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Abstract. We identify two fundamental points of utilizing CBR for an
adaptive agent that tries to learn on the basis of trial and error without
a model of its environment. The first link concerns the utmost efficient
exploitation of experience the agent has collected by interacting within
its environment, while the second relates to the acquisition and repre-
sentation of a suitable behavior policy. Combining both connections, we
develop a state-action value function approximation mechanism that re-
lies on case-based, approximate transition graphs and forms the basis
on which the agent improves its behavior. We evaluate our approach
empirically in the context of dynamic control tasks.

1 Introduction

A key characteristic that has significantly contributed to the attractiveness of
case-based reasoning (CBR) is that it allows for a controlled degree of inexactness
during problem solving and, hence, can provide justifiable, though approximate
solutions in situations where other approaches would fail. In this work, we con-
sider learning agents that must solve some task in an unknown environment and
that must adapt their behavior appropriately, solely on the basis of feedback
concerning the suitability of actions taken that is obtained from the environ-
ment. Research in reinforcement learning (RL) has brought about a variety of
learning algorithms for such problems. Most of them rely on learning a function
that, given a situation, numerically expresses how appropriate each action is and
that, logically, allows for choosing the right actions.

Aiming at the acquisition of such a value function, we will utilize the ap-
proximate nature of CBR methods in two stages. First, we will employ CBR in
the obvious manner to represent the targeted value function by a finite number
of instances distributed over a continuous state space. This utilization of case-
based techniques represents a further development of our approach to state value
function approximation using CBR [6] towards learning tasks where no model
of the environment is available. Second, we utilize the CBR paradigm already



prior to the application of an RL algorithm that aims at the determination of a
value function. To distinguish and properly evaluate the costs and benefits of a
certain action in some situation, we must compare its effects to the effects other
actions might yield. Here, CBR comes into play: If no information for trading off
different actions is available, then it can be approximated in a case-based man-
ner by retrieving the effects of identical or similar actions in similar situations.
Based on that principle, we develop an approach that constructs an approximate

transition graph (ATG) which serves as an ideal input to an RL algorithm.
In Section 2, we briefly review some basic concepts of RL and introduce nec-

essary notation, focusing in particular on model-free batch-mode RL techniques
that are relevant in the scope of this paper. Section 3 presents our learning
framework, including the two mentioned stages of using CBR, and Section 4
continues with a discussion of important modelling variants and extensions. The
results of a first empirical evaluation of our approach are presented in Section 5.

2 Model-Free Batch-Mode Reinforcement Learning

The basic idea of reinforcement learning [15] is to have an adaptive agent that
interacts with its initially unknown environment, observes outcomes of its ac-
tions, and modifies its behavior in a suitable, purposive manner. In each time
step, the learner observes the environmental state s ∈ S and decides on an action
a from the set of viable actions A. By executing a, some immediate costs c(s, a)
may arise and, moreover, the agent is transferred to a successor state s′ ∈ S.
The goal of the agent, however, is not to always decide in favor of the “cheapest”
actions, but to minimize its long-term expected costs.

The behavior of the agent is determined by its decision policy π : S → A

that maps each state s ∈ S to an action a ∈ A to be performed in that state.
Accordingly, the overall goal of a reinforcement learning algorithm is to acquire
a good policy π dynamically, only on the basis of the costs the agent perceives
during interacting within the environment.

2.1 Model-Free Reinforcement Learning Methods

The majority of RL methods1 is centered around learning value functions which
bear information about the prospective value of states or state-action pairs,
respectively, and which can be used to induce the best action in a given state.
Usually, this is done by formalizing the learning problem as a Markov decision
process M = [S, A, c, p] [12], where S is the set of environmental states, A the
set of actions, c : S × A → R is the function of immediate costs c(s, a) arising
when taking action a in state s, and p : S ×A × S → [0, 1] is a state transition
probability distribution where p(s, a, s′) tells how likely it is to arrive at state
s′ when executing a in s. Throughout this paper, we use S, A, c(·), and p(·)

1 There are exceptions such as direct policy learning methods that are not considered
in the scope of this paper.



to refer to the components of the Markov decision process corresponding to the
considered environment. In particular, we assume S ⊂ Rn and A to be finite.

