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Abstract. DEC-MDPs with changing action sets and partially ordered
transition dependencies have recently been suggested as a sub-class of
general DEC-MDPs that features provably lower complexity. In this pa-
per, we investigate the usability of a coordinated batch-mode reinforce-
ment learning algorithm for this class of distributed problems. Our agents
acquire their local policies independent of the other agents by repeated
interaction with the DEC-MDP and concurrent evolvement of their poli-
cies, where the learning approach employed builds upon a specialized
variant of a neural fitted Q iteration algorithm, enhanced for use in multi-
agent settings. We applied our learning approach to various scheduling
benchmark problems and obtained encouraging results that show that
problems of current standards of difficulty can very well approximately,
and in some cases optimally be solved.

1 Introduction

Decentralized decision-making is required in many real-life applications. Exam-
ples include distributed sensor networks, teams of autonomous robots, rescue op-
erations where units must decide independently which sites to search, or produc-
tion planning and factory optimization where machines may act independently
with the goal of achieving optimal joint productivity. The interest in analyzing
and solving decentralized learning problems is to a large degree evoked by their
high relevance for practical problems. While Markov decision processes (MDP)
have proven to be a suitable tool for solving problems involving a single agent,
a number of extensions of these models to multi-agent systems have been sug-
gested. Among those, the DEC-MDP framework [4], that is characterized by each
agent having only a partial view of the global system state, has been frequently
investigated. It has been shown that the complexity of general DEC-MDPs is
NEXP-complete, even for the benign case of two cooperative agents [4].

The enormous computational complexity of solving DEC-MDPs conflicts with
the fact that real-world tasks do typically have a considerable problem size. Tak-
ing this into consideration, we recently [10] identified a subclass of general DEC-
MDPs that features regularities in the way the agents interact with one another.
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For this class, we could show that the complexity of optimally solving an instance
of such a DEC-MDP is provably lower (NP-complete) than the general problem.

In this paper, we focus on job-shop scheduling problems which can be mod-
elled using the DEC-MDP class mentioned above. Since such problems involve
settings with ten and more agents, optimal solution methods can hardly be ap-
plied. Therefore, we propose for employing a multi-agent reinforcement learning
approach, where the agents are independent learners and do their learning on-
line. The disadvantage of choosing this learning approach is that agents may take
potentially rather bad decisions until they learn better ones and that, hence, only
an approximate joint policy may be obtained. The advantage is, however, that
the entire learning process is done in a completely distributed manner with each
agent deciding on its own local action based on its partial view of the world state
and on any other information it eventually gets from its teammates.

In Section 2, we summarize and illustrate the key properties of the class of
factored m-agent DEC-MDPs with changing action sets and partially ordered
transition dependencies [10], which are in the center of our interest. Section 3
discusses a method that allows for partially resolving some of the inter-agent
dependencies. Subsequently (Section 4), we provide the basics of our learning
approach to acquire approximate joint policies using coordinated multi-agent
reinforcement learning. Finally, in Section 5 we show how scheduling problems
can be modelled using the class of DEC-MDPs specified. Moreover, empirical
results for solving various scheduling benchmark problems are presented.

2 Decentralized MDPs

The subclass of problems we are focusing on may feature an arbitrary number
of agents whose actions influence, besides their own, the state transitions of
maximally one other agent in a specific manner. Formally defining the problem
settings of our interest, we embed them into the framework of decentralized
Markov decision processes (DEC-MDP) by Bernstein et al. [4].

Definition 1. A factored m-agent DEC-MDP M is defined by a tuple
〈Ag, S, A, P, R, Ω, O〉 with

– Ag = {1, . . . , m} as the set of agents,
– S as the set of world states which can be factored into m components S =

S1 × · · · × Sm (the Si belong to one of the agents each),
– A = A1 × ... × Am as the set of joint actions to be performed by the agents

(a = (a1, . . . , am) ∈ A denotes a joint action that is made up of elementary
actions ai taken by agent i),

– P as the transition function with P (s′|s, a) denoting the probability that the
system arrives at state s′ upon executing a in s,

– R as the reward function with R(s, a, s′) denoting the reward for executing a
in s and transitioning to s′,

– Ω=Ω1×· · ·×Ωm as the set of all observations of all agents (o=(o1, . . . , om)∈
Ω denotes a joint observation with oi as the observation for agent i),
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– O as the observation function that determines the probability O(o1, . . . , om|
s, a, s′) that agent 1 through m perceive observations o1 through om upon the
execution of a in s and entering s′.

