
Reinforcement Learning for DEC-MDPs with Changing
Action Sets and Partially Ordered Dependencies

Thomas Gabel and Martin Riedmiller
Neuroinformatics Group, Department of Computer Science, Institute of Cognitive Science

University of Osnabrueck, 49069 Osnabrueck, Germany
{thomas.gabel|martin.riedmiller@uos.de}

ABSTRACT
Decentralized Markov decision processes are frequently used
to model cooperative multi-agent systems. In this paper, we
identify a subclass of general DEC-MDPs that features reg-
ularities in the way agents interact with one another. This
class is of high relevance for many real-world applications
and features provably reduced complexity (NP-complete)
compared to the general problem (NEXP-complete). While
this is a positive result, optimally solving larger-sized NP-
hard problems is intractable. We propose to keep the learn-
ing as much decentralized as possible and employ a multi-
agent reinforcement learning method to improve the agents’
behavior online. Moreover, we suggest a restricted message
passing scheme that notifies other agents about forthcoming
effects on their state transitions. Although optimal solutions
for the team can generally not be obtained in this way, we
show empirically that acquiring approximate joint policies
of high quality is possible within little time.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Design, Theory

Keywords
Decentralized MDPs, Interaction, Communication

1. INTRODUCTION
Research on distributed control of cooperative multi-agent

systems has received a lot of attention during the past years.
Among the models discussed in the literature, the DEC-
MDP framework [4], that is characterized by each agent
having only a partial view of the global system state, has
been frequently investigated. In this regard, it has been
shown that the complexity of general DEC-MDPs is NEXP-
complete, even for the benign case of two cooperative agents.

Decentralized decision-making is required in many real-life
applications. Examples include distributed sensor networks

Padgham, Parkes, Mueller and Parsons (eds.): Proc. of AAMAS 2008,
Estoril, May, 12-16., 2008, Portugal. Cite as: Reinforcement Learning
for DEC-MDPs with (...), Thomas Gabel, Martin Riedmiller, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systens, 2008.
Copyright c© 2008 , International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved..

or teams of autonomous robots for monitoring and/or ex-
ploring a certain environment, rescue operations where units
must decide independently which sites to search and secure,
or production planning and factory optimization where ma-
chines may act independently with the goal of achieving op-
timal joint productivity.

Being important for practice, the enormous computational
complexity of solving DEC-MDPs conflicts with the fact
that real-world tasks do typically have a considerable prob-
lem size. Taking this into consideration, we will pursue two
lines of closely related investigations.

First, we will identify a subclass of general DEC-MDPs
that features regularities in the way the agents interact with
one another. For this class, we can show that the complexity
of optimally solving an instance of such a DEC-MDP is prov-
ably lower (NP-complete) than the general problem. More-
over, we analyze methods for the agents to benefit from par-
tially knowing about the state transition dependencies. To
this end, we propose the use of a restricted message passing
scheme that notifies other agents about forthcoming effects
on their state transitions and we investigate its usefulness.

Second, it is our goal to tackle decentralized problems of
moderate and larger size that are of practical interest. This
involves settings with ten and more agents, which is why
optimal solution methods can hardly be applied. We pro-
pose the utilization of a multi-agent reinforcement learning
approach, where the agents are independent learners and do
their learning online. The advantage is that the entire learn-
ing process is done in a completely distributed manner with
each agent deciding on its own local action based on its par-
tial view of the world state and on any other information it
eventually gets from its teammates. So, our aim is to enable
the agents to obtain high quality solutions in the vicinity of
the optimal one as quickly and efficiently as possible.

In Section 2, we formally define the class of factored m-
agent DEC-MDPs with changing action sets and partially
ordered transition dependencies, which are in the center of
our interest, and we analyze the complexity of that class.
Section 3 elaborates on different possibilities for represent-
ing agent-specific policies and on how to best exploit known
inter-agent dependencies. Subsequently, we provide the ba-
sics of our learning approach to acquire approximate joint
policies using coordinated online multi-agent reinforcement
learning. Finally, in Section 5 we show that numerous real-
world problems from the field of production planning can
be modelled using the class of DEC-MDPs specified. More-
over, empirical results for solving a number of scheduling
problems are presented.

2. PROBLEM DESCRIPTION
It is well-known that solving optimally decentralized coop-

erative Markov decision problems is extremely hard. There-
fore, in this section we identify and characterize a subclass
of general DEC-MDPs whose complexity is provably lower.
Moreover, this class of problems is of high practical relevance
since its characteristics are typical for many real-world ap-
plications.

2.1 DEC-MDP Framework
Basically, the subclass of problems we are focusing on in

this paper may feature an arbitrary number of agents whose
actions influence, besides their own, the state transitions of
maximally one other agent in a specific manner. To for-
mally define the problem settings of our interest, we embed
them into the framework of decentralized Markov decision
processes (DEC-MDP) by Bernstein et al. [4].

Definition 1. A factored m-agent DEC-MDP M is de-
fined by a tuple 〈Ag,S, A, P, R, Ω, O〉 with

• Ag = {1, . . . , m} as the set of agents,

• S as the set of world states which can be factored into
m components S = S1 × · · · × Sm (the Si belong to
one of the agents each),

• A = A1 × ...×Am as the set of joint actions to be per-
formed by the agents (a = (a1, . . . , am) ∈ A denotes a
joint action that is made up of elementary actions ai

taken by agent i),

• P as the transition function with P (s′|s, a) denoting
the probability that the system arrives at state s′ upon
executing a in s,

• R as the reward function with R(s, a, s′) denoting the
reward for executing a in s and transitioning to s′,

• Ω = Ω1 × · · · × Ωm as the set of all observations of all
agents (o = (o1, . . . , om) ∈ Ω denotes a joint observa-
tion with oi as the observation for agent i),

• O as the observation function that determines the prob-
ability O(o1, . . . , om|s, a, s′) that agent 1 through m
perceive observations o1 through om upon the execu-
tion of a in s and entering s′.

