239 1222 1222 1222 0.0Q
lal2 5x 20 1039 1240 1208 1202 1039 1039 1039 1039 0.00
lal3 5x 20 1199 1230 1275 1314 1161 1150 115Q 1150 0.00
lal4 5x 20 1292 1434 1427 1438 1305 1292 1292 1292 0.0Q
lal5 5x 20 1587 1612 1339 1400 1369 1207 1207 1207 0.00
Avg. las.o ||1277.8 1396.6 1343 4373.8 1222.61182.0 1182 1182.0 0.0Q
lal6 10x 10|| 1180 1229 1156 1208 979 946 945 996 5.40
lal7 10x 10 943 1082 924 955 80( 784 784 793 1.15
lal8 10x 10|| 1049 1114 981 1111 916 848 848 890 4.95
lal9 10x 10 983 1062 94D 1069 846 842 842 875 3.92
la20 10x 10|| 1272 1272 1000 1230 93 907 902 941 4.32
Avg. lajoxio ||1085.4 1151.8 1000{2114.6 894.p 865.4 864.2 899.0 3.95
orbl 10x 10|| 1368 1410 1478 1355 1218 1070 1059 1154 8.97
orb2 10x 10{| 1007 1293 1175 1038 924 889 888 931 4.84
orb3 10x 10|| 1405 1430 1179 1378 1113 1021 1005 1095 8.96
orb4 10x 10|| 1325 1415 1236 1362 1108 1031 1005 1068 6.27
orb5 10x 10|| 1155 1099 115 1122 924 891 887 976 10.03
orb6 10x 10|| 1330 1474 1190 1292 1107 1013 101q 1064 5.35
orb7 10x 10 475 470 504 473 44( 397 397 424 6.80
orb8 10x 10|| 1225 1176 1107 1092 95 909 899 956 6.34
orb9 10x 10|| 1189 1286 1262 1358 1015 945 934 996 6.64
Avg. orb [|1164.3 1226.1 1142{$163.3 977.1 907.3 898.2 962.7 7.13
Overall Avg.||[1054.2 1137.6 1037|B080.7 932.p 882.6 874.6 908.9 4.17

Table 1. Learning results on OR job-shop benchmark problems.



In Table 1, we compare the capabilities of fouffelient groups of algo-
rithms to the theoretical optimum. Simple dispatching tyorules (group
1) consider only the local situation at the resource for Wiiieey make a dis-
patching decision. The same holds for our adaptive agept®apgh (4) whose
results are given in the table’s last two columns. Moreotveo, examples of
more sophisticated heuristic rules are considered (grptia are not subject
to that local view restriction.

Group 3 comprises centralized methods. Here, an instanee noéta-
heuristic as well as the best known solution (which for thesidered bench-
marks coincides with the optimal solution), as it may be fiblny a predic-
tive scheduling algorithm like a branch-and-bound or disjive programming
method, are provided. Of course, there exists a large yaoietentralized
methods such as heuristic search procedures or evolwi@pgroaches to
tackle JSSPs. All those algorithms work under superior @rditions com-
pared to local dispatchers because they have full probleowletge of the
task. Accordingly, a comparison of centralized methodsults to the results
of our adaptive agent-based approach is not very meaningéulthe sake of
completeness, however, we have included the performanaesiwigle repre-
sentative (GRASP, [8]) of those methods in Table 1. NotettimtRemaining
Error” of our learning approach is also calculated with ezgpo the theoretical
optimum.
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Figure5. For different sets of benchmark problems with equal size, this figistel-
izes the average performance offdient approaches in terms aiming at a minimized
makespan of the resulting schedules. The results are gilative to the makespan
of the optimal schedule (100%, black data series). Datasenlored in light gray
correspond to static rules having local state informatioly,ovhereas medium gray-
colored ones are not subject to that restriction. The datesseermed “Adaptive” cor-
responds to the learning approach we have suggested (parioe reported belongs
to the makespan achieved whiaining for single benchmark problems), which is
restricted to the local view, too.



For the 5x 15 (la6-10) and % 20 (lal11-15) benchmark problems, the op-
timal solution can be found by our learning approach in adesa and for the
5x 10 (lal-5), 10< 10 (Ia16-20, orb1-9) sets, only a small relative error of les
than ten percent compared to the optimal makespan remaiy<.(87.1%).
As to be expected, dispatching rules, even those dispo$imgi@ than just lo-
cal state information (like AMCC or SQNO), are clearly oufpemed. For the
mixed abz benchmarks involving also instances with 15 messuand 20 jobs
per problem, the average relative error increases®o8yet the rule-based
schedulers are surpassed, still. For a better illustratfdhe main findings we
also have grouped the results on individual benchmark problinto classes
with respect to the numbers of resources and jobs to be meddBigure 5).