– M is jointly fully observable, the current state is fully determined by the
amalgamation of all agents’ observations: O(o|s, a, s′) > 0 ⇒ Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈ Ai, oi ∈ Ωi as local
state, action, and observation of agent i, respectively. A joint policy π is a set
of local policies 〈π1, . . . , πm〉 each of which is a mapping from agent i’s sequence
of local observations to local actions, i.e. πi : Ωi → Ai. Simplifying subsequent
considerations, we may allow each agent to fully observe its local state.

Definition 2. A factored m-agent DEC-MDP has local full observability, if for
all agents i and for all local observations oi there is a local state si such that
Pr(si|oi) = 1.

Note that joint full observability and local full observability of a DEC-MDP
do generally not imply full observability, which would allow us to consider the
system as a single large MDP and to solve it with a centralized approach. Instead,
typically vast parts of the global state are hidden from each of the agents.

A factored m-agent DEC-MDP is called reward independent, if there exist
local functions R1 through Rm, each depending on local states and actions
of the agents only, as well as a function r that amalgamates the global re-
ward value from the local ones, such that maximizing each Ri individually also
yields a maximization of r. If, in a factored m-agent DEC-MDP, the observation
each agent sees depends only on its current and next local state and on its ac-
tion, then the corresponding DEC-MDP is called observation independent, i.e.
P (oi|s, a, s′, (o1 . . . oi−1, oi+1 . . . om) = P (oi|si, ai, s

′
i). Then, in combination with

local full observability, the observation-related components Ω and O are redun-
dant and can be removed from Definition 1.

While the DEC-MDPs of our interest are observation independent and reward
independent, they are not transition independent. That is, the state transition
probabilities of one agent may very well be influenced by another agent. However,
we assume that there are some regularities, to be discussed in the next section,
that determine the way local actions exert influence on other agents’ states.

2.1 Variable Action Sets

The following two definitions characterize the specific subclass of DEC-MDPs
we are interested in. Firstly, we assume that the sets of local actions Ai change
over time.

Definition 3. An m-agent DEC-MDP with factored state space S = S1 × · · · ×
Sm is said to feature changing action sets, if the local state of agent i is fully
described by the set of actions currently selectable by that agent (si = Ai \ {α0})
and Ai is a subset of the set of all available local actions Ai = {α0, αi1 . . . αik},
thus Si = P(Ai \ {α0}). Here, α0 represents a null action that does not change
the state and is always in Ai. Subsequently, we abbreviate Ar

i = Ai \ {α0}.
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Fig. 1. DEC-MDPs with Changing Action Sets: Local State of Agent i

Concerning state transition dependencies, one can distinguish between depen-
dent and independent local actions. While the former influence an agent’s local
state only, the latter may additionally influence the state transitions of other
agents. As pointed out, our interest is in non-transition independent scenarios.
In particular, we assume that an agent’s local state can be affected by an arbi-
trary number of other agents, but that an agent’s local action affects the local
state of maximally one other agent.

Definition 4. A factored m-agent DEC-MDP has partially ordered transition
dependencies, if there exist dependency functions σi for each agent i with

1. σi : Ar
i → Ag ∪ {∅} and

2. ∀α ∈ Ar
i the directed graph Gα = (Ag∪{∅}, E) with E = {(j, σj(α))|j ∈ Ag}

is acyclic and contains only one directed path

and it holds P (s′i|s, (a1 . . . am), (s′1 . . . s′i−1, s
′
i+1 . . . s′m))

= P (s′i|si, ai, {aj ∈ Aj |i = σj(aj), j 
= i})
The influence exerted on another agent always yields an extension of that

agent’s action set: If σi(α) = j, i takes local action α, and the execution of α
has been finished, then α is added to Aj(sj), while it is removed from Ai(si).