A state value function V π : S → R estimates the future costs that are to be
expected when starting in s and taking actions determined by policy π:

V π(s) = E

[

∞
∑

t=0

γtc(st, π(st))|s0 = s

]

(1)

where γ ∈ [0, 1] is a discount factor that models the reduced trust in future
costs. Assuming an optimal value function V ? that correctly reflects the cost
and state transition properties of the environment is available, the agent may
infer an optimal behavior policy by exploiting V ? greedily according to

π?(s) := argmin
a∈A

(

c(s, a) + γ
∑

s′∈S

p(s, a, s′)V ?(s′)

)

(2)

Unfortunately, Eqn. 2 can only be applied if we are in possession of a state
transition model p of the environment. For most learning tasks with relevance to
real-world problems, however, there is no such model available, which is why, in
this paper, we are focusing on model-free scenarios. Under these circumstances,
we consider state-action value functions and Eqn. 1 can be written as

Qπ(s, a) = E

[

∞
∑

t=0

γtc(st, at)|s0 = s, at = a if t = 0 and at = π(st) else

]

. (3)

The crucial question now is, how to obtain an optimal state-action value function
Q?. Q learning [16] is one of the most prominent algorithms used to acquire the
optimal state-action value function for model-free learning problems. Q learning
directly updates estimates for the values of state-action pairs according to

Q(s, a) := (1− α)Q(s, a) + α(c(s, a) + γ min
b∈A

Q(s′, b)) (4)

where the successor state s′ and the immediate costs c(s, a) are generated by
simulation or by interaction with a real process. For the case of finite state and
action spaces where the Q function can be represented using a look-up table,
there are convergence guarantees that say Q learning converges to the optimal
value function Q? under mild assumptions. Then again, it is easy to infer the best
action for each state and hence, the optimal policy π? by greedy exploitation of
Q? according to

π?(s) := argmin
a∈A

Q?(s, a). (5)

2.2 Offline Q Learning with Value Function Approximation

Recent research in RL has seen a variety of methods that extend the basic
ideas of Q learning. Aiming at the applicability to situations where large and/or
infinite state spaces must be handled, two necessities should be considered. The
approach to learning a (near-)optimal behavior policy we are pursuing in this
paper adheres to both of these requirements, as we will show subsequently.



Value Function Approximation To cover infinite state spaces, the value func-
tion must be represented using a function approximation mechanism. This
means, we replace the optimal state-action value function Q?(s, a) by an
appropriate approximation Q̃(s, a). For this, we will revert to case-based
methods, building up an approximate state transition graph utilizing the
CBR paradigm.

Exploitation of Experience Standard Q learning is an online learning method
where experience is used only once to update the value function. By contrast,
there has recently been much interest in offline (batch-mode) variants of Q
learning, and a number of algorithms were proposed that are subsumed un-
der the term fitted Q iteration (e.g. NFQ [13] or FQI with decision trees [5]).
Here, from a finite set of transition tuples T = {(si, ai, ci, s

′
i)|i = 1, . . . , m}

that are made up of states, actions, immediate costs, and successor states,
an approximation of the optimal policy is computed.

Aiming at fast and efficient learning, we will, on the one hand, store all transition
tuples in an experience set as well, exploit it fully to construct an approximate
state transition graph for the respective environment, and, on the other hand,
employ k-nearest neighbor techniques to gain an approximated state-action value
function for a continuous state space from which to infer a near-optimal policy.

3 Approximate Transition Graphs

Initially, the learning agent is clueless about state transitions that may occur
when taking specific actions, as well as about the cost structure of the environ-
ment. During ongoing learning, however, it gains more experience and compe-
tence which it must utilize as smartly as possible in order to develop a good
behavior policy. In this section, we present our learning approach by which the
agent first creates an approximate transition graph (ATG) from its experience
using case-based techniques and, second, performs RL on the ATG in order to
finally induce a case-based policy that features near-optimal performance.