• Moreover, M is jointly fully observable, i.e. the cur-
rent state is entirely determined by the amalgamation
of all agents’ observations: if O(o|s, a, s′) > 0, then
Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈
Ai, and oi ∈ Ωi as the local state, action, and observation
of agent i, respectively. A joint policy π is a set of local
policies 〈π1, . . . , πm〉 each of which is a mapping from agent
i’s sequence of local observations to local actions, i.e. πi :
Ωi → Ai. Simplifying subsequent considerations, we may
allow each agent to fully observe its local state.

Definition 2. A factored m-agent DEC-MDP has local
full observability, if for all agents i and for all local observa-
tions oi there is a local state si such that Pr(si|oi) = 1.

It must be noted that joint full observability and local
full observability of a DEC-MDP do generally not imply full
observability, which would allow us to consider the system
as a single large MDP and to solve it with a centralized
approach. Instead, typically vast parts of the global state
are hidden from each of the agents.

We also need to characterize the problems of our interest
with respect to the inter-agent dependencies in their reward,
transition, and observation functions. A factored m-agent
DEC-MDP is called reward independent, if there exist local
functions R1 through Rm, each depending on local states
and actions of the agents only, as well as a function r that
amalgamates the global reward value from the local ones,
such that maximizing each Ri individually also yields a max-
imization of r. Throughout this paper, we will consider the
global reward to be the sum of the local ones.

If, in a factored m-agent DEC-MDP, the observation each
agent sees depends only on its current and next local state
and on its action, then the corresponding DEC-MDP is
called observation independent, i.e. P (oi|s, a, s′, (o1 . . . oi−1,
oi+1 . . . om) = P (oi|s0, si, ai, s

′

i). Then, in combination with
local full observability, the observation-related components
Ω and O are redundant and can be removed from Definition
1.

While the DEC-MDPs of our interest are observation in-
dependent and reward independent, they are not transition
independent. That is, the state transition probabilities of
one agent may very well be influenced by another agent.
However, we assume that there are some regularities, to be
discussed in the next section, that determine the way local
actions exert influence on other agents’ states.

2.2 Variable Action Sets
The following two definitions characterize the specific sub-

class of DEC-MDPs we are interested in. Firstly, we assume
that the sets of local actions Ai change over time.

Definition 3. An m-agent DEC-MDP with factored state
space S = S1 × · · · × Sm is said to feature changing action

sets, if the local state of agent i is fully described by the set of
actions currently selectable by that agent (si = Ai \ {α0})
and Ai is a subset of the set of all available local actions
Ai = {α0, αi1 . . . αik}, thus Si = P(Ai \ {α0}). Here, α0

represents a null action that does not change the state and
is always in Ai. Subsequently, we abbreviate Ar

i = Ai\{α0}.

Concerning state transition dependencies, one can dis-
tinguish between dependent and independent local actions.
While the former influence an agent’s local state only, the
latter may additionally influence the state transitions of
other agents. As pointed out, our interest is in non-transition
independent scenarios. In particular, we assume that an
agent’s local state can be affected by an arbitrary number
of other agents, but that an agent’s local action affects the
local state of maximally one other agent.

Definition 4. A factored m-agent DEC-MDP is said to
have partially ordered transition dependencies, if there exist
functions σi for each agent i with

1. σi : Ar
i → Ag ∪ {∅} and

2. ∀α ∈ Ar
i the directed graph Gα = (Ag ∪ {∅}, E) with

E = {(j, σj(α))|j ∈ Ag} is acyclic and contains a path
of length m

and it holds

P (s′i|s, (a1 . . . am), (s′1 . . . s′i−1, s
′

i+1 . . . s′m))

= P (s′i|si, ai, {aj ∈ Aj |i = σj(aj), j 6= i})

The influence exerted on another agent always yields an ex-
tension of that agent’s action set: If σi(α) = j, i takes local
action α, and the execution of α has been finished, then α
is added to Aj(sj), while it is removed from Ai(si).

That is, the σi functions indicate whose other agent’ state
is affected when agent i takes a local action. Further, con-
dition 2 in Definition 4 implies that for each local action
α there is a total ordering of its execution by the agents.
While these orders are total, the global order in which ac-
tions are executed is only partially defined by that definition
and subject to the agents’ policies.

The following lemma states that for the problems consid-
ered any local action may appear only once in an agent’s
action set and, thus, may be executed only once.

Lemma 1. In a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered transition dependen-
cies it holds: ∀i ∈ Ag, ∀α ∈ Ar

i , ∀t ∈ {1 . . . T} and ∀si =
(s1

i . . . st
i): If there is a ta (1 ≤ ta < T) with α ∈ sta

i and a

tb (ta < tb ≤ T) with α 6∈ stb
i , then ∀τ ∈ {tb . . . T} : α 6∈ sτ

i .

Proof. By contradiction. Let ta, tb and α ∈ Ar
i with

α ∈ sta
i , α 6∈ stb

i as required by the lemma. Then, there
is an f ∈ Ag ∪ {∅} such that σi(α) = f , and hence edge
(i, f) ∈ E. Assume there is a tc > tb with α ∈ stc

i . Then,
there is an agent j ∈ Ag such that σj(α) = i, and hence
edge (j, i) ∈ E. Since graph Gα is acyclic, it follows that
the time when α joins sf is after the time that α leaves sj ,
i.e. ta > tc. Contradiction.

