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Abstract. Credible case-based inference (CCBI) is a new and theoreti-
cally sound inferencing mechanism for case-based systems. In this paper,
we formally investigate the level of precision that CCBI-based retrieval
results may yield. Building upon our theoretical findings, we derive a
number of optimization criteria that can be utilized for learning such
similarity measures that bring about more precise predictions when used
in the scope of CCBI. Our empirical experiments support the claim that,
given appropriate similarity measures, CCBI can be enforced to produce
highly precise predictions while its corresponding level of confidence is
only marginally impaired.

1 Introduction

Credible case-based inference (CCBI) has been recently proposed as a new re-
trieval paradigm for case-based problem solving [6]. It features a number of
desirable theoretical properties and allows for deriving formal statements about
its performance. Furthermore, it makes few assumptions regarding the applica-
tion domain for which it can be used and concerning the case structure and
similarity measures employed during the inference process.

The issue mentioned last – the use of fixed similarity measures – depicts one
point of departure for the work described in the paper at hand. We are going
to consider the similarity measure CCBI builds upon as a variable. The second
point of departure stems from the fact that the level of precision obtained when
doing inference with CCBI has been recently shown to be only of moderate
quality. Combining these two issues, our goal is to increase the precision of
CCBI’s predictions by modifying and optimizing the similarity measures that
CCBI builds upon.

In so doing, we will first formalize the notion of a precise retrieval result in
the context of CCBI and prove a number of its theoretical properties (Section
3). Then, we suggest the learning of high-precision similarity measures using a
recently proposed learning framework and utilizing a number of novel precision-
oriented error functions that we develop (Section 4). Finally, we empirically eval-
uate our findings using several benchmark data sets (Section 5). Before starting
off, we briefly summarize the core concepts of CCBI in Section 2.



2 Credible Case-Based Inference

In [6], Hüllermeier introduced credible case-based inference as a novel method
for retrieving candidate solutions in case-based problem solving. CCBI is built
upon a sound formalization of the CBR paradigm and allows for proving some
of its theoretical properties. In this section, we briefly outline those specifics of
CCBI and of its inference mechanism that are of relevance in the scope of this
paper, and we also point to some possibilities for improving its performance.

2.1 Notation and Outline of CCBI

Throughout this paper, we denote by X a problem space and by L a solution
space, where a case consists of a problem part x ∈ X and solution part λx ∈ L.
Further, a case base M is a collection of cases 〈xi, λxi

〉 ∈ M, 1 ≤ i ≤ |M|.
Motivating CCBI, the well-known CBR hypothesis that “similar problems

have similar solutions” has been equipped with the formal interpretation that

∀x, y ∈ X : simL(λx, λy) ≥ simX (x, y). (1)

Since, however, in practice this requirement will typically be frequently violated,
[6] introduces the concept of a similarity profile ζ that is defined by

ζ(α) := inf
x,y∈X

simX (x,y)=α

simL(λx, λy) for all α ∈ [0, 1].

As ζ is generally unknown, the notion of a similarity hypothesis h : [0, 1] → [0, 1]
is introduced which is meant to approximate ζ. Of special interest are similarity
hypotheses that are consistent with a given data set M, i.e. for which it holds

∀〈x, λx〉, 〈y, λy〉 ∈ M : simX (x, y) = α ⇒ simL(λx, λy) ≥ h(α).

One such data-consistent hypothesis that will play a major role throughout this
paper takes the form of a step function over a partition Ak of the problem
similarity interval [0, 1] and is called empirical similarity profile. It is defined as
a function hM : [0, 1] → [0, 1] with

hM : x 7→
m
∑

k=1

βk · IAk
(x) and βk := min

〈x,λx〉,〈y,λy〉∈M

simX (x,y)∈Ak

simL(λx, λy) (2)

where Ak = [αk−1, αk) for 1 ≤ k < m, Am = [αm−1, αm] and 0 = α0 < α1 <
. . . < αm = 1 (IA(x) = 1 if x ∈ A, IA(x) = 0 else, and min ∅ = 1 by definition).
Thus, by definition the following relaxation of the constraint in Equation 1 holds

∀〈x, λx〉, 〈y, λy〉 ∈ M : simL(λx, λy) ≥ hM(simX (x, y)).