3.1 Basic Ideas of Approximate Transition Graphs

When the agent explores its environment by repeatedly acting within that en-
vironment, it steadily collects new pieces of experience that can be described as
four-tuples (s, a, c, s′) which the agent stores in its experience set T ⊂ S × A×
R× S. This set can also be interpreted as a partial transition graph.

Definition 1 (Partial Transition Graph).
Let T = {(si, ai, ci, s

′
i)|i = 1, . . . , m} be the transition set containing the expe-

rience the learning agent has gathered while interacting within its environment.

Then, T determines a directed partial transition graph P = (V, E) whose set

of nodes V is the union of all states s and s′ that are components of elements

from T. Further, each transition t ∈ T is represented by an edge (s, a, c, s′) ∈ E

pointing from s to s′ that is annotated with the value of action a and costs c.



As we assume the state space to be continuous, the probability that, during its
lifetime, the agent enters one particular state sx ∈ S more than once is zero. So,
in general there is only one single transition tuple tx = (sx, ax, cx, s′x) ∈ T that
relates to state sx, implying that T contains no information about what happens
when taking an action a ∈ A\{ax} in state sx. This precludes the application of
a Q learning style learning algorithm: In order to perform an update on the value
function according to the Q update rule (Eqn. 4), it is necessary to calculate the
minimum over all actions, i.e. arg minb∈A Q(s′x, b) must be evaluated. This, of
course, is impossible if no information about Q(s′x, b) for most b ∈ A is available.

Thus, our goal is to create an extension of a partial transition graph – which
we will call approximate transition graph – that contains sufficient information
about actions and their effects to allow for the application of Q learning. The
key to deriving such an ATG is CBR: In Figure 1, we outline the building blocks
involved in the construction of a value function approximation mechanism based
on transition graphs that are approximated using case-based reasoning.

Environment

State
Transition

Reward/Cost
Generation

Agent

Policy Value Function

T
(si,ai,ci,s‘i)

Transition Store

C
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process Cc

(completed)

Transition Case Base
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Completion

Q
Q Value Base

Dynamic
Programming

„Closed World
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• action execution
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k-NN 
Retrieval

Action a
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Fig. 1. Building Blocks of the Case-Based Approach to State-Action Value Function
Approximation via Approximating State Transition Graphs: Descriptions for the indi-
vidual components involved are given in Sections 3.2-3.4.

3.2 Case-Based Transition Completion

In a first processing step, we employ the agent’s stored transitions to build up a
transition case base C.

Definition 2 (Transition Case Base).
Given an experience set T = {(si, ai, ci, s

′
i)|i = 1, . . . , m}, the transition case

base is defined as a collection of cases2 C = {e = (e.p, e.sol)} where each case

consists of a problem part e.p ∈ S and a solution e.sol that is a set of up to |A|
elements. Each element of the solution e.sol is itself a three-tuple (ai, ci, s

′
i) for

some i ∈ {1, . . . , m} with e.p = si. Further,

2 Differing from common usage, we denote a single case by e instead of c throughout
this work to avoid confusion with costs.



– for all (st, at, ct, s
′
t) ∈ T with st = s there is only one case e ∈ C with e.p = s

– for all e ∈ C with e.p = s there is at least one t ∈ T with st = s.

So, we refer to the starting state s of a transition as the case’s problem part
and to triples of second to fourth component (action, costs, and successor state)
as a case’s solution part. Note that transitions are clustered with respect to
identical starting states and hence are assigned to the same case3. For ease of
notation, we will also allow a specific element of a case’s solution to be accessed
with the index operator [·], such that e.sol[ax] refers to (a, c, s′) ∈ e.sol with
ax = a.

