Reducing Policy Degradation
in Neuro-Dynamic Programming

Thomas Gabel and Martin Riedmiller
Neuroinformatics Group
University of Osnaliick, 49069 Osnalick, Germany

Abstract. We focus on neuro-dynamic programming methods to learn state-action
value functions and outline some of the inherent problems to be facesh pdr-
forming reinforcement learning in combination with function approximatiaran
attempt to overcome some of these problems, we develop a reinfantaming
method that monitors the learning process, enables the learner to veilettier it

is better to cease learning, and thus obtains more stable learning results.

1 Introduction

The basic idea behind reinforcement learning (RL) is todeft(vare) agents acquire a
control policy on their own on the basis of trial and error bpeated interaction within
their environment. Aiming at the application of RL to compleeal-world problems
with large and continuous state spaces, it becomes indigpénto make use of a value
function approximation mechanism. In this work, we will éscon neuro-dynamic
approaches (NDP) for that task and employ neural networlappsoximation archi-
tecture [2]. Though most theoretical results regardingcthrevergence behavior of RL
algorithms do not generally hold in the presence of valuetion approximation, im-
pressive results could be obtained in the past, e.g. TésatlbeGammon.

However, the sequences of control policies found duringnieg with function
approximation generally do not converge. A typical phenoomein the NDP context,
as reported in a number of publications, is that the appratechvalue function, from
which the control policy is induced, improves during thetiaiiterations and, after
having reached the vicinity of the optimum, tends to oswll& herefore, we introduce
a reinforcement learning method that confers a better aboter the learning process,
enables the agent to know if it is better to stop learning, tand clearly reduces the
oscillations of the agent’s performance obtained.

2 Approximate Neuro-Dynamic Programming

RL problems can be modelled as Markov Decision Processe®(M&h MDP consists
of sets of state$§ and actionsA, a stochastic transition functigns, a, s') = psqs that
tells how likely it is to end up in state’, when taking actior in states, as well as
a function of immediate costgs, a) that arise when taking actionin states. If the
actions available depend on the current state the systentieiset of actions is usually
denoted as\(s). The goal of learning within an MDP is to find a poliay S — A that
minimizes the expected accumulated costs. Q learning [8] ssitable RL method
to learn a value function, if there is no explicit model of #vavironment available. It
updates directly the estimates for the values of statemptirs according tQ (s, a) :=

(1 =7)Q(s,a) + v(c(s,a) + minye 45 Q(s, b) where the successor stateand the
immediate cost(s, a) are generated by simulation or by interaction with a reatess.
For the case of finite state/action spaces where the Q func#io be represented using
a look-up table, Q learning is guaranteed to converge to fhigal value function
@* under mild assumptions. Given convergencé<g the optimal policyr* can be
induced by greedy exploitation 6f according tor*(s) = arg min, e 4(5) @* (s, a).
Working with high-dimensional, continuous state spacesneed to utilize a func-
tion approximator to represed). Then, most of the convergence results regarding
Q learning no longer hold. Concerning function approximatve pursue a neuro-
dynamic approach (NDP), representing the value functiah wimulti-layer percep-
tron neural network. We focus on networks of this type sirmgy/tare universal ap-
proximators and feature good generalization capabilitih function approximation,
no direct assignment of Q values is possible: Instead, tpeoapnator used must be
fitted to the@ function. If r denotes the network’s weights, a common way to ap-
proximate the optimal value function by a functi@ii (s, a) is based on minimizing
the error in Bellman's equation, i.enin, 3, ,)cc(Q"(s,a) = 2 (Psas (c(s, a) +
minye 4(s1) Q" (s',0)))? (with C as set of representative sample state-action pairs [2]
andp,,s andc(s, a) being estimated from data).