In contrast to, for example, k-NN prediction, CCBI does not provide point pre-
dictions, but sets of candidate solutions. So, for predicting the label λq of a new
query problem q ∈ X , the notion of a credible solution set C(q) is introduced



and, when doing inference with a finite data set M, it is suggested that the
requested solution is an element of the following estimated credible solution set

Cest(q) =
⋂

c∈M

{λ|simL(λ, λc) ≥ hM(simX (q, c))}. (3)

For this inference mechanism, an estimation can be derived concerning the prob-
ability that a correct prediction (λq ∈ Cest(q)) is made subject to |M| and m.

2.2 Weaknesses of CCBI

As indicated before, high confidence levels in CCBI typically come along with
poor levels of precision, meaning that the solution set Cest(q) returned for some
query q, contains a large number of elements. While some extensions to pure
CCBI have been suggested to combat that shortcoming (e.g. the use of proba-
bilistic similarity profiles [6]), the underlying problem of low precision is not a
flaw in CCBI’s inferencing mechanism, but is actually caused by poor and un-
suitable problem similarity measures employed. Consequently, our goal pursued
in this paper is to improve the problem similarity measures in such a manner
that the imprecision of returned credible solution sets is reduced, while we rely
on the basic form of CCBI (cf. Equation 3) to actually perform the retrieval.

3 Imprecision in CCBI

Aiming at the reduction of imprecision in inferencing with CCBI by adjusting
problem similarity, we start off by formally investigating what it means for a
credible set Cest to be precise or imprecise.

3.1 Formalization

Precision is usually defined as the share of correct items retrieved to the overall
number of items retrieved [1]. Therefore, intuitively, we might say that a credible
solution set Cest(q) as prediction for the solution of q is of maximal precision
if it contains the correct solution λq and no further elements. However, in the
scope of CCBI, we need to extend that view slightly.

Definition 1 (Precise Solution Set). Let M be a case base and 〈q, λq〉 be a
case with q ∈ X and λq ∈ L as corresponding solution. Then, we call

Cprec(q) =
⋂

〈c,λc〉∈M

{λ|simL(λ, λc) ≥ simL(λq, λc)}

the precise solution set for q.

The following lemma lets us conclude that Cprec(q) ⊆ Cest(q) is the smallest,
hence, maximally precise solution set that (a) will be returned when doing case-
based inference with CCBI and that (b) is correct in the sense that λq ∈ Cest(q).
In other words, besides the correct solution λq , all other elements from Cprec(q)
are always included in Cest(q), no matter which similarity profile h is used during
retrieval.



Lemma 1. For any similarity hypothesis h consistent with the case data M and
any query q, the credible solution set Cest(q) contains Cprec(q) as a subset.

Proof: Let λd ∈ Cprec(q). So, for all 〈c, λc〉 ∈ M it holds: simL(λd, λc) ≥
simL(λq, λc). As h is assumed to be consistent with the data in M, it holds for all
〈x, λx〉, 〈y, λy〉 ∈ M that simL(λx, λy) ≥ h(simX (x, y)). Thus, for all 〈c, λc〉 ∈
M it also holds simL(λd, λc) ≥ h(simX (q, c)). Therefore, λd ∈

⋂

〈c,λc〉∈M{λ|

simL(λ, λc) ≥ h(simX (q, c))} = Cest(q). (Note: λq ∈ Cprec(q) by definition.) �

Note that for |Cprec(q)| > 1 to occur, we must require that there is at least
one 〈d, λd〉 whose solution λd is at least as similar to all other solutions in M
as λq. This situation is not as unrealistic as it might seem: It may occur even
for symmetric and reflexive solution similarity measures, e.g. if they contain
“plateaus” of maximal similarity (see Figure 1). In the remainder of this paper,
however, we focus on regression tasks using the Euclidean distance as the basis
for determining solution similarity, such that simL is a strongly monotonous
function and therefore always |Cprec| = 1 (proof omitted).
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Fig. 1. Examples of solution similarity measures with |Cprec| ≥ 1. In a), for λq = 1,
for example, Cprec(q) = {λc|c ∈ M, λc ∈ [1, 3]}. In b), it holds Cprec(a) = {λa, λb, λd},
whereas in c), simX is decreasing strongly monotonically and hence |Cprec(q)| = 1.

3.2 Similarity Measures for High-Precision CCBI

We now focus on the relation between problem similarity measures, empirical
similarity profiles that can be induced from them, and their impact on CCBI.

From Lemma 1, we observe that CCBI attains its maximal precision when
it holds that Cprec(q) = Cest(q) for all q ∈ X . Assuming the case base M to
be fixed and considering simX as a variable, improving the precision of CCBI
means searching for a problem similarity measure such that Cest(q) contains as
few elements as possible for as many q as possible.