As emphasized, it is not possible to apply a Q learning style algorithm if no
estimations about the values of all actions that may be taken in one state are
available, so that the argmin operator (Eqn. 4) can be evaluated. One approach
to solving that problem is represented by fitted Q iteration algorithms which
employ estimates of Q(s, a) for all states and actions provided by some function
approximator already at any intermediate point of learning. Our approach to
solving that problem, however, relies on the CBR paradigm. In particular, we
assume that in similar situations similar actions yield a similar effect. More
concretely, we assume that for a given pair of state and action (s, a), a nearby
state – starting from which that action has actually been executed – may provide
a good indicator regarding what immediate costs arise and regarding which
successor state is entered upon executing a in s. Naturally, we formalize the vague
phrase of a nearby state by defining a similarity measure simS : S × S → [0, 1]
over the state space and by employing the principle of nearest neighbors.

With that assumption, we define case completion rules that are used to ap-
proximate the effects of yet unexplored actions via the nearest neighbor principle.

Definition 3 (Case-Based Transition Completion).
Let C be a transition case base and simS : S×S → [0, 1] be a similarity measure

over the state space S. Further, denote by Cax
= {(e.p, e.sol) ∈ C|∃(ai, ci, s

′
i) ∈

e.sol : ai = ax} the subset of the case base C containing solution information

about taking action ax. Then, the case-based transition completion yields a new

case base Cc where each e ∈ Cc results from applying the completion rule:

For all a ∈ A: If @(ai, ci, s
′
i) ∈ e.sol with ai = a,

then e.sol := e.sol ∪NNa(e).sol

where NNa(e) is defined as the nearest neighbor of case e from the sub case base

Ca, i.e. NNa(e) = arg maxf∈Ca
sim(e.p, f.p).

The key point regarding this completion method is that we have attached to
each case a piece of information about the effects of taking any available action.
Having started this section with the definition of a partial transition graph, we
have now arrived at an approximate transition graph with completed actions
that is represented by the completed transition case base Cc from Definition 3.

3 As argued, the probability of entering the same state twice in a continuous environ-
ment approaches zero. However, some state may be re-entered if the system allows
putting the agent into specific (starting) states.



Definition 4 (Approximate Transition Graph).
Let P = (VP , EP) be a partial transition graph for an experience set T and Cc

be the corresponding completed transition case base. An approximate transition

graph A = (VA, EA) corresponding to Cc is a proper extension of P where VP ⊆
VA. Further, each component (aj , cj , s

′
j) ∈ e.sol of the solution of each case

e ∈ Cc is represented by an edge (e.p, aj, cj , s
′
j) ∈ EA that points from e.p to s′j

and that is annotated with the value of action aj and costs cj.

Figure 2 provides a simple example within a two-dimensional state space, two
available actions (a1 and a2), the Euclidean distance as similarity measure, and
an arbitrary set of transitions. By means of case-based transition completion, we
have constructed an approximate transition graph (right part of the figure) from
a partial transition graph (left), determined by the contents of the experience set
T. In the PTG, for example, there is no information about the effects of taking
action a2 in state s5. Since the nearest neighbor of s5 is s3 and taking a2 in
s3 yields a transition to s4 with costs of zero, the approximate transition graph
assumes that taking a2 in s5 leads the system to s4 under zero costs, too.
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Fig. 2. From a Partial to a Completed, Approximate Transition Graph

3.3 Learning from a Completed Case Base

The output of the case-based transition completion is a case base Cc that is
enriched by virtual state transitions and that represents an approximate state
transition graph. Since Cc contains, in each of its cases e ∈ Cc, solutions (i.e. tu-
ples consisting of action, immediate costs, and successor state) referring to each
available action a ∈ A, we are now in the position to calculate state-action val-
ues. The actual learning procedure we employ is termed closed world Q learning
(CWQL), which is in tribute to the fact that this routine abstracts from the
real system dynamics and considers the finite information in the completed case
base only. CWQL operates like standard Q learning (Eqn. 4) on the finite set of
points in state action space provided by Cc and is thus able to compute a value
function that could be stored in a look-up table.