That is, the dependency functions σi indicate whose other agents’ states are
affected when agent i takes a local action. Further, Definition 4 implies that for
each local action α there is a total ordering of its execution by the agents. While
these orders are total, the global order in which actions are executed is only
partially defined by that definition and subject to the agents’ policies.

Ag1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α2
Dependency Graph Gα2

Ag 1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α3
Dependency Graph Gα3

Ag 1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α4
Dependency Graph Gα4

σ2(2)=4
σ2(4)=5σ2(3)=Ø

… …

σ3(2)=2 σ3(3)=Ø σ3(4)=Ø

Agent 2 Dependency Function σ2

αi1αi0 αi2 αi3 αi5 αi6 αi7 αi8αi4

Agent 3

Agent 4

Agent 5 Agent 1

Agent 6

Ø Ø Ø Ø

… …

Agent 3 Depe

αi1αi0 αi2 αi3

Agent 6Ø Ø

Agent 2

a) b)

Fig. 2. Exemplary Dependency Functions (a) and Graphs (b)

In [10] it is shown that, for the class of problems considered, any local action
may appear only once in an agent’s action set and, thus, may be executed only
once. Further, it is proved that solving a factored m-agent DEC-MDP with
changing action sets and partially ordered dependencies is NP-complete.



86 T. Gabel and M. Riedmiller

3 Reactive Policies and Resolved Dependencies

An agent that takes its action based solely on its most recent local observation
si ⊆ Ai will in general not be able to contribute to optimal joint behavior. In
particular, it will have difficulties in assessing the value of taking its idle action
α0. Taking α0, the local state remains unchanged except when it is influenced
by dependent actions of other agents.

Definition 5. For a factored m-agent DEC-MDP with changing action sets and
partially ordered transition dependencies, a reactive policy πr = 〈πr

1 . . . πr
m〉 con-

sists of m reactive local policies with πr
i : Si → Ar

i where Si = P(Ar
i ).

So, purely reactive policies always take an action α ∈ Ai(si) = si (except for
si = ∅), even if it was more advisable to stay idle and wait for a transition from
si to some s′i = si ∪ {α′} induced by another agent, and then execute α′ in s′i.

3.1 Communication-Based Awareness of Dependencies

The probability that agent i’s local state moves to s′i depends on three factors:
on that agent’s current local state si, on its action ai, as well as on the set
{aj ∈ Aj |i = σj(aj), i 
= j} = Δi, i.e. on the local actions of all agents that may
influence agent i’s state transition. Let us for the moment assume that agent i
always knows the set Δi. Then, all transition dependencies would be resolved
as they would be known to each agent. As a consequence, all local transitions
would be Markovian and local states would represent a sufficient statistic for
each agent to behave optimally.

Unfortunately, fulfilling the assumption of all Δi to be known conflicts with
the idea of decentralized decision-making. In fact, knowing σj and relevant ac-
tions aj of other agents, enables agent i to determine their influence on its local
successor state and to best select its local action ai. This action, however, gen-
erally also influences another agent’s transition and, hence, that agent’s action
choice if it knows its set Δj , as well. Thus, it can be seen that even in the be-
nign case of a two-agent system, there may be circular dependencies, which is
why knowing all Δi entirely would only be possible if a central decision-maker
employing a joint policy and deciding for joint actions is used.

Nevertheless, we may enhance the capabilities of a reactive agent i by allowing
it to get at least some partial information about Δi. For this, we extend a reactive
agent’s local state space from Si = P(Ar

i ) to Ŝi such that for all ŝi ∈ Ŝi it holds
ŝi = (si, zi) with zi ∈ P(Ar

i \ si). So, zi is a subset of the set of actions currently
not in the action set of agent i.