Definition 2 (Maximally Precise Problem Similarity Measure). A func-
tion sim⋆

X : X 2 → [0, 1] is called a maximally precise problem similarity measure
for a given case base M and number of intervals m, if for the predictions pro-

duced by CCBI, based on the corresponding empirical similarity profile h
sim⋆

X

M , it
holds that Pr(Cprec(q) = Cest(q)) = 1 for all q ∈ X .

Assuming the existence of an optimal problem similarity measure, it is straight-
forward to prove the following lemma.



Lemma 2. Let M be a case base, m > 0 the number of intervals used for
determining an empirical similarity profile hM, simX and simL be problem and
solution similarity measures, respectively. If for all 〈x, λx〉, 〈y, λy〉 ∈ M it holds
that simL(λx, λy) = hM(simX (x, y)), then simX is a maximally precise problem

similarity measure for M, i.e. hM = h
sim⋆

X

M .

Proof: We show Pr(Cprec(q) = Cest(q)) = 1 by proving by contradiction
that, under the assumptions made, Cest(q) \ Cprec(q) = ∅ for all q ∈ X . As-
sume there is a case 〈u, λu〉 ∈ M such that λu ∈ Cest(q) \ Cprec(q). The
CCBI inference scheme tells that λu ∈ Cest(q) implies that for all 〈c, λc〉 ∈
M it holds simL(λu, λc) ≥ hM(simX (q, c)). Knowing that simL(λx, λy) =
hM(simX (x, y)) for all 〈x, λx〉, 〈y, λy〉 ∈ M (precondition of Lemma 2), we
conclude that simL(λu, λc) ≥ simL(λq, λc) (⋆) for all 〈c, λc〉 ∈ M. Further,
as λu /∈ Cprec(q) =

⋂

〈c,λc〉∈M{λ|simL(λ, λc) ≥ simL(λq , λc)}, there must ex-

ist a 〈d, λd〉 ∈ M such that simL(λu, λd) � simL(λq , λd). This contradicts (⋆). �

Accordingly, we can force predictions produced by CCBI to be of maximal
precision for a given case base M, if we manage to provide a problem similarity
measure such that the corresponding empirical similarity profile hM features no
interval in which any two pairs of cases have different levels of solution similarity.
For further investigations, we introduce the notion of the empirical similarity
boundary that represents a kind of counterpart to an empirical similarity profile.

Definition 3 (Empirical Similarity Boundary). Let Ak be a partition of
[0, 1] as in Equation 2. We call

ĥM : x 7→
m
∑

k=1

γk · IAk
(x) with γk := max

〈x,λx〉,〈y,λy〉∈M,

simX (x,y)∈Ak

simL(λx, λy),

the empirical similarity boundary for M (here, IA is the indicator function of
set A and max ∅ = 0 by definition).

From Lemma 2, it follows that CCBI has maximal precision for M, if the
corresponding empirical similarity profile and boundary are identical for intervals
containing data (and by definition, ĥM is zero while hM is one for intervals that
contain no data). Note, however, that the inverse statement is not generally true.

Corollary 1. If, for a case base M and a similarity measure simX , it holds
hsimX

M (x) ≥ ĥsimX

M (x), then simX is maximally precise, i.e. simX = sim⋆
X .

3.3 Modifying Problem Similarity

Next, we investigate how to exploit the statements made so far for tuning similar-
ity measures in order to increase CCBI’s precision. Speaking about modifications
applied to similarity measures, we stress that we consider the solution similarity
measure simL to be fixed. By contrast, simX is a variable and may (at least in
theory1) take any value from the space of functions definable over X 2 → [0, 1].

1 In practice, we will usually confine ourselves to some “reasonable” or appropriately
representable sub-space of functions.



3.3.1 Partitioning Problem Similarity

A naive approach that allows for frequently fulfilling the constraint from Corol-
lary 1, i.e. hM(x) = ĥM(x) for many intervals, and so increases the probability
for precise solution sets, can be realized by incrementing the number m of inter-
vals used for determining the similarity profile and boundary (see Figure 2).

Lemma 3. If for all 〈x1, λx1〉, 〈y1, λy1〉, 〈x2, λx2〉, 〈y2, λy2〉 ∈ M with simL(λx1 ,
λy1) 6= simL(λx2 , λy2)) it holds simX (x1, y1) 6= simX (x2, y2), then for any m ≥
|M| there is a partition Ak (where Ak = [αk−1, αk] for 1 ≤ k ≤ m, Am =

[αm−1, αm], 0=α0<α1< . . . <αm = 1) so that hM(x) ≥ ĥM(x) ∀x ∈ [0, 1].