In our approach, the calculated state-action values are immediately attached
to the case solution parts stored in Cc, thus giving rise to a new, extended version
of that case base which we subsequently call Q value base Q and whose individ-
ual state-action values for some state s and some action a can be accessed by:



Q(s, a) = e.sol[a].Q where e ∈ Q with e.p = s ∈ S and e.sol[a] = (a, c, s′, Q) ∈
e.sol. So, starting with e.sol[a].Q = 0 for all e ∈ Q and all a ∈ A, all state-action
pairs are repeatedly updated according to the Q update rule, giving rise to

repeat

for all e ∈ Q and all a ∈ A

f ← g ∈ Q with f.p = e.sol[a].s′

e.sol[a].Q
α
← e.sol[a].c + γ min

b∈A
f.sol[b].Q (6)

until convergence

We point to an important precondition that the realization of CWQL re-
quires to work: For each state e.p ∈ S and for each element (ai, ci, s

′
i) of the

corresponding solution e.sol, there must either exist at least one case f ∈ Cc

with f.p = s′i or s′i must be a goal state of the system. This condition is fulfilled
for all e.sol[ai] = (ai, ci, s

′
i) that were added to e in the scope of applying case

completion rules (case-based transition completion, Section 3.2). For elements
of case solutions that stem from real interaction with the environment (so, they
are already included in T and C, respectively), the requirement is fulfilled when
the training data has been gathered along trajectories, which we assume for the
remainder of this paper. Otherwise, prior to performing CWQL some sub case
base of Cc fulfilling the requirement must be extracted.

3.4 Deriving a Decision-Making Policy

Being provided with the current state s of the system, the decision-making pol-
icy’s task is to select one of the viable actions for execution. We determine the
best (greedy) action with k-nearest neighbor regression, given the Q value base
Q, where the value of taking action a in state s is determined by

Q̃k(s, a) =

∑

e∈NNk(s) simS(e.p, s) ·Q(s, a)
∑

e∈NNk(s) simS(e.p, s)
(7)

where NNk is the set of k nearest neighbors of s in case base Q.
Given Eqn. 7 in combination with a suitable similarity measure simS defined

over the state space S, the best action in state s can be derived according
to π(s) = arg minb∈A Q̃k(s, b). During learning, the agent pursues an ε-greedy
policy to encourage exploration of the environment. With probability ε, a random
action is chosen, whereas with probability 1−ε, the greedy action π(s) is selected.
During the evaluation of the learning results a purely greedy policy is applied.

The main computational burden of our algorithm lies in the case-based tran-
sition completion. Since for all cases and for all untried actions the nearest
neighbors from C must be determined, the complexity is O(|A||C|2) when linear
retrieval is performed. Note that our actual implementation of the case-based
ATG learning scheme realizes a policy iteration style learning algorithm, i.e. af-
ter having experienced one episode (terminated by reaching a goal state or by



a time-out), the agent adds all transitions to T and initiates the processes of
transition case base creation, case-based transition completion, and CWQL to
obtain a new approximation Q̃ of the optimal value value function Q?. Then, the
next episode is sampled by ε-greedily exploiting this new, improved Q function.

4 Modelling Variants

In Section 3, we have presented a method to approximate value functions for RL
problems with CBR techniques based on the core idea of creating approximate,
yet completed state transition graphs. The basic approach leaves much space
for extensions and improvements, two of which shall be discussed in more detail
below. Moreover, we clarify the connections to relevant related work.

4.1 Efficient Exploration

Choosing actions ε-greedily during learning means that the agent picks an ar-
bitrary action aexpl with probability ε. Instead of doing that, the selection of
aexpl may also be guided by the experience the agent has made so far. Here, we
suggest the use of an efficient exploration strategy that is conducive for the con-
struction of an approximate transition graph. This implies that we must foster
a good performance of the case-based transition completion method from which
an ATG (represented by case base Cc) results.

We grant the policy access to the transition case base C to retrieve the nearest
neighbor NN(s) of the current state s. Then, the explorative action is determined
as follows: Let E = {a ∈ A|∃(a, c, s′) ∈ NN(s).sol} be the set of actions already
explored in the nearest neighbor state of s. If E = A, then a purely random
action is chosen, otherwise, however, the agent picks aexpl randomly from A\E.
This way, generally those actions are favored for which very little information
about their effects is so far available. As a consequence, obtaining experience
about taking differing actions in the neighborhood of s is fostered.