5.4 Generalization to Unknown Problems

Some analytical search procedure (like a tabu search) fisgisadole sched-
ule for one specific problem instance. By contrast, our iegrapproach —
after having learned for a set of one or more training probklenwill have
yielded dispatching policies that are generally applieallo empirically in-
vestigate the generalization capabilities of the learnspatching policies, we
designed a further experiment. Here, the learning agents presented three
sets of scheduling problems

¢ the training setS, for the learning phase,

e the screening sefs for intermediate policy screening rollouts (as be-
fore, we setS| = Ss),

e and an application s&8, containing independent problem instances to
evaluate the quality of the learning results on problemaimsts the
agents have not seen befos (0 Sa = 0).

Of course, it would be unrealistic to expect the dispatctpodicies that
were trained using, for instance, a training set with 55 problems, to bring
about reasonable scheduling decisions for vefjedéint problems (e.g. for
10x 10 benchmarks). Therefore, we have conducted experimentsefch-
mark suitesS consisting of problems with identical sizes that were poedi
by the same authors. From an applicatory point of view, tesumption is
appropriate and purposeful, because it reflects the reqaires of a real plant
where usually variations in the scheduling tasks to be sobexur accord-
ing to some scheme and depending on the plant layout, buhrast entirely
arbitrary manner.



Benchmark Suite Namd S S16d0

I orb
Problem Instances la06,...,1a10 | orbl, ..., orb9
Local View FIFO 1003.6 9.49%1164.3 29.6%
LPT 1108.8 20.9%1226.1 36.5%
SPT 1054.0 14.9%1142.6 27.1%

Global View AMCC 955.6 4.29 977.1 8.8%
SQNO 1065.4 16.1%1163.3 29.5%
RL Agents(local view) | 951.6 3.7% | 1065.1 18.6%
with Cross-Validation 5-fold 3-fold
Avg. Optimum Cr 5, 917.6 898.2

maxop

Table 2. Generalization Capabilities: During its application phathe learned
dispatching policies are used for problems not coveredndutiaining. Average
makespan and remaining errors relative to the optimum anaged.

Moreover, sincdS| is rather small under these premises, we performed
v-fold cross-validation orS, i.e. we disjointedS into S and Sy, trained on
S and assessed the performance of the learning resul$apand finally,
repeated that procedurdimes to form average values.

In Table 2 we summarize the learning results for a benchmaite f
5x 15 problemsS>*® = {la06,...,l1a10} as well as for the more intricate
suite of 10x 10 problemsSI>*0 = {orbl,...,orb9}. We emphasize that
the average makespan values reported for our adaptive Ritsagerrespond
to their performance on independent test problem instan@so schedul-
ing scenarios that were not included in the respective itrgisetsS, dur-
ing cross-validation. From that numbers it is obvious thatstatic local
view dispatchers, to which the results of our approach maistrally be com-
pared, are clearly outperformed. Interestingly, forﬂli§5 problem suite not
just dispatching rules working under the same conditionsursadaptive RL
agents, but even the AMCC rule is beaten, which exhaustivehefits from
its global view on the plant. For th82%1 suite, AMCC brings about bet-
ter performance than our learning approach which is logmatwo reasons.
First, AMCC works under superior conditions compared to learning ap-
proach as it is allowed to make use of global state informaginformation
about the situation of other resources). Second, wheriritgaour RL agents
for sin%Ie 10x 10 problems (see Table 1), the resultant average perfoenanc
(C229™ — 9623) was only slightly better than the performance of the AMCC
rule. Consequently, it is logical to expect that the AMCCeraltperforms our
agents when their learned dispatching policies are apptigatoblems, they
have never seen before.



1250 v T T T
=1 7 Learning Phase ======-
T 1200 Application Phase B
g¢e :
5§ 1150 B
§S 100} § LPT:1109-
s a i SQNO:1065
%g 1050 | % PT:1054 4
[}
ég 1000 RL Agents (Appl.Phase): 951.6 FIFO:1004---
) . AMCC:956
g 950 WRE Agents (Learn,) Optimum: 917.6
900 Il Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 800 1100 1400 1700 2000
Learning Episodes
1250 ‘ — ‘ ‘ T T w
o Learning Phase =====-- LPT:1226
4o 1200 f Application Phase T
2 R ] H FIFO:1164,SQN0O:1163
%g 1150 J. SPT:1142
5SS 1100
§§ 1050 | '"--_l_____________________I'\_’_L__A_E]fants (Appl.Phase): 1065.1 -
w5 Voyan,
] 8 1000 RL Agents (Learn.Phase): 1015.7
S0 AMCC:977
=5 950 g
:% 900 Optimum: 898.2
L Il Il Il Il Il Il Il Il Il Il Il

0 250 500 750 1000 1250 1500 5 8k 11k 14k 17k 20k
Learning Episodes

Figure 6. Using v-fold cross-validation, the adaptive agents’ dispatchpadjcies

are trained on the&s>*® (top) andS:%10 (bottom) benchmark suites, respectively,

and, during the application phase, are evaluated on indigm¢test scenarios. At the
chart’s right hand side, the average makespans achieveel/byad static dispatching
rules are given for comparison.