Proof: Let SM = {simX (x, y)|〈x, λx〉, 〈y, λy〉 ∈ M} be the set of all prob-
lem similarity levels occurring for cases within M. Thus, |SM| ≤ |M|2, and
∀s ∈ SM the set {simL(λx, λy)|〈x, λx〉, 〈y, λy〉 ∈ M, simX (x, y) = s} contains
exactly one element. We define SL

M = [s1, . . . , s|M|] as an ordered list that ar-
ranges all elements from SM in ascending order. Next, we set αk = SL

M[k]
for 1 ≤ k ≤ m, and for k > |SM| we set αk distributed equidistantly over
[1 − SL

M[|SM|], 1]. Obviously, Ak is a well defined partition. If k > |SM|, then

1 = hM(x) > ĥM(x) = 0 for x ∈ Ak by definition, because there are no
〈x, λx〉, 〈y, λy〉 ∈ M with simX (x, y) ∈ Ak. If, however, k ≤ |SM| it holds
that |{simL(λx, λy)|〈x, λx〉, 〈y, λy〉 ∈ M, simX (x, y) ∈ Ak}| = 1. Consequently,
min〈x,λx〉,〈y,λy〉∈M,simX (x,y)∈Ak

simL(λx, λy) = max〈x,λx〉,〈y,λy〉∈M,simX (x,y)∈Ak

simL(λx, λy) and, hence, hM(x) = ĥM(x) for all x ∈ Ak. �

Lemma 3 suggests that increasing the value of m may support the precision
of the solution sets returned by CCBI. Unfortunately, there are two important
drawbacks to be considered. On the one hand, as shown in [6], increasing m also
decreases the probability that the correct solution λq for some problem q ∈ X is
not in the solution set, because Pr(λq /∈ Cest(q)) ≤ 2m/(1 + |M|).

On the other hand, even if m → ∞, that lemma fails to guarantee maximal
precision, if there exist pairs of cases in M whose problem parts have identical
values of problem similarity, but whose solution parts differ in their solution
similarities, i.e. ∃〈x1, λx1〉, 〈y1, λy1〉, 〈x2, λx2〉, 〈y2, λy2〉 ∈ M : simX (x1, y1) =
simX (x2, y2) and simL(λx1 , λy1) 6= simL(λx2 , λy2). In particular, the latter prob-
lem can be avoided only by modifying the problem similarity measure simX .
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Fig. 2. By incrementing the number m of intervals, in principle maximal precision can
be attained, although such an approach is not valuable in practice.



3.3.2 Basic Problem Similarity Modifiers

Drawing from the preceding remarks, the need for adapting simX becomes ob-
vious. As a very special case of Lemma 2, simX would trivially be a maximally
precise problem similarity measure, if for all cases 〈x, λx〉, 〈y, λy〉 ∈ M it held

simX (x, y) = simL(λx, λy). (4)

This idea of employing the solution similarity measure as a kind of similarity
teacher for learning a suitable problem similarity measure is not new. It has
already been employed for practical tasks [5], has been formalized in [9], and
empirically investigated in [3, 4]. Although striving for a problem similarity mea-
sure that fulfills the constraint from Equation 4 in order to increase the precision
of CCBI seems appealing at first glance, we must be aware that such a naive
approach neglects all the knowledge about how the inferencing mechanism of
CCBI (cf. Section 2.1) works and, hence, would waste useful background knowl-
edge that can guide the search for a simX that yields high precision predictions.

By the same arguments, the strength of an empirical similarity profile (h
sim1

X

M

is stronger than h
sim2

X

M iff. h
sim1

X

M (·) ≥ h
sim2

X

M (·), cf. [6]) as a function of the prob-
lem similarity measure and with m fixed is only of limited use, when searching
for a simX that induces high-precision predictions. We will empirically support
this claim in Section 5.

A final remark concerns the practical representation of similarity measures.
When the problem domain X is finite, simX can be represented using a table
and thus, simX (x, y) may be adjusted individually for any pair of problems
from X 2. Typically, however, X is a multi-dimensional, continuous space and
problem similarity measures defined over X 2 are represented in a parameterized
way. For example, for X = Rn one may set simX (x, y) = 1

1+||x−y||p
, where p ≥ 1

is a parameter determining the norm used (e.g. p = 2 for Euclidean distance).
Here, when modifying p, simX is changed for vast parts of its domain. As a
consequence of such a parameterized similarity measure representation, fulfilling
the constraint from Equation 4 is in general infeasible (see Figure 3).
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Fig. 3. Depending on the used representation for similarity measures, changing simX

may entail changes in the problem similarity for numerous problems x, y ∈ X . Here, for
the case pair 〈x, λx〉, 〈y, λy〉 a change of simX (x, y) from α to β is desired. As indicated
in the right part, conducting change A results in a number of side effect changes for
other case pairs that may also cause the similarity profile h to change.