4.2 Transformational Analogy

The method of case-based transition completion (see Section 3.2) as the central
step in creating an ATG performs null adaptation. As illustrated in Figure 3,
the transition case base is searched for a similar case e where some action has
in fact been executed, and the solution from that case is taken to solve, i.e. to
complete the case considered, without any modifications (Definition 3).

Transformational analogy (TA) means that the solution of the similar case is
transformed into a new solution for the current problem [4]. This basic idea can
easily be integrated into case-based transition completion: Instead of adopting a
solution (a, c, s′) ∈ NN(s).sol of a nearest neighbor case NN(s), that solution
– in particular, the solution’s successor state s′ – is adapted with respect to the
shift4 between s and NN(s). Thus, we define:

4 Recall that S ⊂ Rn, which is why the vectorial shift s1−s2 ∈ Rn between two states
can easily be calculated.



Definition 5 (Case-Based Transition Completion Using Transforma-
tional Analogy). Let all preconditions be as in Definition 3. Then, case-based

transition completion using transformational analogy yields a new case base Cc

where each e ∈ Cc results from applying the completion rule:

For all a ∈ A: If @(ai, ci, s
′
i) ∈ e.sol with ai = a,

then e.sol := e.sol ∪ { T (e.p, NNa(e).p, (aj , cj , s
′
j)) |

(aj , cj , s
′
j) ∈ NNa(e).sol}

where NNa(e) denotes the nearest neighbor of case e from sub-case base Ca.

The transformation operator T : S×S×(A×R×S)→ (A×R×S) is defined

as T (s, snn, (ann, cnn, s′nn)) = (ann, cnn, s′t) with s′t = s′nn + snn − s.
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Fig. 3. Transformational Analogy During Case-Based Transition Completion

Using case-based transition completion with TA bears a disadvantage that
can also be observed in Figure 3. The virtual successor states s′ added to the
cases’ solution parts during completion do, in general, not correspond to goal
states or to states for which there is an e ∈ C with e.p = s′. Accordingly, the
precondition required for the execution of CWQL (see Section 3.3) is violated. To
solve that problem, we now must apply a real fitted Q iteration algorithm where
the “fitted” part, i.e. providing state-action values for states s′ not covered by
{e.p|e ∈ Q}, is done by case-based estimation. We can achieve this, if we replace
Equation 6 by

e.sol[a].Q
α
← e.sol[a].c + γ min

b∈A
Q̃k(e.p, b) (8)

where Q̃k is defined according to Equation 7 and an intermediate version5 of
the Q value case base Qt is forming the basis of the evaluation of Q̃k. This
change clearly increases the computational complexity of the algorithm since the
evaluation of Q̃k requires the determination of the nearest neighbors of all e.p. We
emphasize that this case-based Q iteration (CBQI) algorithm as determined by
Equation 8 is also guaranteed to converge since the value function approximation
it provides can be characterized as a contraction mapping [7].

5 Intermediate refers to the fact that the learning process has not converged yet,
i.e. that Qt at iteration t of looping over all states and actions does not contain final
state-action values.



4.3 Related Work

The idea of using instances of stored experience to represent value functions in
the context of reinforcement learning is not new. For example, in [1] different
versions of the k-NN algorithm are compared with the goal of teaching a robot
to catch a ball. Several other control tasks and the use of different case-based
methods with the focus on locally weighted regression are reviewed in [2]. In [6],
we have analyzed the usability of case-based state value function approximation
under the assumption that a transition model p is available and have evaluated
our approach in the context of robotic soccer. By contrast, in this paper we
exclusively focus on the model-free case and apply our algorithms to control
and regulatory tasks. Highly related to ours is the work of Peng [10], where a
memory-based dynamic programming (MBDP) approach is presented, that tries
to learn a Q function [16] represented by finitely many experiences in memory,
and uses k-nearest neighbor prediction to determine state-action values, as we
do. Our work differs from MBDP insofar as we aim at the construction of a
completed, approximate transition graph which is used as the starting point to
acquire a state-action value function. Moreover, we also cover the issues of effi-
cient exploration. A comprehensive article addressing the comparison of several
instance- or memory-based methods to (value) function approximation is the
one by Santamaria et al. [14].