Figure 6 illustrates the corresponding learning progress tme (up to
20000 training episodes) for this experiment. For the B problemsS><1°,
our learning approach succeeds in entirely capturing theacteristics of the
training problems inS_ during training: When a plant utilizing the dispatch-
ing policies learned processes the problems f§mthe theoretic optimum
is almost reached, i.e. schedule decisions resulting inmmailnmakespan are
yielded. More importantly, even on the independent probiestances from
Sa that were not experienced during training, excellent tesaile achieved:
With an average makespan of 96Huring the application phase, the acquired
dispatching policies outperform not just dispatching suleat work under the
same basic conditions as our learning agents do, but evea that have full
state information (like AMCC). Furthermore, the gap in pemiance com-
pared to the theoretically best schedules is onl/@in terms of averag€max.

The local dispatching rules obtained for t§¢%% benchmark suite fea-
ture a remaining relative error of B compared to the theoretic optimum
in terms of minimal makespan. Although for these more iatechenchmark



problems the results are less impressive, they allow uste tivo empiric con-
clusions: First, traditional dispatching priority ruldsat solely employ local
state information at the regarding the respective resojjuseas our learning
approach does) are clearly outperformed. And, secondgethdting dispatch-
ing policies acquired during training feature generalaratcapabilities and,
hence, canféectively be applied to similar, yet unknown, schedulinghbem
instances.

5.5 Discussion

Our approach to model the scheduling task as a sequentisiateprob-
lem and to make reactive scheduling decisions featuresisaewhntage that
currently the resulting schedules correspond to solutiora the set of non-
delay schedules, only: If a resource has finished processiagperation and
has at least one job waiting, the dispatching agent immggiabntinues pro-
cessing by picking one of the waiting jobs. Our approach dussallow a
resource to remain idle, if there is more work to be done.

From scheduling theory, however, it is well-known that fertain schedul-
ing problem instances the optimal schedule may very well belay sched-
ule. In fact, the following subset inclusion holds for thiéo-classes of non-
preemptive schedules

Snondelayg Sactive & Ssemiactive&E S (12)

whereS denotes the set of all possible schedules [27]. The opticiedule
for a particular problem, however, is always withig.ive, but not necessarily
within Spondelay

We expect that, in future work, we will be able to further botte per-
formance of our learning approach. Currently, our adapdigents can gen-
erate schedules of the claSs of non-delayschedules exclusively: As a con-
sequence, our approach is currently able to produce neianaipschedules
from S, and may miss the best schedule possible, though in many tases
optimum is indeed found (cf. Figure 5). Yet, an extension of earning
framework towards delay schedules depicts an importanpamaising issue
for future work.

6 Conclusion

Job-shop problems are NP-hard. We have pursued an alteragiproach
to scheduling where each resource is assigned a decisikimgnagent that



decides which job to process next, based on its partial viethe production
plant. We use neural reinforcement learning to enable tlemtago learn a
dispatching policy from repeated interaction with the pland to adapt their
behavior to the environment. This way, we obtain a reactileduling sys-
tem, where the final schedule is not calculated beforehamdefore execu-
tion time, where online dispatching decisions are made,vamele the local
dispatching policies are aligned with the global optimmaigoal. So, not just
the adaptation of the agents’ behavior during learning ¢cedtalized, but also
decision-making during application proceeds without aredimed control.

Although it is possible to adopt a global view on a given sctied prob-
lem and model it as a single MDP, we decided to interpret amkedb as
a multi-agent learning problem using our learning appra&dying on rein-
forcement learning. On the one hand, we therefore have ®wah a problem
complication due to independently learning agents. Butherother hand, we
derive the benefit of being enabled to perform reactive adieglincluding
the capability to react to unforeseen events. Furthernzodecentralized view
on a scheduling task is of higher relevance to practice sincentral control
cannot always be instantiated.

In addition to introducing the integral concepts and maondglispecifics
of the multi-agent reinforcement learning framework pregah, we also pre-
sented a new reinforcement learning method for deternomsalti-agent en-
vironments (OA-NFQ). This algorithm realizes a combinatid data-#icient
batch-mode reinforcement learning in conjunction withmaéualue function
approximation, and the utilization of an optimistic ingent coordination.

Despite the numerous approximations that we have made,nip&ieal
part of this paper contains several convincing results fassical Operations
Research benchmarks. Our experiments for such large4dseatdhmark prob-
lems lets us come up with the conclusion that problems ofeotirstandards
of difficulty can very well be #ectively solved by the learning method we
suggest: The dispatching policies our learning agentsigglearly surpass
traditional dispatching rules and, in some cases, are alslsath the theoreti-
cally optimal solution. Notwithstanding the inherenffidiulties in facing par-
tial state observability and agent-independent leartimgdispatching policies
acquired do also generalize to unknown situations withetraiming, i.e. they
are adequate for similar scheduling problems not covereidgithe learning
phase.
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