2.1 Troublesin Converging

Does Bellman error minimization in conjunction with furaoti approximation imply
convergence to a (near-)optimal policy? In general, it iseexed that convergence
cannot be achieved and a phenomenon called “chatteringirecd he spac) of all
Q functions can be divided intgreedy regions [2] where a constant policy (given by
greedy Q exploitation) is followed. Each such region cqroesls to a different greedy
policy and has its owgreedy point—the point inQ to which@" (-) moves in the course
of learning. If that greedy point does not lie in its greedgioa, the policy learnt may
fluctuate between two or more greedy policies sharing theedaundary inQ [5].
There are various publications reporting on negative tesiding RL approaches
with function approximation, many of which head into a sfiediirection: The pol-
icy the learning agent acquires quickly reaches a remagkamlity, but in the further
course of learning a significant policy degradation can keepnked. For instance, Bert-
sekas and Tsitsiklis [2] report on attempts to learn a pdiayplaying the game of
Tetris and point out the paradoxical observation that higifiggmance is achieved after
relatively few policy iterations, but then performance mso Similar observations are
reported by Gaskett [4] working with the cart pole benchmBextsekas et al. [1] in the
context of a missile-defense scenario, and other authoesedountered comparable
problems (see Section 4 and [6]): Applying Q learning in dm@ah residual minimiz-
ing manner yields excellent policies, but only at some djmesiages of learning before
a loss in policy quality appears, whereas the Bellman esrbeing decreased continu-
ously. We need to stress that these issues cannot be (atdeasiely) related to effects
of overfitting the network to the training data: Oscillatsgan and degradation of policy
performance can also be observed, when the learned poligpiged to situations that
were actually covered by the training set on the basis of lvtie net had been trained.

3 Monitoring Q Iteration

A simple approach to select high-quality policies despitestillations during learning
is to let the policies generated undergo an additional et based on simulation.
Bertsekas et al. [1] call this process of final policy setatscreening. However, this
approach is extremely time-consuming, in particular fatirafstic policy iteration or
Q learning settings, where a large number of potential sliare created: Each time
an update to the current policy has been made (step fromypoji¢o 7x1), a large
number of test episodes must be run in order to assess thealiewsptrue quality.

In the following, we develop a different approach to circumveffects of policy
degradation during advanced stages of learning. The bdsi of our approach to
monitored Q iteration (MQI) is to (a) define an auxiliary ernoetric that more directly
relates to a policy’s actual performance, (b) create thalitioms that this error mea-
sure can be effectively calculated, and (c) continuouslyitoo the learning process,
remember top-performing policies, and also facilitate arlyestopping of learning.
So, we will be able to avoid an extensive simulated evaluatibgenerated policies
(screening) and thus save computational resources, waiteytable to figure out a
nearly optimal policy. In its current version, MQI is apglde to environments where
A(s) isfinite foralls € S.

MQI can be considered as a representative of the class af fitéeration algo-
rithms [3], which compute an approximation of the optimalipofrom a finite set
(batch) of four-tuple®& = {(s;, a;, ¢;, s})|i=1,...,p} that correspond to single “expe-
rience units” collected by the agent within its environment

Environment / Training Subset
Interaction Selection

(s.2) | Q(s.a)
(sra1) | .. QTable ! Calculation

i [Error
o \dealized . Weight
Collected Closed World (s2.82) | ... i IMONITORING Adjustment
Experience 0 Iteration Auxiliary Stop Criterion
Error Metric &

(sp.ap)

Neural Network Training

Network

Fig. 1: Building Blocks of MQI

3.1 Closed World Q Iteration

In a preliminary phase, the RL agent interacts with the emrirent and collects the
tuple sefF. These training tuples are fed into a procedure we call diegald Q iter-
ation (CWQI). This name tributes to the fact that CWQI absgréwim the real system
dynamics and considers the informatiorfFionly. It works like standard Q learning on
the finite set of points in state-action space provided layd is thus able to compute a
value function that can be stored in a look-up ta@fe. The only precondition CWQI
requires is that for each statethat is part of a tuple i, there must exist (at least)
one successor staté to be found in another training tuple I (or s’ is a goal state
corresponding to an episode end). This requirement isladfivhen the training data
is gathered along trajectories. The resultis an “ideafizatiie tableQ" which reflects
the cost structure and transition probabilities containdtie training batcti.

3.2 Auxiliary Error Metric

Of course, the idealized Q table returned by CWQI is impenrféttt respect to the real
system—since it stems from a finite batch of interaction aepee only. IfQ* denotes
the optimal value function andf a corresponding optimal action in a staf¢hen there
are most likely states; for which it holds thatirg min, ¢ 4(,) QF (si,a) # af,, since
there has been no information on the actual value of takitigraey, in states; in
the set of training tuples. Thus, for training the neural met select only those tuples
(84, ¢i, 14, 8;) €F for which a substantial share of available actiot{(s;) has been tried
(selection of training subsé&l). We argue that with the idealized Q table’s entries, some
(near-)optimal policy can be obtained. Particularly, weumse that: Ifs € S is a state
covered by the training sét, then it holdsQf (s, a;) < Q¥ (s,a;) & Q*(s,a;) <
Q*(s,a;) forall a;, a; € A(s). So, for eacts € S covered withinT, we can determine
the optimal action and, moreover, a ranking for all actiorsA(s), which is identical
to the order of actions when a total ordering with respe¢@16s, a) would be defined.