2.3 Implications on Complexity
While it has been proven that the complexity of solv-

ing general DEC-MDPs is NEXP-complete [4, 10], several
authors have identified subclasses of the general problem
that provably yield lower (NP-complete) complexity (e.g. [3,
9]). As shown by Shen et al. [13], a key factor that deter-
mines whether the problem complexity is reduced to NP-
completeness is whether the agents’ histories can be com-
pactly represented. In particular, there must exist an en-
coding function Enci : Ωi → Ei such that

1. a joint policy π = 〈π1 . . . πm〉 with πi : Ei → Ai is
capable of maximizing the global value and

2. the encoding is polynomial, meaning that |Ei| = o(|S|ci).

For our class of factored m-agent DEC-MDPs with changing
action sets and partially ordered transition dependencies we
can define an encoding that adheres to both of these condi-
tions, thus showing that those problems are NP-complete.

The interaction history of a DEC-MDP is the sequence
of local observations oi ∈ Ωi which in our case correspond
to the history of local states si ∈ Si =

ST

t=1 Si, since we
assume local full observability (where T refers to the finite
problem horizon and Si = P(Ar

i) as before).

Definition 5. Given a local action set Ai = {α0 . . . αk}
and a history si = (s1

i . . . st
i) ∈ Si of local states of agent

i, the encoding function is defined as Enci : Si → Ei with

Ei = Cα1 × · · · × Cαk
and Cαj

= {0, 1, 2}. And it holds
Enci(si) = (ci,α1 . . . ci,αk

) ∈ Ei with

ci,αj
=

8

>

<

>

:

0 if ∄τ with αj ∈ sτ
i

1 if αj ∈ st
i

2 else

Basically, the encoding guarantees that each agent knows
whether some local action has not yet been in its action set,
is currently in its action set, or had been in its action set.
Proving that this encoding is capable of representing the
optimal policy and showing that it is a polynomial encod-
ing, we can conclude that the subclass of DEC-MDPs we
identified is NP-complete.

Lemma 2. Enci provides a polynomial encoding of agent
i’s observation history.

Proof. Because of Si = P(Ar
i), it holds |Si| ∈ O(2k),

if |Ai| = k. The encoding Ei provided by Enci is of size
|Ei| ∈ O(3k). Since O(3k) = O((2n)log23), this encoding
is polynomial in the size of Si, i.e. |Ei| ∈ O(|Si|

ci) with
constant ci = log23.

Lemma 3. Enci provides an encoding of agent i’s obser-
vation history such that a joint policy π = 〈π1 . . . πm〉 with
πi : Ei → Ai is sufficient to maximize the global value.

Proof. Let π = 〈π1 . . . πm〉 be a set of local policies for a
factored m-agent DEC-MDP with changing action sets and
partially ordered transition dependencies. Because each lo-
cal action can be performed only once by each agent (Lemma
1), π defines a total execution order over the elements of
Ar

i for all agents i. Thus, each local policy must allow for
realizing any possible such order. Since Ei contains the his-
torical information which actions α ∈ Ar

i have already been
executed, each πi can select the next αx ∈ Ai to be ex-
ecuted depending on ei: If αx ∈ si (si as current action
set), i.e. ei,x = 1, then that action is taken, otherwise (αx

is not yet in the action set, ci,x = 0) the null action α0 is
selected.

Because deciding a polynomially encodable DEC-MDP is
NP-complete [13], solving a factored m-agent DEC-MDP
with changing action sets and partially ordered transition
dependencies is so, too.

2.4 Example Applications
Distributed problem solving in practice is often character-

ized by a larger number of agents involved (m > 2) and by
a factored system state description where the agents base
their decisions on local observations. Also, our assumptions
that local actions may influence the state transitions of max-
imally one other agent and that any action has to be per-
formed only once are frequently fulfilled. Sample real-world
applications include scenarios from manufacturing, produc-
tion planning, or assembly line optimization, where typically
the production of a good involves a number of processing
steps that have to be performed in a specific order. In a
factory, however, usually a variety of products is assembled
concurrently, which is why an appropriate sequencing and
scheduling of single operations is of crucial importance for
overall performance. Our class of factored m-agent DEC-
MDPs with changing action sets and partially ordered tran-
sition dependencies covers a variety of such scheduling prob-
lems, for example flow-shop and job-shop scheduling scenar-
ios [12], even scheduling problems with recirculating tasks

can be modelled. In the evaluation part of this paper (Sec-
tion 5), we will focus in depth on larger job-shop scheduling
problems where a number of tasks have to be allocated to
a limited number of resources in such a manner that one or
more objectives are optimized.

3. RESOLVING TRANSITION DEPENDEN-
CIES

The definition of an encoding function of an agent’s inter-
action history as provided in Section 2 represents just one
way to exploit the regularities in the transition dependencies
of the class of DEC-MDPs we identified. Next, we suggest
two approaches that also aim at utilizing these properties
and that are at least capable of providing approximate so-
lutions.

3.1 Reactive Policies and Their Limitations
An agent taking its action based solely on its most re-

cent local observation si ⊆ Ai will in general not be able to
contribute to optimal corporate behavior. In particular, it
will have difficulties in assessing the value of taking its idle
action α0. Taking α0, the local state remains unchanged
except when it is influenced by dependent actions of other
agents. Since a purely reactive agent, however, has no infor-
mation related to other agents and dependencies at all, it is
incapable of properly distinguishing when it is favorable to
remain idle and when not. For these reasons, we exclude α0

from all Ai for purely reactive agents.