Definition 6. Let 1 . . .m be reactive agents acting in a DEC-MDP, as specified
in Definition 4, whose local state spaces are extended to Ŝi. Assume that current
local actions a1 . . . am are taken consecutively. Given that agent j decides for
aj ∈ Aj(sj) and σj(aj) = i, let also si be the local state of i and ŝi its current
extended local state with ŝi = (si, zi). Then, the transition dependency between
j and i is said to be resolved, if zi := zi ∪ {aj}.
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Fig. 3. Left: Agent 5 behaves purely reactively. Right: A notification from agent 2
allows for resolving a dependency, agent 5 may stay willingly idle and meet its deadline.

The resolution of a transition dependency according to Definition 6 corresponds
to letting agent i know some of those current local actions of other agents by
which the local state of i will soon be influenced. Because, for the class of prob-
lems we are dealing with, inter-agent interferences are always exerted by chang-
ing (extending) another agent’s action set, agent i gets to know which further
action(s) will soon be available in its action set. By integrating this piece of
information into i’s extended local state description Ŝi, this agent obtains the
opportunity to willingly stay idle (execute α0) until the announced action aj ∈ zi

enters its action set and can finally be executed (see Figure 3 for an example).
Thus, because local states ŝi are extended by information relating to transi-
tion dependencies between agents, such policies are normally more capable than
purely reactive ones, since at least some information about future local state
transitions induced by teammates can be regarded during decision-making.

The notification of agent i, which instructs it to extend its local state com-
ponent zi by aj , may easily be realized by a simple message passing scheme
(assuming cost-free communication between agents) that allows agent i to send
a single directed message to agent σi(α) upon the local execution of α.

4 Policy Acquisition with Reinforcement Learning

Solving a DEC-MDP optimally is NEXP-hard and intractable for all except the
smallest problem sizes. Unfortunately, the fact that the subclass of DEC-MDPs
we identified in Section 2 is in NP and hence simpler to solve, does not rid us from
the computational burden implied. Given that fact, our goal is not to develop
yet another optimal solution algorithm that is applicable to small problems only,
but to look for a technique capable of quickly obtaining approximate solutions
in the vicinity of the optimum.

Reinforcement learning (RL) has proven to be usable for acquiring approxi-
mate policies in decentralized MDPs. In contrast to offline planning algorithms,
RL allows for a real decentralization of the problem employing independently
learning agents. However, due to inter-agent dependencies designing distributed
learning algorithms represents a challenging task.

In the remainder of this section, we outline the basic characteristics of our
approach to applying RL in distributed settings aiming at the acquisition of
joint policies for m-agent factored DEC-MDPs with changing action sets.
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4.1 Challenges for Independent Learners

Boutilier [5] pointed out that any multi-agent system can be considered as a sin-
gle MDP when adopting an external point of view. The difficulties induced when
taking the step towards decentralization can be grouped into three categories.
First, in addition to the (single-agent) temporal credit assignment problem, the
multi-agent credit assignment problem arises, which corresponds to answering
the question of whose agent’s local action contributed how much to a corpo-
rate success. To this end, we consider reward independent DEC-MDPs only (see
Section 2) with the global reward being the sum of local ones.

A second challenge is represented by the agents’ uncertainty regarding the
other agents’ policies pursued during learning. To sidestep that problem, we
revert to an inter-agent coordination mechanism introduced in [12]. Here, the
basic idea is that each agent always optimistically assumes that all other agents
behave optimally (though they often will not, e.g. due to exploration). Updates
to the value function and policy learned are only done when an agent is cer-
tain that a superior joint action has been executed. Since the performance of
that coordination scheme quickly degrades in the presence of noise, we focus on
deterministic DEC-MDPs in the remainder of the paper.

Third, the subclass of DEC-MDPs identified in Section 2 has factored state
spaces providing each agent with (locally fully observable) state perceptions.
Since the global state is unknown, each agent must necessarily remember the full
history of local states to behave optimally, which quickly becomes intractable
even for toy problems (see [10] for our alternative approach of compactly en-
coding the agents’ state histories). In Section 3.1 we have suggested a message
passing scheme that enables the learners to inform other agents about expected
state transitions and thus enhances the capabilities of a purely reactive agent.
Although, in this way the optimal policy can generally not be represented, the
need for storing full state histories can be avoided.