Though that assumption will be sometimes violated in pcagtive define and make
use of the following auxiliary error measure: L@t denote the value function currently
represented by the net andtetkg- : SxA—Nwith (s,a) — [{b € A(s)|Q"(s,b) <
Q" (s,a)}| define a ranking on the finite number of actions available atest (action
with highest Q value has first rank). Then, we computeitidex error I Eq-(T) for a
given training sef and value functior)” as

rankor (s,a) — rankgr(s,a
1B (1) = Y (o risamer @)ITI @50

The idea behind the index error is to have an indicator tlestto which extenf)”
matches the intended ranking of actions for one specifie.stHtwe have achieved
finding aQ" for which I Eq-(T) = 0, then the corresponding poliey, will behave
optimally w.r.t. Q%" and so optimally w.r.t. the experience collected in the @mrent.

3.3 Neural Network Training

Adjusting the network weights with respect to the error antiaining sefl’, we make
use of backpropagation. The error to be minimized i8 15 3= ;.), o (s,a))er(Q” (

s,a) — Q% (s,a))? with Q7 as the value function currently represented by the net. It is
known that excessive minimization of the mean squared erreome finite training set
may worsen the net’s generalization capabilities (overjjt Apart from that, we have
seen (cf. Section 2.1) that a minimized Bellman error dogésiaoessarily correspond
to maximized policy performance. In particular, when cdesing the behavior on the
training set only, i.e. disregarding the desire to geneeaBellman error minimization
on the training data may lead to a policy which less often sbedhe optimal action,
even on the states that are covered in the training set. Wétlntlex error, however, we
have a measure that captures the correctness of a politigs aboice and helps us in
finding (near-)optimal policies more reliably. We use it asa#ternative error measure,
while iterating in the neural network training building bloof MQI (learning by epoch)
and hence minimizing the mean squared (Bellman) error: Ehgevof I Eqr (T) is
monitored continuously, the iteratigm, at which the minimal index error could be
achieved, is remembered, ag (represented by the neural net) is returned.

4 Empirical Evaluation

To evaluate MQI we chose the application domain of reactibeshop scheduling [7].
The learner’s task is to autonomously acquire dispatchuoligips to assign jobs to a
limited number of resources, where each job consists of @inenumber of opera-
tions to be processed on specific resources. For a detaitdligkton of the RL job
shop scheduling scenario we refer to [8]. The basic ideaisfalternative approach
to scheduling, however, is to model the environment as an Vi@ have a learning
agent at some of the resources, that decides which job tegsowext based on its local
view on the entire plant. During learning it shall adapt iehavior so that production
cost minimization, i.e. minimal overall tardiness (job diate violations), is achieved.
All experiments involved cooperative resources one of which was equipped with
a learning (Q or MQI) agent arlstationary ones working according to some simple
dispatching rule, preferring jobs with earliest due dat®, minimal slack (MS), or
shortest/longest processing time (SPT/LPT). Each exmartins divided into a train and
test phase: A random s8f, of training scheduling scenarios and an independerfiget
of testing scenarios is generated (all differing in the prtips and numbers of jobs to
be processed). During training, the scenarioS inare processed repeatedly where the
learning agent picks random actions (explores) and thatos#gcts experience, used
to learn the state-action value function (represented thyeetlayer net). Testing, the
S scenarios are processed, with the adaptive agent behaéadily w.r.t. its current
Q function, and the overall tardiness (as optimization gb#he plant) is measured.

Degrading Policies: Applying Q learn-
ing, the Bellman error on the training set

is minimized continuously (see Figure 2, , i ErmrbrEDD*MSﬁ 0 -
top). In the beginning, policy performance; N e o 2
(in terms of tardiness) is improving, t00. 5 * iyt et 0o 8
In the further course of learning, how-§ 20 1 002 @Z
ever, the average tardiness increases again o 001 §
Intuitively, this is the effect one may ex- o o

0 1000 2000 3000 4000 5000 6000

pect and blame on overfitting. Yet more
interesting, in this figure the summed tar-g
diness on the training set (the scheduling?

60

90

80

. . , . . 70
scenarios for which the agent’s policy is z
a 60

actually being trained) is also shown. It
reveals that, while the Bellman error is §
dropping concurrently, the agent's perfor- &
mance on the training set is worseningg

50

40

w
S

20

(after an initial phase of improvement); < *

the learned policy degrades. Only in one
of our experiments (comprising an EDD,
an LPT, and the learning resource; no
sketched) these effects were negligible.