Definition 6. For a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered transition dependen-
cies, a reactive policy πr = 〈πr

1 . . . πr
m〉 consists of m reactive

local policies with πr
i : Si → Ar

i where Si = P(Ar
i).

That is, purely reactive policies always take an action α ∈
Ai(si) = si (except for si = ∅), even if it was more advisable
to stay idle and wait for a transition from si to some s′i =
si ∪ {α′} induced by another agent, and then execute α′ in
s′i.

3.2 Awareness of Dependencies
In Definition 5, we stated that the probability that agent

i’s local state moves to s′i depends on that agent’s current
local state si, its action ai, as well as on the set {aj ∈ Aj |i =
σj(aj), i 6= j} = ∆i, i.e. on the local action of all agents that
may influence agent i’s transition. Let us for the moment
assume that agent i always knows ∆i. Then, all transition
dependencies would be resolved as they would be known to
each agent. As a consequence, all local transitions would
be Markovian and local states would represent a sufficient
statistic for each agent to behave optimally.

Unfortunately, fulfilling the assumption of all ∆i to be
known conflicts with the idea of decentralized decision-making.
In fact, knowing σj and relevant actions aj of other agents,
enables agent i to determine their influence on its local suc-
cessor state and to best select its local action ai. This action,
however, generally also influences another agent’s transition
and, hence, that agent’s action choice if it knows its set ∆j ,
as well. Thus, it can be seen that even in the benign case
of a two-agent system, there may be circular dependencies,
which is why knowing all ∆i entirely would only be possi-
ble if a central decision-maker employing a joint policy and
deciding for joint actions is used.

Enhancing a Reactive Agent
Although knowing ∆i in general is not feasible, we may en-
hance the capabilities of a reactive agent i by allowing it
to get at least some partial information about this set. For
this, we extend a reactive agent’s local state space from Si =
P(Ar

i) to Ŝi such that for all ŝi ∈ Ŝi it holds ŝi = (si, zi)
with zi ∈ P(Ar

i \ si). So, zi is a subset of the set of actions
currently not in the action set of agent i.

Definition 7. Let 1 . . . m be reactive agents acting in a
DEC-MDP, as specified in Definition 4, whose local state
spaces are extended to Ŝi. Assume that current local actions
a1 . . . am are taken consecutively. Given that agent j decides
for aj ∈ Aj(sj) and σj(aj) = i, let also si be the local state
of i and ŝi its current extended local state with ŝi = (si, zi).
Then, the transition dependency between j and i is said to
be resolved, if zi := zi ∪ {aj}.

The resolving of a transition dependency according to Def-
inition 7 corresponds to letting agent i know some of those
current local actions of other agents by which the local state
of i will soon be influenced1. Because, for the class of prob-
lems we are dealing with, inter-agent interferences are always
exerted by changing (extending) another agent’s action set,
in this way agent i gets to know which further action(s)
will soon be available in its action set. By integrating this
piece of information into i’s extended local state description
Ŝi, this agent obtains the opportunity to willingly stay idle
(execute α0) until the announced action aj ∈ zi enters its
action set and can finally be executed.

Obviously, Ŝi has the same size as Ei (|Ŝi| ∈ O(3k) with
k = |Ar

i |). Given the above definition of zi, however, it is
clear that a policy π̂ = 〈π̂1 . . . π̂m〉 whose components π̂i

are defined over extended local state spaces Ŝi is generally
not an encoding for agent i’s interaction history (except for
the theoretical case when ∆i is entirely known) and thus
not capable of optimizing the global value. Yet, because lo-
cal states ŝi are extended by information relating to transi-
tion dependencies between agents, such policies are normally
more capable than purely reactive ones, since at least some
information about future local state transitions induced by
teammates can be regarded during decision-making.

Since, as argued before, in practice not all transition de-
pendencies can be resolved, zi will adopt only few values
from its domain, which is why O(3k) represents the worst-

case size of Ŝi, but generally Ŝi will be sized only marginally
beyond O(2k).

The notification of agent i, which instructs him to extend
its local state component zi by aj , may easily be realized by
a simple message passing scheme (assuming cost-free com-
munication between agents) that allows agent i to send a
single directed message to agent σi(α) upon the local execu-
tion of α. Obviously, this kind of partial resolving of transi-
tion dependencies is particularly useful in applications where
the execution of atomic actions takes more than a single
time step and where, hence, decision-making proceeds asyn-
chronously across agents. Under those conditions, up to half
of the dependencies in ∆i (over all i) may be resolved.

1To fully comply with Definition 4 it must be noted that
the influence one dependent action aj now exerts on agent i
yields not just an extension of i’s action set (si = Ai(si) :=
Ai(si)∪{aj}), but also a removal from zi, i.e. zi := zi \{aj}.

4. APPROXIMATE SOLUTIONS
Solving a DEC-MDP optimally is NEXP-hard and in-

tractable for all except the smallest problem sizes. Unfortu-
nately, the fact that the subclass of DEC-MDPs we identified
in Section 2 is in NP and hence simpler to solve, does not
rid us from the computational burden implied, in particular
when intending to tackle problems of larger size that are of
relevance for practical problems.

Given that fact, our goal is not to develop yet another op-
timal solution algorithm that is applicable to small problems
only, but to look for a technique capable of quickly obtaining
approximate solutions in the vicinity of the optimum.