The aspect of an agent learning from scratch has also been considered from a
more CBR-centered perspective. For example, Macedo and Cardoso [9] focus in
depth on the issue of efficient CBR-based exploration. While the agent uses a case
base of entities encountered in the environment to generate expectations about
missing information, our approach to efficient exploration is aimed at improving
the accuracy of the value function approximation represented by an ATG. Powell
et al. [11] introduce automatic case elicitation (ACE), an RL-related learning
technique where the CBR system initially starts without domain knowledge and
successively improves by interacting with the environment. While they focus on
exact situation matching and develop a specialized action rating mechanism, our
interest in this paper lies in domains with continuous states and on combining
value function-based model-free RL with case-based methods.

5 Empirical Evaluation

For the purpose of evaluating our case-based approach to state-action value
function with ATGs, we turn to two classical reinforcement learning benchmarks,
the pole and the cart pole benchmark problems (see Figure 4).

The former represents a two-dimensional problem where the task is to swing
up a pole, whose mass is concentrated in a mass point, from different starting
situations. The learning agent controls a motor in the center that can apply left
and right torques (-4N and +4N) to the pole. A swing-up episode is considered
successful, if the agent has managed to bring the pole to a state s = (θ, ω)
with |θ| < 0.1. The cart pole benchmark represents a more challenging, four-
dimensional problem, where the state vector (θ, ω, x, v) consists of the pole’s
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Fig. 4. Benchmark Problem Systems

angle θ and angular velocity ω as well as of the cart’s position x and velocity v.
Here, the task is to prevent the pole from falling down by accelerating the cart
into the left/right direction (±10N). A cart pole balancing episode is successful,
if the agent manages to balance the pole for at least 1000 time steps and, to
complicate the problem, the cart is positioned near the center of the track at
the end (|x| < 0.05m). The agent fails if it hits the track boundaries (|x| > 2.4)
or if the pole’s angle exceeds the vertical position too much (|θ| > 1.0rad), in
which case the balancing episode is aborted. The starting states that system is
initialized with during training, as well as during testing, are taken from S =
{(θ, 0, 0, 0)| − 0.2rad ≤ θ ≤ 0.2rad}. The dynamics for the physical simulation
of this system are taken from [3].

During all experiments, we measure similarity between states as an equally
weighted amalgamation simS(s1, s2) =

∑n
i=1 wisimi(s1(i), s2(i)) of local simi-

larities where each simi refers to the similarity with respect to one single dimen-

sion: simi(x, y) = (1− |x−y|
maxi−mini

)2 with maxi and mini as the maximal/minimal
value of the respective dimension (e.g. maxx = 2.4 and minθ = −π). Further,
the exploration rate during all experiments was fixed to ε = 0.1.

5.1 Proof of Concept

We use the pole swing-up task to provide a proof of concept for the case-based
ATG function approximator. For training, as well as for testing, we employ a set
S of start situations equally distributed over the state space (|S| = 100), and we
set k = 1 for k-nearest neighbor determination. Actions that do not lead to a
goal state incur costs of c = 1.0, otherwise c = 0.0; no discounting is used. Figure
5 shows that the ATG-based agent is able to learn extremely quickly. The agent
is able to swing up the pole for each start situation already after 5 training
episodes; by then, the case base contains 485 cases. After about 60 training
episodes (circa 1100 cases in memory), the performance has become very good
and, during ongoing learning, continues to improve. Finally, the learning agent
comes very near to the theoretical optimum (which can be calculated brute force
for this problem) of 8.9 steps on average to swing up the pole for the considered
set of test situations.