T T T T T
Tardiness for EDD+MS+Q (training)
Tardiness for EDD+MS+Q (testing)

Training Episodes of Q Learning

T
)
i
frt

v

Tardiness for LPT+SPT+MQI (tesfing)

T

T T T T T T
Tardiness for LPT+SPT+Q (testing) --

Tardiness for EDD+MS+Q (téstifig), -
rdiness for EDD+MS+MQ), (festing) v

A b A

i

NG "

M

e

0.06

150

140

130

120

110

100

Sl i i i s et e I

80

70
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Episodes of Experience Collection

Fig. 2: Degrading Policy (Q Learning,
and Performance of MQI (bottom)

Average Tardiness for LPT+SPT+[Q|MQI]

top)

Sabilization of the Learning Process. The xz-axes in Fig.2 (bottom) correspond to
episodes of expeience collection: For Q learning this istithe-dependent course of

1A state is represented by the situation a resource is inpficperties of the set of waiting jobs), actions
correspond to the decision for processing a specific job, aext costs arise due to due date violations.

learning, while MQI first collects experience interactinghwits environment and then
starts fitting the value function. So, for MQI each data palohg ther-axis represents
a single learning process using all the experience cotldotas many episodes.

Clearly, MQI's results are muchTargi- [EDD+LPT+|EDD+MS+|LPT+SPTH|MS+SPT4
less dependent on the amount ofness || Q |MQI|| Q |MQI|| Q |MQI| Q |MQI
episodes of experience collection §65t gg-g gg-i 31-81 gg-; 12(7)519093-58 gg-; 21-3

: : Vg
used for learning. Moreover, in oo |l105°d 6573|136 283 [|146.1115.9(67.4 64.4
both scenarios sketched the poli-/sidpey| 2.50| 1.48 ||1.89 051 || 7.37| 3.05 [[1.34 1.32
cies learned by MQI are better tha

the ones found by Q learning, re-Table 1: Considering learning processes of varying length
gardless of the size of the four-(1000 to 40000 scheduling episodes), this table opposes av-
tuples seff. On S, standard erage, best/worst case tardinesses, and learning resuitafiu

P b Q tions of the learnt policy for Q learning and MQI and for diffe
ent environments, i.e. different heuristically decidingais.

learning achieves better schedul
ing performance only in the EDD+
MS+[Q|MQI] scenario (Table 1), but only during the first few hundbedning episodes.
Yet, this good result would have been only detected by extivaysolicy screening.

5 Conclusion

In approximate RL where the state-action value functioregesented by a function
approximator, the learned policy may degrade after arainithase of improvement.
As a way to combat this problem and to circumvent the needriadaitional policy
screening process to evaluate intermediate policies, we peoposed an RL method
that reliably learns a near-optimal state-action valuefion from a batch of experi-
ence. MQI facilitates the definition of an auxiliary error tmie by which the learn-
ing process can be monitored and eventually ceased to prineelearner from policy
degradation and overfitting. Empirically, we have investiigl MQI's capability to sta-
bilize the learning process in the application field of reecproduction scheduling.

Acknowledgements: This research has been supported by the German Research Foun
dation (DFG) under grant number Ri 923/2-1.

References

[1] D.Bertsekas, M. Homer, D. Logan, S. Patek, and N. Sanhiidisile Defense and Interceptor Allocation
by NDP. InlEEE Transactions on Systems, Man, and Cybernetics, pages 42-51, 2000.

[2] D. P. Bertsekas and J. N. Tsitsiklisleuro Dynamic Programming. Athena Scientific, Belmont, 1996.

[3] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batcldévieeinforcement LearningJournal of
Machine Learning Research, (6):504-556, 2005.

[4] C. Gaskett.Q-Learning for Robot Control. Ph.D. Thesis, Australian National University, 2002.

[5] G. Gordon. Stable fitted reinforcement learningAlivances in Neural Information Processing Systems,
volume 8, pages 1052-1058. The MIT Press, 1996.

[6] W.Hunger and M. Riedmiller. Scheduling with adaptive aige an empirical evaluation. Proceedings
of EWRL-5, European Workshop on Reinforcement Learning, 2001.

[7] Michael Pinedo.Scheduling. Theory, Algorithms, and Systems. Prentice Hall, USA, 2002.

[8] S. Riedmiller and M. Riedmiller. A Neural Reinforcement lbeimg Approach to Learn Local Dispatch-
ing Policies in Production Scheduling. I3CAI99, pages 764—771, Stockholm, Sweden, 1999.

[9] C. Watkins and P. Dayan. Q-Learninilachine Learning, 8:279—-292, 1992.