Reinforcement learning (RL) has proven to be a suitable
tool for decision-making under uncertainty and is also usable
for acquiring approximate policies in decentralized MDPs.
Here, however, some of the properties of standard RL algo-
rithms, such as convergence guarantees, get lost due to inter-
agent dependencies, so that care must be taken in the design
of the learning algorithm. In contrast to offline planning
algorithms, reinforcement learning allows for a real decen-
tralization of the problem employing independently learning
agents. In the remainder of this section, we outline the ba-
sic characteristics of our approach to applying reinforcement
learning in distributed settings aiming at the acquisition of
joint policies for m-agent factored DEC-MDPs with chang-
ing action sets and partially ordered transition dependen-
cies.

4.1 Challenges for Independent Learners
Boutilier [5] pointed out that any multi-agent system can

be considered as a single MDP when adopting an exter-
nal point of view. The difficulties induced when taking the
step towards decentralization can be grouped into three cat-
egories. First, in addition to the (single-agent) temporal
credit assignment problem, the multi-agent credit assign-
ment problem arises, which corresponds to answering the
question of whose agent’s local action contributed how much
to a corporate success. To this end, we consider reward inde-
pendent DEC-MDPs only (see Section 2.1) with the global
reward being the sum of local ones.

A second challenge is represented by the agents’ uncer-
tainty regarding the other agents’ policies pursued during
learning. To sidestep that problem, we revert to an inter-
agent coordination mechanism introduced in [11]. Here, the
basic idea is that each agent always optimistically assumes
that all other agents behave optimally (though they often
will not, e.g. due to exploration). Updates to the value
function and policy learned are only done when an agent
is certain that a superior joint action has been executed.
Since the performance of that coordination scheme quickly
degrades in the presence of noise, we focus on deterministic
DEC-MDPs in the remainder of the paper.

Third, the subclass of DEC-MDPs identified in Section
2 has factored state spaces providing each agent with (lo-
cally fully observable) state perceptions. Since the global
state is unknown, each agent must necessarily remember
the full history of local states to behave optimally, which
quickly becomes intractable even for toy problems. In Sec-
tion 2.3, however, we have proposed an encoding of that
history that is polynomial in |Si| and allows for optimality,
too. Furthermore, in Section 3.2 we have suggested a mes-
sage passing scheme that enables the learners to inform other
agents about expected state transitions and thus enhances

the capabilities of a purely reactive agent. Although, in this
way the optimal policy can generally not be represented, the
functioning of the encoding function Enci is approximately
emulated while the state information to be memorized by an
agent is not increased as much as in the encoding approach.

4.2 Joint Policy Acquisition with RL
We let the agents acquire their local policies indepen-

dently of the other agents by repeated interaction with the
DEC-MDP and concurrent evolvement of their policies. Our
learning approach is made up of alternating data collection
and learning stages that are being run concurrently within
all agents. At its core, a fitted Q iteration (FQI) algorithm
[7] is used that allows the agents to determine a value func-
tion over their local state-action spaces. Next, we provide
a brief explanation of that learning method only, a detailed
description can be found in the related publication [8].

4.2.1 Data Collection
Our multi-agent extension of FQI denotes a batch-mode

RL algorithm where agent i computes an approximation of
the optimal policy, given a finite set T of local four-tuples

[7]. T = {(sk
i , ak

i , rk
i , s

′k
i)|k = 1 . . . p} can be collected in

any arbitrary manner (e.g. by pursuing an ǫ-greedy policy)
and contains agent-specific local states sk

i , local actions ak
i ∈

Ai(s
k
i) = sk

i ⊆ Ai, corresponding rewards rk
i , as well as local

successor states s
′k
i entered. If the final state of the DEC-

MDP has been reached (Ai(si) = ∅ for all i), the system is
reset to its starting state (beginning of what we call a new
training episode), and if a sufficient amount of tuples has
been collected, the learning stage (4.2.2) is entered.

4.2.2 Applying Fitted Q Iteration
Given a set T and a regression algorithm, FQI iteratively

computes an approximation Q̃i : Si × Ai → R of the op-
timal state-action value function, from which a policy π̃i :
Si → Ai can be induced by greedy exploitation via π̃i(si) =

arg maxα∈Ai(si)
Q̃i(si, α). After having initialized Q̃i and a

counter q to zero, FQI repeatedly processes the following
two steps until some stop criterion becomes true:

1. construct a training set Fi as input for the regression
algorithm according to Fi = {(vk, wk)|k = 1 . . . p},
where vk = (sk

i , ak
i) and the target values wk are cal-

culated using the well-known Q learning [16] update

rule, wk = rk
i + γ maxα∈sk

i
Q̃q

i (s
′k
i , α),

2. use the regression algorithm and Fi to induce a new
approximation Q̃q+1

i : Si ×Ai → R, and increment q.

For the second step, we primarily employ neural networks,
but other regression methods like support vector regression
or decision trees may be used as well.

4.2.3 Optimistic Inter-Agent Coordination
For the multi-agent case, we modify step 2 of applying

FQI: Agent i creates a reduced (optimistic) training set Oi

such that |Oi| ≤ |Fi|. Given a deterministic environment
and the resetting mechanism during data collection (4.2.1),
the probability that agent i enters some sk

i more than once is
larger than zero. Hence, if a certain action ak

i ∈ Ai(s
k
i) has

been taken multiple times in sk
i , it may—because of differing

local actions selected by other agents—have yielded very
different rewards and local successor states for i. Instead

of considering all tuples from Ti, only those are used for
creating Oi that have resulted in maximal expected rewards.
This means, we assume that all other agents take their best
possible local action, which are, when combined with ak

i ,
most suitable for the current state. Accordingly, we compute
the optimistic target values wk for a given local state-action
pair vk = (sk

i , ak
i) according to

wk := max
(sk

i ,ak
i ,rk

i ,s
′k
i)∈T,

(sk
i

,ak
i
)=vk

rk
i + γ max

α∈sk
i

Q̃k
i (s

′k
i , α)

!