4.2 Joint Policy Acquisition with Reinforcement Learning

We let the agents acquire their local policies independently of the other agents
by repeated interaction with the DEC-MDP and concurrent evolvement of their
policies. Our learning approach is made up of alternating data collection and
learning stages that are being run concurrently within all agents. At its core, a
neural fitted Q iteration (NFQ) algorithm [14] is used that allows the agents to
determine a value function over their local state-action spaces.

4.2.1 Data Collection
Our multi-agent extension of NFQ denotes a batch-mode RL algorithm where
agent i computes an approximation of the optimal policy, given a finite set Ti

of local four-tuples [8]. Ti = {(sk
i , ak

i , rk
i , s

′k
i )|k = 1 . . . p} can be collected in any

arbitrary manner (e.g. by an ε-greedy policy) and contains agent-specific local
states sk

i , local actions ak
i ∈ Ai(sk

i ) = sk
i ⊆ Ai, corresponding rewards rk

i , as well
as local successor states s

′k
i entered. If the final state of the DEC-MDP has been
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reached (Ai(si) = ∅ for all i), the system is reset to its starting state (beginning
of what we call a new training episode), and if a sufficient amount of tuples has
been collected, the learning stage (4.2.2) is entered.

4.2.2 Applying Neural Fitted Q Iteration
Given Ti and a regression algorithm, NFQ iteratively computes an approxima-
tion Q̃i : Si × Ai → R of the optimal state-action value function, from which
a policy π̃i : Si → Ai can be induced by greedy exploitation via π̃i(si) =
argmaxα∈Ai(si) Q̃i(si, α). Having initialized Q̃i and counter q to zero, NFQ re-
peatedly processes the following steps until some stop criterion becomes true:

1. construct training set Fi as input for the regression algorithm according to
Fi = {(vk, wk)|k = 1 . . . p}, with vk = (sk

i , ak
i ), target values wk are calcu-

lated using the Q learning [18] update rule, wk = rk
i + γ maxα∈sk

i
Q̃q

i (s
′k
i , α),

2. use the regression algorithm and Fi to induce a new approximation Q̃q+1
i :

Si ×Ai → R, and increment q.

For the second step, NFQ employs multi-layer perceptron neural networks in
conjunction with the efficient backpropagation variant Rprop [15].

4.2.3 Optimistic Inter-agent Coordination
For the multi-agent case, we modify step 2 of applying NFQ: Agent i creates a
reduced (optimistic) training set Oi such that |Oi| ≤ |Fi|. Given a deterministic
environment and the resetting mechanism during data collection (4.2.1), the
probability that agent i enters some sk

i more than once is larger than zero.
Hence, if a certain action ak

i ∈ Ai(sk
i ) has been taken multiple times in sk

i , it
may—because of differing local actions selected by other agents—have yielded
very different rewards and local successor states for i. Instead of considering all
tuples from Ti, only those are used for creating Oi that have resulted in maximal
expected rewards. This means, we assume that all other agents take their best
possible local action, which are, when combined with ak

i , most suitable for the
current global state. Accordingly, we compute the optimistic target values wk

for a given local state-action pair vk = (sk
i , ak

i ) according to

wk := max
(sk

i ,ak
i ,rk

i ,s
′k
i )∈Ti,

(sk
i ,ak

i )=vk

(
rk
i + γ max

α∈sk
i

Q̃k
i (s

′k
i , α)

)

Consequently, Oi realizes a partitioning of Ti with respect to identical values of
sk

i and ak
i , and wk is the maximal sum of the immediate rewards and discounted

expected costs over all tuples (sk
i , ak

i , ·, ·) ∈ Ti.