4 Precision-Oriented Tuning of Similarity Measures

Optimizing similarity measures in CBR is not a novel issue. A lot of work in this
direction has been done, e.g. in the area of nearest-neighbor classification. Here,
one tries to adjust feature weights by examining pre-classified training data [10,
2, 11]. Stahl [7] introduced a comprehensive methodology and a widely applicable
framework for learning similarity measures which we utilize and further develop
in the scope of this work. Optimizing similarity measures for the use within
CCBI and with the goal of increasing the precision of predictions, however, is
novel. In this section, we first briefly outline the learning framework mentioned.
Subsequently, we develop and analyze required error measures that are geared
towards improving the precision of case-based inferencing with CCBI.

4.1 A Framework for Learning Similarity Measures

The framework for learning similarity measures we utilize does not rely on ab-
solute information of a case’s utility for some query, but it allows for exploiting
relative utility feedback [7]. A second important feature boosting its applicability
is that it is not restricted to learning feature weights, but allows for optimizing
a broad class of similarity measures [8].

For the representation of problem similarity, typical knowledge-intensive sim-
ilarity measures consisting of feature weights wi and feature-specific local simi-
larity measures simXi

are assumed, where X = X1×· · ·×Xn, and for the features
of cases x, y ∈ X it holds that xi, yi ∈ Xi:

simX (x, y) =

n
∑

i=1

wi · simXi
(xi, yi). (5)

Local similarity measures are commonly represented as similarity tables which
assess all pairwise similarity values for symbolic features or as difference-based
similarity functions which map feature differences to similarity values for numer-
ical features (see [8] for an illustration).

For the task of optimizing feature weights as well as local similarity measures,
we developed an algorithm that performs search in the space of representable
similarity measures using evolutionary algorithms (EA). An EA maintains a
population of individuals (individuals correspond to similarity measures) and
evolves it using specialized stochastic operators (crossover and mutation) by
which new individuals (offspring) are created. Each individual is associated with
a fitness value and the least fit individuals are periodically excluded from the
evolution process (selection). So, the learning algorithm searches for the fittest
individual, whose corresponding similarity measure yields the minimal value of
an error function on the training data. For more details on this learning approach
and on the representation of similarity measures as individuals, we refer to [8].

Fitness Functions
A crucial component when using an evolution-based optimization technique is



the fitness function used for assessing the usefulness of the respective individual.
Thus, for the task at hand, we must associate each similarity measure with a
fitness value. While for learning similarity measures from relative case utility
feedback, the retrieval index error [7] represents an appropriate fitness function,
we found that more effort must be put into the fitness function’s definition [3]
when similarity measure optimization is to be performed for classification and
regression tasks, where often only some kind of binary feedback (e.g. retrieved
case has correct class or not) is available. Most of the corresponding fitness
functions we investigated made use of a solution similarity measure and/or tried
to induce relative utility feedback such that an index error was applicable. Being
developed for usage in combination with k-nearest neighbor retrieval those error
functions are unfortunately no longer usable if we work with CCBI and intend
to improve the precision of the retrieved solution sets it returns. Hence, next
we derive a number of candidate error functions that may be used as fitness
functions when performing problem similarity measure optimization for CCBI.

4.2 Precision-Oriented Error Measures

Considering a fixed set of cases M, a fixed number of intervals m, and a fixed
solution similarity measure simL, we can observe that

a) changing the problem similarity measure simX yields a shifting of data points
in the similarity space S = [0, 1]× [0, 1] (see Figure 3) along the x-axis,

b) the precision of returned solution sets is heavily influenced by the data dis-
tribution in that space,

c) maximal precision can be attained, if the data is distributed in such a manner
that the statement of Lemma 2 holds,

d) imprecision can arise, if there are cases 〈x, λx〉, 〈y, λy〉 such that hM(simX (x,
y)) < simL(λx, λy), in particular if this inequality holds for all 〈y, λy〉 ∈ M,

where we refer by hM to the empirical similarity profile for the currently con-
sidered problem similarity measure simX .

Departing from observation c), it is intuitive to employ the squared distance
between the empirical similarity profile and boundary, summed over all intervals,
as an error function (high fitness subsequently corresponds to a low error value).