Consequently, Oi realizes a partitioning of Ti with respect to
identical values of sk

i and ak
i , and wk is the maximal sum of

the immediate rewards and discounted expected costs over
all tuples (sk

i , ak
i , ·, ·) ∈ T.

5. EXPERIMENTS
As pointed out, our class of factored m-agent DEC-MDPs

with changing action sets and partially ordered transition
dependencies is of relevance to various practical applica-
tions. In this section, we show how this class of DEC-MDPs
can be utilized for modeling production planning problems.
We focus on job-shop scheduling (JSS) benchmarks, though
other manufacturing problems could be covered as well.

5.1 Scheduling Problems
The goal of scheduling is to allocate a specified number

of jobs to a limited number of resources (also called ma-
chines) such that some objective is optimized. In job-shop
scheduling, n jobs must be processed on m machines in a
pre-determined order. Each job j consists of νj operations
oj,1 . . . oj,νj

that have to be handled on a certain resource
̺(oj,k) for a specific duration δ(oj,k). A job is finished after
its last operation has been entirely processed (completion
time fj). In general, scheduling objectives to be optimized
all relate to the completion time of the jobs. In this pa-
per, we concentrate on the goal of minimizing maximum
makespan (Cmax = maxj{fj}), which corresponds to finish-
ing processing as quickly as possible, since most publications
on results for JSS benchmarks focus on that objective, too.

Solving JSS problems is well-known to be NP-hard. Over
the years, numerous benchmark problem instances of vary-
ing sizes have been proposed and have been frequently used
to compare different solution approaches. A collection of
sample problems is provided by the OR Library [1]. A com-
mon characteristic of those JSS benchmarks is that usually
no recirculation of jobs is allowed, i.e. that each job must
be processed exactly once on each resource (νj = m). For
more basics on scheduling, the reader is referred to [12].

JSS problems can be modelled using factored m-agent
DEC-MDPs with changing action sets and partially ordered
transition dependencies:

• The world state can be factored: We assume that to
each of the resources one agent i is associated whose
local action is to decide which waiting job to process
next.

• The local state of i can be fully described by the chang-
ing set of jobs currently waiting for further processing.
Since choosing and executing a job represents a local
action (i.e. Ar

i is the set of jobs that must be processed
on resource i), it holds Si = P(Ar

i).

• After having finished an operation of a job, this job
is transferred to another resource, which corresponds
to influencing another agent’s local state by extending
that agent’s action set.

• The order of resources on which a job’s operation must
be processed is given in a JSS problem. Therefore, we
can define σi : Ar

i → Ag ∪ {∅} (cf. Definition 4) for all
agents/resources i as

σi(α) =

(

∅ if k = να

̺(oα,k+1) else

where k corresponds to the number of that operation
within job α that has to be processed on resource i,
i.e. k such that ̺(oα,k) = i.

• Given the no recirculation property from above and
the definition of σi, the directed graph Gα from Defi-
nition 4 is indeed acyclic with a path of length m.

For more low-level details on our approach to solving JSS
problems in a decentralized manner as well as on parameter
settings of the RL algorithm involved, we refer to [8].

5.2 Experiment Outline
Classically, JSS problems are solved in a centralized man-

ner, assuming that a central control over the process can be
established. From a certain problem size on, however, the
NP-hardness of the problem precludes the search for an op-
timal solution even for a centralized approach. That is why
frequently dispatching priority rules are employed that take
local dispatching decisions in a reactive and independent
manner (the FIFO rule is a well-known example).

In the following experiment, however, a comparison to
alternative scheduling methods is only our secondary con-
cern. For comparison, we just provide results for two of
the best-performing priority rules (SPT chooses operations
with shortest processing time δ next and AMCC makes use
of knowing the global system state), as well as the theoretic
optimum, representing a lower bound, as it may be found
by a centralized brute-force search.

Our primary concern is on an analysis of the three ap-
proaches discussed in this paper. We compare agents that
independently learn

• purely reactive policies πr
i (see Section 3.1) defined

over Si = P(Ar
i) that never remain idle when their

action set is not empty [RCT],

• reactive policies π̂i that are partially aware of their de-
pendencies on other agents (being notified about forth-
coming influences exerted by other agents) [COM],

• policies πi : Ei → Ai where Ei is an encoding of that
agent’s observation history Si according to Definition
5 [ENC].

In JSS problems, it typically holds that d(oj,k) > 1 for
all j and k. Since most of such durations are not identi-
cal, decision-making usually proceeds asynchronously across
agents. We assume that a COM-agent i sends a message to
agent σi(α) when it starts the execution of an operation from
job α, announcing to that agent the arrival of α, whereas
the actual influence on agent σi(α) (its action set extension)
occurs d(oα,·) steps later (after oα,· has been finished).

Classes of Schedules
For a problem with m resources and n jobs consisting of
m operations each, there are (n!)m possible schedules (also
called set of active schedules, Sa). Considering such a prob-
lem as a DEC-MDP, this gives rise to, for example, about
1.4 · 1017 possible joint policies for m = n = 6.