5 Experiments

Distributed problem solving often faces situations where a larger number of
agents are involved and where a factored system state description is given with
the agents taking their decisions based on local observations. Also, our assump-
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tions that local actions may influence the state transitions of maximally one
other agent and that any action has to be performed only once are frequently
fulfilled. Sample real-world applications include scenarios from manufacturing,
traffic control, or assembly line optimization, where typically the production of
a good involves a number of processing steps that have to be performed in a
specific order. In a factory, however, usually a variety of products is assembled
concurrently, which is why an appropriate sequencing and scheduling of single
operations is of crucial importance for overall performance. Our class of factored
m-agent DEC-MDPs with changing action sets and partially ordered transition
dependencies covers a variety of such scheduling problems, for example flow-shop
and job-shop scheduling scenarios [13], even scheduling problems with recircu-
lating tasks can be modelled. Next, we show how our class of DEC-MDPs can
be utilized for modeling production planning problems and evaluate the perfor-
mance of our learning approach using a variety of established benchmarks.

5.1 Scheduling Problems

Thegoal of scheduling is to allocate a specifiednumber of jobs to a limitednumber of
resources (also called machines) such that some objective is optimized. In job-shop
scheduling (JSS), n jobs must be processed on m machines in a pre-determined or-
der.Each job j consists ofνj operationsoj,1 . . . oj,νj thathave tobehandledona cer-
tain resource 
(oj,k) for a specific duration δ(oj,k). A job is finished after its last op-
eration has been entirely processed (completion time fj). In general, scheduling ob-
jectives tobeoptimizedall relate to thecompletiontimeof the jobs. In thispaper,we
concentrate on the goal of minimizing maximum makespan (Cmax = maxj{fj}),
which corresponds to finishing processing as quickly as possible.

Solving JSS problems is well-known to be NP-hard. Over the years, numerous
benchmark problem instances of varying sizes have been established, a collection
of sample problems is provided by the OR Library [1]. A common characteristic
of those JSS benchmarks is that usually no recirculation of jobs is allowed,
i.e. that each job must be processed exactly once on each resource (νj = m). For
more basics on scheduling, the reader is referred to [13].

JSS problems can be modelled using factored m-agent DEC-MDPs with chang-
ing action sets and partially ordered transition dependencies:

– The world state can be factored: To each of the resources one agent i is
associated whose local action is to decide which waiting job to process next.

– The local state of i can be fully described by the changing set of jobs currently
waiting for further processing. Since choosing and executing a job represents
a local action (i.e. Ar

i is the set of jobs that must be processed on resource
i), it holds Si = P(Ar

i ).
– After having finished an operation of a job, this job is transferred to another

resource, which corresponds to influencing another agent’s local state by
extending that agent’s action set.

– The order of resources on which a job’s operation must be processed is given
in a JSS problem. Therefore, we can define σi : Ar

i → Ag∪{∅} (cf. Definition
4) for all agents/resources i as
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σi(α) =

{
∅ if k = να


(oα,k+1) else
where k corresponds to the number of that operation within job α that has
to be processed on resource i, i.e. k such that 
(oα,k) = i.

– Given the no recirculation property from above and the definition of σi, the
directed graph Gα from Definition 4 is indeed acyclic with one directed path.

More low-level details on solving JSS problems in a decentralized manner as well
as on parameter settings of the RL algorithm involved, can be found in [9].

5.2 Experiment Outline

Classically, JSS problems are solved in a centralized manner, assuming that a
central control over the process can be established. From a certain problem size
on, however, the NP-hardness of the problem precludes the search for an optimal
solution even for a centralized approach. That is why frequently dispatching
priority rules are employed that take local dispatching decisions in a reactive
and independent manner (the FIFO rule is a well-known example).

In the following experiment, however, a comparison to alternative scheduling
methods is only our secondary concern. For comparison, we just provide results
for two of the best-performing priority rules (SPT chooses operations with short-
est processing time δ next and AMCC makes use of knowing the global system
state), as well as the theoretic optimum, representing a lower bound, as it may be
found by a centralized brute-force search. Our primary concern is on analyzing
the following three approaches. We compare agents that independently learn

– purely reactive policies πr
i (see Section 3) defined over Si = P(Ar

i ) that never
remain idle when their action set is not empty [RCT],

– reactive policies π̂i that are partially aware of their dependencies on other
agents (notified about forthcoming influences exertedby other agents) [COM],

– policies πi : Ei → Ai using full information about the agents’ histories, here
Ei is a compact encoding of that agent i’s observation history Si (see [10]
for more details) [ENC].