Definition 4 (Boundary to Profile Error). Given a case base M, a partition
Ak of [0, 1] into m intervals, a problem and solution similarity measure simX

and simL, and the respective empirical similarity profile hM and boundary ĥM,

EB2P (simX ) =

m
∑

i=1

(

ĥM(xi) − hM(xi)
)2

defines the boundary to profile error of simX for M (where ∀xi, it holds xi ∈
Ai).

Thus, EB2P = 0 implies that simX is a maximally precise problem simi-
larity measure. Despite this, EB2P is apparently only of limited use, because



the precision a problem similarity measure yields also strongly depends on the
distribution of similarity pairs within each interval Ai (cf. observation b)). An
example of two measures with EB2P (sim1

X ) = EB2P (sim2
X ) where sim2

X is the
presumably more precise one, is shown in Figure 4. Thus, a straightforward ex-
tension of Definition 4 takes observation d) into account by summing the squared
distances between individual data points in S and their respective profile values.

Definition 5 (Solution Similarity to Profile Error). Using the same pre-
conditions as before, the solution similarity to profile error is defined as

ESS2P (simX ) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M

(simL(λx, λy) − hM(simX (x, y)))2 .

Again, although ESS2P = 0 assures that h = ĥ and although ESS2P regards
the distribution of similarity pairs within intervals more smartly than EB2P , the
distance between solution similarities and profile values is only a coarse indicator
of whether imprecise solution sets Cest will occur.

Having taken a closer look at how Cest(q) is defined, i.e. on Equation 3, and
knowing that we obtain Cest = Cprec if hM(simX (x, y)) = simL(λx, λy) ev-
erywhere, we can conclude that an “imprecise λ” is in one of the intersected
sets {λ|simL(λ, λc) ≥ hM(simX (q, c))}, if there exists a 〈u, λu〉 ∈ M with
simL(λu, λc) ∈ (hM(simX (q, c)), simL(λq, λc)]

2. This gives rise to defining:

Definition 6 (Pairs in Imprecision Interval Error). Let the same precon-
ditions be given as before, and define Ix,y = (hM(simX (x, y)), simL(λx, λy)] as
the imprecision interval for the case pair 〈x, λx〉, 〈y, λy〉. Then, we call

EPII(simX ) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M

∑

〈u,λu〉∈M
u6=x

f(x, y, u)

where f(x, y, u) =

{

1 if simL(λu, λy) ∈ Ix,y

0 else
the pairs in imprecision interval

error.

Function f in Definition 6 indicates whether for two cases 〈x, λx〉, 〈y, λy〉
from the case base there is a 〈u, λu〉 ∈ M (u 6= x) such that simL(λu, λy) >
hM(simX (x, y)) and simL(λu, λy) ≤ simL(λx, λy). Consequently, one may say
that the case pair 〈x, λx〉 and 〈y, λy〉 bears some potential for yielding imprecision
(see Figure 4a for an illustration).

However, for Cest(x) \ Cprec(x) 6= ∅ to actually occur and for λu to be in
that difference set, the two inequations mentioned in the previous paragraph
must not just hold for y, but also for all 〈z, λz〉 ∈ M (z 6= y). In other words,
if we can find a 〈z, λz〉 ∈ M such that simL(λu, λz) < hM(simX (x, z)), then
the considered case pair 〈x, λx〉 and 〈y, λy〉 no longer bears potential for causing
imprecision concerning λu. The following error function takes care of that fact.

2 Note that λu is in the mentioned set anyway, if simL(λu, λc) > simL(λq, λc), even
if h = ĥ.
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Fig. 4. In b+c), the similarity space for two problem measures sim1

X and sim2

X is shown
(both yield the same value of EB2P ) which are presumed to be of different precision
(see text). In a), an illustration for Definitions 6+7 is provided. Looking at case pair
〈x, λx〉, 〈y, λy〉, there are two data points (·, y) in the corresponding imprecision interval
Ix,y. However, w.r.t. u, (x, y) bears no potential for yielding imprecision: Apparently,
there exists a 〈z, λz〉 ∈ M such that (u, z) is below Ix,z, which is why λu /∈ Cest(x).

Definition 7 (Pairs Causing Imprecision Error). Let the same precondi-
tions and definition of the imprecision interval for a case pair 〈x, λx〉, 〈y, λy〉 as
well as the definition of f be given as before. Then, we call

EPCI(simX ) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M

∑

〈u,λu〉∈M
u6=x

(

f(x, y, u) · min
〈z,λz〉∈M

z 6=y

g(x, u, z)

)

with g(x, u, z) =

{

0 if simL(λu, λz) < hM(simX (x, z))

1 else
the pairs causing impre-

cision error.