Considering purely reactive agents, the number of poli-
cies/schedules that can be represented is usually dramati-
cally reduced. Unfortunately, only schedules from the class
of non-delay schedules Snd can be created by applying re-
active policies. Since Snd ⊆ Sa and it is known that the
optimal schedule is always in Sa [12], but not necessarily
in Snd, RCT-agents can at best learn the optimal solution
from Snd. By contrast, learning with ENC-agents, in prin-
ciple the optimal solution can be attained, but we expect
that the time required by our learning approach for this to
happen will increase significantly2.

We hypothesize that the awareness of inter-agent depen-
dencies achieved by partial dependency resolvements via
communication may in fact realize a good trade-off between
the former two approaches. On the one hand, when resolv-
ing a transition dependency according to Definition 7, an
agent i can become aware of an incoming job. Thus, i may
decide to wait for that arrival, instead of starting to execute
another job. Hence, also schedules can be created that are
not non-delay. On the other hand, very poor policies with
unnecessary idle times can be avoided, since a decision to
stay idle will be taken very dedicatedly, viz only when a fu-
ture job arrival has been announced. This falls into place
with the fact that the extension of an agent’s local state to
ŝi = (si, zi) is rather limited and consequently the number
of local states is only slightly increased.

5.3 Illustrative Benchmark
We start off with the FT6 benchmark problem taken from

[1]. This depicts a problem with 6 resources and 6 jobs con-
sisting of 6 operations each, hence we consider a DEC-MDP
with 6 independently learning agents. Figure 1 summa-
rizes the learning curves for the three approaches we want
to compare (note that the SPT/FIFO/AMCC rules yield
Cmax = 88/77/55, here, and are not drawn for clarity).
results are averaged over 10 experiment repetitions and in-
dicators for best/worst runs are provided.

First of all, this experiment shows the effectiveness of our
approach, since each type of learning agents considered man-
ages to attain its respective optimum and because static dis-
patching rules with a local view are clearly outperformed.
The FT6 benchmark is a problem, where the best reactive
policy (hence, the best non-delay schedule with Cmax = 57)
is dragging behind, since the optimal solution corresponds to
a delay schedule with makespan of 55. The steepest learn-
ing curve emerges for purely reactive agents that achieve
the best non-delay solution, hence little interaction with the
process is required for those agents to obtain high-quality
policies. By contrast, ENC- and COM-agents are capable
of learning the optimal policy, where the former require sig-
nificantly more training time than the latter (note the log
scale in Figure 1). This can be tributed to the clearly in-
creased local states of ENC-agents and to the fact that they

2Local state space sizes are increased from 2n to 3n per
agent; the number of local policies is always n!, many of
which are very bad in terms of makespan.

Figure 1: Learning Curves for the FT6 Benchmark

m× n #Prbl SPT AMCC Opt. RCT COM ENC Err

5x10 3 734.7 702.7 614.0 648.7 642.0 648.3 4.6
10x10a 3 1174.3 1096.0 1035.7 1078.0 1062.7 1109.0 2.6
10x10b 5 1000.2 894.2 864.2 899.0 894.6 928.6 3.5
10x10c 9 1142.6 977.1 898.2 962.7 951.0 988.4 5.9
5x20 1 1267.0 1338.0 1165.0 1235.0 1183.0 1244.0 1.5
15x20 3 888.3 771.0 676.0 747.7 733.7 818.0 8.6

Table 1: Learning results for scheduling benchmarks
of varying size. All entries are average makespan
values. The last column shows the relative remain-
ing error (%) of the COM-agents compared to the
theoretical optimum. Indices a, b, and c stand for
problem sets provided by different authors.

may take idle actions in principle in any state, while COM-
agents do so only when a notification regarding forthcoming
externally influenced state transitions has been received.

5.4 Benchmark Results
We also applied our framework to a large variety of different-

sized benchmarks from [1] involving up to 15 agents and 20
jobs. In 12 out of the 37 benchmarks examined already the
RCT version of our learning agents succeeded in acquiring
the optimal joint policy. This also means that in those sce-
narios (all of them involved 5 resources) the optimal schedule
is a non-delay one and we omit experiments using ENC- or
COM-agent as no further improvement is possible.

Table 1 provides an overview of the results for the re-
maining, more intricate 25 benchmark problems (expect for
FT6, cf. Section5.3), grouped by problem sizes (m × n).
This summary gives the quality of policies obtained after
25000 training episodes. Since ENC-agents have shown to
require substantially longer to acquire high-quality policies,
the results in the corresponding column are expectedly poor.
However, while purely reactive agents already outperform
standard rules, their enhancement by means of dedicated
communication yields excellent improvements in all cases.

6. RELATED WORK
One of the first formal approaches to model cooperative

multi-agent systems was the MMDP framework by Boutilier
[5], which requires every agent to be aware of the current
global state. By contrast, factored state information in-
cluding local partial/full observability are key ingredients of

the DEC-POMDP framework of Bernstein et al. [4]. While
the general problem has NEXP-complete complexity, other
researchers have subsequently identified specific subclasses
with lower computational complexity: In [3], transition in-
dependent DEC-MDPs are introduced in which no agent
affects transitions of other agents. And in [9], DEC-MDPs
with a synchronizing communication protocol, that allows
for exchanging full local states with other agents from time
to time, are considered. While these subclasses are quite dis-
tinct, our class of factored m-agent DEC-MDPs with chang-
ing action sets and partially ordered transition dependencies
features some commonalities with DEC-MDPs with event-
driven interactions [2] where the latter focus on systems with
two agents only and assume less structure in the inter-agent
dependencies. The formal relation between the complexity
of a subclass of general DEC-MDPs and that class’ proper-
ties has been established by Shen et al. [13].