In JSS problems, it typically holds that d(oj,k) > 1 for all j and k. Since
most of such durations are not identical, decision-making usually proceeds asyn-
chronously across agents. We assume that a COM-agent i sends a message to
agent σi(α) when it starts the execution of an operation from job α, announcing
to that agent the arrival of α, whereas the actual influence on agent σi(α) (its
action set extension) occurs d(oα,·) steps later (after oα,· has been finished).

Classes of Schedules
For a problem with m resources and n jobs consisting of m operations each, there
are (n!)m possible schedules (also called set of active schedules, Sa). Considering
such a problem as a DEC-MDP, this gives rise to, for example, about 1.4 · 1017

possible joint policies for m = n = 6.
Considering purely reactive agents, the number of policies/schedules that can

be represented is usually dramatically reduced. Unfortunately, only schedules
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from the class of non-delay schedules Snd can be created by applying reactive
policies. Since Snd ⊆ Sa and because it is known that the optimal schedule is
always in Sa [13], but not necessarily in Snd, RCT-agents can at best learn the
optimal solution from Snd. By contrast, learning with ENC-agents, in principle
the optimal solution can be attained, but we expect that the time required by
our learning approach for this to happen will increase significantly.

We hypothesize that the awareness of inter-agent dependencies achieved by
partial dependency resolutions via communication may in fact realize a good
trade-off between the former two approaches. On the one hand, when resolving
a transition dependency according to Definition 6, an agent i can become aware
of an incoming job. Thus, i may decide to wait for that arrival, instead of starting
to execute another job. Hence, also schedules can be created that are not non-
delay. On the other hand, very poor policies with unnecessary idle times can
be avoided, since a decision to stay idle will be taken very dedicatedly, viz only
when a future job arrival has been announced. This falls into place with the fact
that the extension of an agent’s local state to ŝi = (si, zi) is rather limited and
consequently the number of local states is only slightly increased.

5.3 Illustrative Benchmark

We start off with the FT6 benchmark problem taken from [1]. This depicts a
problem with 6 resources and 6 jobs consisting of 6 operations each, hence we
consider a DEC-MDP with 6 independently learning agents. Figure 4 summarizes
the learning curves for the three approaches we want to compare (note that the
SPT/FIFO/AMCC rules yield Cmax = 88/77/55, here, and are not drawn for
clarity). Results are averaged over 10 experiment repetitions and indicators for
best/worst runs are provided.

First of all, this experiment shows the effectiveness of our approach, since each
type of learning agents considered manages to attain its respective optimum and
because static dispatching rules with a local view are clearly outperformed. The
FT6 benchmark is a problem, where the best reactive policy (hence, the best

Fig. 4. Learning Curves for the FT6 Benchmark
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Table 1. Learning results for scheduling benchmarks of varying size. All entries are
average makespan values. The last column shows the relative remaining error (%) of
the COM-agents compared to the theoretical optimum. Indices a, b, and c stand for
problem sets provided by different authors.

m × n #Prbl SPT AMCC Opt. RCT COM ENC Err

5x10 3 734.7 702.7 614.0 648.7 642.0 648.3 4.6
10x10a 3 1174.3 1096.0 1035.7 1078.0 1062.7 1109.0 2.6
10x10b 5 1000.2 894.2 864.2 899.0 894.6 928.6 3.5
10x10c 9 1142.6 977.1 898.2 962.7 951.0 988.4 5.9
5x20 1 1267.0 1338.0 1165.0 1235.0 1183.0 1244.0 1.5
15x20 3 888.3 771.0 676.0 747.7 733.7 818.0 8.6