Assume, we are given a case base M with M = |M|. Evaluating the fitness of
a problem similarity measure simX using one of the functions from Definitions 4
to 7, we have to acknowledge substantial differences in the computational effort
required for computing E. First of all, the time complexity of (re-)calculating
an entire empirical similarity profile3 subject to a changed problem similarity
measure is quadratic in the number of cases, as can be concluded from [6]. Thus,
any fitness evaluation will at least have quadratic complexity in M .

Because evaluating EB2P requires just one sweep over m intervals, the com-
plexity does not rise, EB2P ∈ O(M2). The same holds for ESS2P , although here
an additional sweep over all combinations of cases is required, thus ESS2P ∈
O(M2). Counting the number of similarity points that fall into the imprecision
interval Ix,y for any pair of cases, necessitates another iteration over all cases,
such that EPII ∈ O(M3). Finally, for EPCI the min operator (see Definition 7)
must be evaluated. In the worst case, here the complexity of evaluating the inner
sum can grow quadratically in the number of cases such that EPCI ∈ O(M4),
although a practical implementation may ease that by exploiting the fact that
the min operator does not have to be evaluated when f(·) = 0 or that evaluating
min can be ceased as soon as a 〈z, λz〉 with g(x, u, z) = 0 has been discovered.

3 The effort for computing an empirical similarity boundary is the same as for the
corresponding profile.



A final remark concerns the strength of an empirical similarity profile (see
Section 3.3.2) that may, in accordance to the other error functions, be defined as
ESTR(simX ) =

∑m
i=1(1 − hM(xi))

2 with arbitrary xi ∈ Ai. Note that such an
error function will in general not yield maximal precision according to Lemma
2. Nevertheless, we include ESTR in our experiments in the next section.

5 Empirical Evaluation

The focus of this evaluation is on a comparison of the performance of CCBI when
doing inference utilizing a knowledge-poor default similarity measure simdef

(corresponding to the Euclidean distance) and the measures acquired during
learning using the different error functions introduced above. All application do-
mains we consider depict regression tasks, i.e. there is a single real-valued solution
attribute for which we use a transformation of the Euclidean distance measure
as solution similarity measure simL. In accordance to [6], we measure the per-
formance of CCBI in terms of confidence (share of retrievals with λq ∈ Cest(q))
and imprecision which is the length of the prediction interval (difference of the
biggest and smallest element in Cest). Further, we provide the average point
prediction errors for the respective regression task, where the point prediction
of CCBI is determined as the center of the solution interval it predicts.

Note that the imprecision and point prediction of a retrieval result can only
be calculated for q ∈ X for which Cest(q) 6= ∅. Therefore, we also provide an
indication of the share of retrievals during which Cest = ∅ was returned. However,
for larger case bases (|M| ≥ 100) it generally holds that Pr(Cest(q) = ∅) < 0.01,
so that the influence of empty solution sets becomes negligible.

5.1 Proof of Concept

The atomic power plant domain is a small data set covering German nuclear
power stations. Since German law dictates the discommisioning of all plants, the
task here is to predict the remaining allowed running time of individual stations.

In this experiment, we pursued a leave-one-out validation strategy. Obvi-
ously, all error functions suggested are capable of yielding learning improve-
ments regarding the level of precision CCBI achieves (see Figure 5). However,
the computational complexity of an error measure seems to heavily correlate to
its capabilities in reducing imprecision and the point prediction error. In par-
ticular, EPCI reduces the length of the prediction interval represented by Cest

after 60 evolutionary generations to 0.13 years4, as opposed to an error of 1.78
years for simdef . Interestingly, the confidence share (Pr(λq ∈ Cest(q))) is not
impaired, i.e. stays above the confidence level of the default similarity measure.

5.2 Benchmark Results

Next, we studied the behavior of our learning algorithms on several UCI data
benchmark sets. In contrast to the experiments in Section 5.1 (LOO validation),

4 In 85% of all retrievals performed – in the remaining 15% it holds Cest(q) = ∅.
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Fig. 5. Results for the Atomic Power Plant Domain (evaluations performed on a LOO
basis where the experiments were repeated 10 times, |M| = 20, and m = 15).

we now split the case bases, learned on the first part of training cases, and con-
ducted all evaluations of learning results on the remaining part of independent
test cases.