Independently learning agents have been targeted in a
number of recent publications (e.g. [17, 6]). Communica-
tion as a means of conveying information that is local to
one agent to others has been investigated, e.g., in [9]. Here,
policy computation is facilitated by allowing agents to fully
synchronize their local histories of observations. By con-
trast, we have explored a very limited form of directed com-
munication that informs other agents about forthcoming in-
terferences on state transition. Other approaches with lim-
ited communication can be found in [14] where each agent
broadcasts its expected gain of a learning update and coordi-
nation is realized by performing collective learning updates
only when the sum of the gains for the team as a whole
is positive, or in [15] where communication is employed to
enable a coordinated multi-agent exploration mechanism.

7. CONCLUSION
In the first part of this paper, we have identified a class of

cooperative decentralized MDPs that features a number of
regularities in the way agents influence the state transitions
of other agents. Exploiting the knowledge about these cor-
relations, we have proven that this class of problems is easier
to solve (NP-hard) than general DEC-MDPs (NEXP-hard).
In the second part, we have focused on more practical issues
relevant to distributed control. On the one hand, we have
looked at possibilities for modeling memoryless agents and
enhancing them by restricted allowance of communication.
On the other hand, we have outlined a coordinated batch-
mode reinforcement learning algorithm that facilitates the
agents to concurrently and independently learn their local
policies of action online.

The subclass of DEC-MDPs specified covers a wide range
of practical problems. In support of this, we applied our
learning approach to production planning problems and eval-
uated it using scheduling benchmarks that are already NP-
hard when solved in a centralized manner. The results ob-
tained are convincing as benchmark problems of current
standards of difficulty can be approximately solved by the
learning method we suggest. The policies our agents acquire
clearly surpass traditional dispatching rules and, in some
cases, are able to solve the problem instances optimally.

8. ACKNOWLEDGEMENTS
This research has been supported by the German Research

Foundation (DFG) under grant number Ri-923/2-3.

9. REFERENCES
[1] J. Beasley. OR-Library, 2005, http://people.brunel

.ac.uk/∼mastjjb/jeb/info.html.

[2] R. Becker, S. Zilberstein, and V. Lesser. Decentralized
Markov Decision Processes with Event-Driven
Interactions. In Proceedings of AAMAS 2004, pages
302–309, New York, USA, 2004. ACM Press.

[3] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.
Solving Transition Independent Decentralized MDPs.
Journal of AI Research, 22:423–455, 2004.

[4] D. Bernstein, D. Givan, N. Immerman, and
S. Zilberstein. The Complexity of Decentralized
Control of Markov Decision Processes. Mathematics of

Operations Research, 27(4):819–840, 2002.

[5] C. Boutilier. Sequential Optimality and Coordination
in Multiagent Systems. In Proceedings of IJCAI-99,
pages 478–485, Stockholm, 1999. Morgan Kaufmann.

[6] O. Buffet, A. Dutech, and F. Charpillet. Shaping
Multi-Agent Systems with Gradient Reinforcement
Learning. Autonomous Agent and Multi-Agent System

Journal, 15(2):197–220, 2007.

[7] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based
Batch Mode Reinforcement Learning. Journal of

Machine Learning Research, (6):504–556, 2005.

[8] T. Gabel and M. Riedmiller. On a Successful
Application of Multi-Agent RL to Operations
Research Benchmarks. In Proceedings of ADPRL

2007, pages 68–75, Honolulu, USA, 2007. IEEE Press.

[9] C. Goldman and S. Zilberstein. Optimizing
Information Exchange in Cooperative Multi-Agent
Systems. In Proceedings of AAMAS 2003, pages
137–144, Melbourne, Australia, 2003. ACM Press.

[10] C. Goldman and S. Zilberstein. Decentralized Control
of Cooperative Systems: Categorization and
Complexity Analysis. Journal of Artificial Intelligence

Research, 22:143–174, 2004.

[11] M. Lauer and M. Riedmiller. An Algorithm for
Distributed Reinforcement Learning in Cooperative
Multi-Agent Systems. In Proceedings of ICML 2000,
pages 535–542, Stanford, USA, 2000. AAAI Press.

[12] M. Pinedo. Scheduling. Theory, Algorithms, and

Systems. Prentice Hall, 2002.

[13] J. Shen, R. Becker, and V. Lesser. Agent Interaction
in Distributed POMDPs and Implications on
Complexity. In Proceedings of AAMAS 2006, pages
529–536, Hakodate, Japan, 2006. ACM Press.

[14] D. Szer and F. Charpillet. Coordination through
Mutual Notification in Cooperative Multiagent RL. In
Proceedings of AAMAS 2004, pages 1254–1255, New
York, USA, 2004. IEEE Computer Society.

[15] K. Verbeeck, A. Nowe, and K. Tuyls. Coordinated
Exploration in Multi-Agent RL: An Application to
Load-Balancing. In Proceedings of AAMAS 2005,
pages 1105–1106, Utrecht, 2005. ACM Press.

[16] C. Watkins and P. Dayan. Q-Learning. Machine

Learning, 8:279–292, 1992.

[17] P. Xuan, V. Lesser, and S. Zilberstein. Communication
Decisions in Multi-Agent Cooperation: Model and
Experiments. In Proceedings of AGENTS01, pages
616–623, Montreal, Canada, 2001. ACM Press.