non-delay schedule with Cmax = 57) is dragging behind, since the optimal solu-
tion corresponds to a delay schedule with makespan of 55. The steepest learning
curve emerges for purely reactive agents that achieve the best non-delay solu-
tion, hence little interaction with the process is required for those agents to
obtain high-quality policies. By contrast, ENC- and COM-agents are capable of
learning the optimal policy, where the former require significantly more training
time than the latter (note the log scale in Figure 4). This can be tributed to the
clearly increased number of local states of ENC-agents, which have to cover the
agents’ state histories, and to the fact that they may take idle actions in prin-
ciple in any state, while COM-agents do so only when a notification regarding
forthcoming externally influenced state transitions has been received.

5.4 Benchmark Results

We also applied our framework to a large variety of different-sized benchmarks
from [1] involving up to 15 agents and 20 jobs. In 12 out of the 37 benchmarks
examined already the RCT version of our learning agents succeeded in acquiring
the optimal joint policy. This also means that in those scenarios (all of them
involved 5 resources) the optimal schedule is a non-delay one and we omit ex-
periments using ENC- or COM-agent as no further improvement is possible.

Table 1 provides an overview of the results for the remaining, more intricate
25 benchmark problems (except for FT6, cf. Section 5.3), grouped by prob-
lem sizes (m × n). This summary gives the quality of policies obtained after
25000 training episodes. Since ENC-agents have shown to require substantially
longer to acquire high-quality policies, the results in the corresponding column
are expectedly poor. However, while purely reactive agents already outperform
standard rules, their enhancement by means of dedicated communication yields
excellent improvements in all cases.

6 Related Work

One of the first formal approaches to model cooperative multi-agent systems was
the MMDP framework by Boutilier [5], which requires every agent to be aware of
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the current global state. By contrast, factored state information including local
partial/full observability are key ingredients of the DEC-POMDP framework of
Bernstein et al. [4]. While the general problem has NEXP-complete complex-
ity, other researchers have subsequently identified specific subclasses with lower
computational complexity, e.g. transition independent DEC-MDPs [3] and DEC-
MDPs with synchronizing communication [11]. While these subclasses are quite
distinct, our class of factored m-agent DEC-MDPs with changing action sets
and partially ordered transition dependencies features some commonalities with
DEC-MDPs with event-driven interactions [2] where the latter focus on systems
with two agents only and assume less structure in the inter-agent dependencies.

Independently learning agents have been targeted in a number of recent pub-
lications, e.g. [6,7]. Communication as a means of conveying information that is
local to one agent to others has been investigated, for instance, in [11]. Here,
policy computation is facilitated by allowing agents to fully synchronize their lo-
cal histories of observations. By contrast, in the paper at hand we have explored
a very limited form of directed communication that informs other agents about
forthcoming interferences on state transition. Other approaches with limited
communication can be found in [16] where each agent broadcasts its expected
gain of a learning update and coordination is realized by performing collective
learning updates only when the sum of the gains for the team as a whole is
positive, or in [17] where communication is employed to enable a coordinated
multi-agent exploration mechanism.

7 Conclusion

Decentralized Markov decision processes with changing action sets and partially
ordered transition dependencies have been suggested as a sub-class of general
DEC-MDPs that features provably lower complexity. In this paper, we have
explored the usability of a coordinated batch-mode reinforcement learning algo-
rithm for this class of distributed problems, that facilitates the agents to con-
currently and independently learn their local policies of action. Furthermore, we
have looked at possibilities for modeling memoryless agents and enhancing them
by restricted allowance of communication.

The subclass of DEC-MDPs considered covers a wide range of practical prob-
lems. We applied our learning approach to production planning problems and
evaluated it using numerous job-shop scheduling benchmarks that are already
NP-hard when solved in a centralized manner. The results obtained are con-
vincing insofar that benchmark problems of current standards of difficulty can
very well be approximately solved by the learning method we suggest. The poli-
cies our agents acquire clearly surpass traditional dispatching rules and, in some
cases, are able to solve the problem instances optimally.
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