The first question of our concern was on the influence of data-sparseness.
Here, our findings are in line with [6], revealing that confidence strongly corre-
lates to the size of M. This dependency is even magnified when optimizing the
problem similarity measures for increasing precision: Learning with small data
sets, not only the imprecision, but also the level of confidence is clearly reduced.
This effect is visualized in the top row of Figure 6 where for the Servo domain
learning curves are shown for optimization processes with 25 and 50 training
instances only. The bottom row shows how the situation improves when a more
comprehensive training data set is used. Here, it can be concluded that in par-
ticular an optimization process using ESS2P , EPII , and EPCI as error function
yields excellent precision improvements while confidence stays at a satisfying
level. Moreover, the point predictions that CCBI produces using that acquired
optimized problem similarity measure clearly outperform the predictions of a
k-NN regression (k = 1, . . . , 9).

The results for further benchmark data sets are summarized in Table 1. Since
we found that precision-improving similarity measures for CCBI can be reliably
obtained for |CB| ≥ 100, we have omitted the results for smaller training sets.
As the orders of magnitude of the solution attributes vary across the domains
we considered, we have provided percentual improvements/impairments of the
confidence and imprecision levels relative to the corresponding values the default
similarity measure yields. It is interesting to note that the changes of the point
prediction error are similar to those of the imprecision, which is why the former
are omitted in Table 1.
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Fig. 6. Improved Precision for the Servo Domain (from UCI Repository).

While most of the results listed are based upon training data set of |M| = 200
(except where noted) for learning on the basis of the pairs causing imprecision
error EPCI , we maximally employed 100 training instances, as the enormous
computational complexity (cf. Section 4.2) prohibited the use of larger training
sets. Consequently, due to effects of overfitting (comparable to, yet not as distinct
as in the top row of Figure 6) the results given in the last two columns of the
result table are likely to feature comparatively better imprecision and worse
confidence levels than the other columns.

Summarizing, we can state that in most of the experiments conducted the
gain achieved in reducing imprecision was significantly more distinct than the
corresponding reduction of the confidence share. We thus can conclude that the
proposed optimization of similarity measures using the error functions derived
in Section 4 is highly beneficial for the performance of CCBI. Practically, our
evaluation shows that the solution similarity to profile error ESS2P as well as
the pairs in imprecision interval error EPII are most suitable for the realization
of a precision-oriented similarity measure optimization. Averaged over our ex-
periments they yield a confidence reduction of 11.3/11.8 percent5 compared to
simdef and a simultaneous reduction of imprecision of 43.2/45.6%. The perfor-
mance of EPCI is evidently superior, but, as mentioned, its computation becomes
quickly intractable for increasing amounts of training case data.

6 Conclusion

The contribution of this paper is three-fold. First, we have theoretically examined
the notion of precision in the context of credible case-based inference and proved
several formal statements concerning the relation between similarity measures
and the level of precision inferencing with CCBI may yield. Second, utilizing the

5 We emphasize that this confidence reduction turns out to be much lower when the
amount of training data is further increased (beyond |M| = 200).



Domain Train/ ESTR EB2P ESS2P EPII EPCI

Name Test Data Conf Impr Conf Impr Conf Impr Conf Impr Conf Impr

Abalone 200/1000 -2.0% -3.2% -3.1% -5.8% -7.7% -41.2% -11.3% -40.0% -6.1% -32.9%

AutoMpg 200/198 -7.0% +12.5% -4.3% +34.3% -11.3% -22.9% -11.9% -30.5% -19.8% -30.5%

Housing 200/306 -6.2% -18.7% -0.8% +0.6% -11.1% -39.6% -7.8% -48.3% -22.4% -51.3%

Liver 200/145 -5.3% -0.1% -3.9% +1.6% -10.6% -32.2% -7.4% -18.5% -17.5% -28.5%

Machines 100/109 -11.6% +3.0% -4.1% +102% -12.9% -60.8% -19.2% -71.4% -21.1% -70.2%

Servo 75/91 -14.1% -56.3% -17.0% -59.2% -13.3% -62.7% -12.9% -65.1% -25.6% -76.7%

Table 1. Results for different benchmark data sets. Conf refers to the confidence share
and Impr to the level of imprecision, i.e. to the length of the predicted solution interval.

theoretical properties of precision in CCBI, we have derived a number of poten-
tial error functions that can be employed for tweaking the problem similarity
measures CCBI uses towards increased precision. Finally, we have evaluated the
proposed optimization approach using several standard benchmark data sets and
found that two of the error measures proposed create excellent improvements of
the precision when generating candidate solutions with CCBI.
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