5.2 Results

For the cart pole benchmark it is not possible to provide some kind of optimal
solution as in the case of the pole swing-up task. However, it is known that
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Fig. 5. Learning curve for the pole swing-up task and case base size (left). The right
chart visualizes what happens during greedy exploitation of the resultant Q value base:
It is shown which actions (left/right force) are considered best in which regions of the
state space.

good policies which balance the pole for an arbitrary time can be learned within
200 episodes. In the following, we show that achieving that goal is also possible
using an ATG-based function approximation mechanism. For a comparison to
the performance of other learning techniques, we refer to the RL benchmarking
website [8].

The agent is punished with very high costs if it leaves its working area (c =
1000) by letting the pole fall down or leaving the track. Each action incurs
immediate costs of 10, except for transitions in the target area (pole nearly
upright with |θ| < 0.3rad and cart within x ∈ [−0.05m, 0.05m]) are free of costs.
The discounting rate is set to γ = 0.98.

In Figure 6 (left), we compare the version of the ATG-based learning agent
employed in Section 5.1 to 4 variants, where we incremented the value of k and
utilized the efficient exploration mechanism suggested in Section 4.1, respec-
tively. Performance curves are shown for the evaluation of the learned policies
on the set of test situations. The empirical results suggest that choosing the
number of nearest neighbors to be considered during retrieval must be larger
than k = 1 in order to obtain satisfying results. Then, the resulting function ap-
proximator features better generalization capabilities and represents the value
function in a smoother way. Moreover, the efficient exploration mechanism is
capable of speeding up the learning process. We note that, during testing, we
aborted an episode after t = 1000 steps (during learning after t = 200), as we
observed that the agent is generally able to keep the cart pole in the target area
for an arbitrarily longer time if it already manages to balance for 1000 steps.
Thus, in our charts an episode time of 1000 steps represents an upper limit and
corresponds to a zero failure rate.

Since the combination of using k = 3 in conjunction with efficient explo-
ration yields best performance (100% from about the 135th episode onward; by
then, there are nearly 20k instances in the Q value case base), we performed
further experiments on top of that base configuration (see right part of Figure
6). The use of transformational analogy during the process of case-based transi-
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tion completion (cf. Section 4.2) is computationally more expensive, but boosts
the learning performance: Here, the agent attains a policy that yields no more
failures already after about 50 training episodes.

All experiments described so far were performed in a deterministic environ-
ment. To also examine non-deterministic environments, we added uniformly dis-
tributed noise to all state transitions. So, in each step the states s = (θ, ω, x, v)
resulting from taking an action were distorted subject to noise according to
(θ±1◦, ω± 1◦

s
, x±0.5cm, v±0.5 cm

s
). In the base configuration with added noise

the learner now needs more than 200 training episodes to acquire a faultless
policy for the first time (not included in the chart), whereas when using TA that
goal is reached already after approximately 150 episodes.

6 Conclusion

We have presented an approach to state-action value function approximation
for reinforcement learning agents that systematically relies on and employs
case-based methods. Our approximate transition graph function approximation
scheme utilizes case-based reasoning to replenish its transition experience and
also represents the actual Q function in a case-based manner. Our empirical
evaluations in the context of dynamic control tasks focused on established rein-
forcement learning benchmark problems and revealed that ATG-based function
approximation employed by a Q learning agent brings about quick success and
stable learning results.

A challenging issue for future work represents case base management. Cur-
rently, we make no attempts to discard redundant transitions gathered by the
agent, which is why the case base’s growth is not limited and retrieval times in-
crease continuously. For an application scenario where, for example, the number
of steps till reaching some terminal state is inherently large, using our approach
in its current form may become infeasible. We also expect that the performance
of an ATG-based value function approximator can significantly be improved
when knowledge-intensive similarity measures are employed and when back-
ground knowledge about the respective application domain (e.g. the exploita-
tion of symmetries) is utilized. Another topic for future work is the investigation



of knowledge transfer from an ATG-based function approximator to another,
preferentially more compact or computationally less demanding one.
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