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Abstract

This paper describes a novel real-world reinforcement
learning application: The Neuro Slot Car Racer. In ad-
dition to presenting the system and first results based on
Neural Fitted Q-Iteration, a standard batch reinforcement
learning technique, an extension is proposed that is capa-
ble of improving training times and results by allowing for
a reduction of samples required for successful training. The
Neuralgic Pattern Selection approach achieves this by ap-
plying a failure-probability function which emphasizes neu-
ralgic parts of the state space during sampling.

1. Introduction

One of the most important milestones in the application
of reinforcement learning (RL) techniques is the capability
of being able to directly learn on and control real-world sys-
tems. Although most RL algorithms are tested in simulated
environments, experiments on real-world systems are able
to provide valuable hints on potential problems and exten-
sions that might not be obvious in simulations per se. Be-
cause of the benefits of experiments in real-world settings,
low-cost applications that can be used as a benchmark are
required. A system that serves this purpose, the Neuro Slot
Car Racer, is introduced in this paper. Based on a Carrera
Slot Car System, the task is to drive a slot car as fast as
possible without going off track. The car is observed by a
vision system, whereas the speed can be set via a USB de-
vice. The trained performance of our Slot Car Racer System
is difficult to beat: during one week of racing with an earlier
version of the system, which took part during the Hannover
Fair exhibition in 2009, only 7 people were able to be faster
than the RL controlled car.

Results of the system are based on batch reinforcement
learning (RL) methods, which have recently shown their ef-
fectiveness and ability to directly learn controllers in real
world applications [9, 1, 8]. In contrast to classical on-line

RL, batch RL methods store and reuse information about
system behaviour in form of (state, action, successorstate) -
triples. The value function (or Q-value function) is then up-
dated on all states (state-action pairs) simultaneously. This
reuse of transition data makes batch learning methods par-
ticularly efficient.

The standard procedure of batch RL is to use the com-
plete set of samples for each training iteration. As a re-
sult, training times increase with the amount of collected
triples. A promising question is therefore whether it is pos-
sible to cleverly sample from the set of transition triples,
such that the learning process is successful, even if the num-
ber of samples for learning is reduced or restricted. As an
approach to this question, we propose a mechanism called
Neuralgic Pattern Selection (NPS). The effectiveness of the
approach is evaluated on the slot car racer system.

2. Real-World Testbed: The Slot Car Racer

The real-world training environment that is introduced in
this paper and used for the experiments is based on an ana-
log Carrera Evolution system shown in Figure 1. The car’s
motor is accelerated by actions that correspond to track volt-
ages. The track setup used, with long straight passages as
well as sharp inner curves and more relaxed outer curves,
requires the trained policies to use a great range of differ-
ent actions in order to succeed. The Carrera system was
used as provided out of the box, only the color of the slot
car (Ferrari 512 BB LM 2007) was changed in order to al-
low for improved tracking results. The goal of the learning
procedure is to find a policy, which drives the car as fast
as possible. A policy succeeds if it drives the car around
the track without getting off-track (i.e. crashing) and fails
otherwise. Additionally, a successful policy should be sen-
sitive to the state of the car. A simple example of why this
is needed is the initial start of the car. In this situation it
is important to start as fast as possible. If only the position
would be associated with an action, the car would not start
in a position where the associated action would be to brake.



The main components of the Neuro Slot Car Racer sys-
tem are the vision system and the controller. The vision
system consists of an overhead camera (Point Grey Flea2)
and a software which recognizes the setup of the track, the
position of the car and its speed. Also, the vision system
detects cases in which the car slides or gets off track. Cur-
rently, the system is able to deliver state information with
60Hz and automatically adapts to different lighting situa-
tions. A considerable challenge of the slot car system is
given by the delay from the time of output of an action until
the visibility of this very action in the state description (this
includes mechanical inertia as well as the time needed for
image processing and is estimated to be about 100 ms).

The output to the track is realized through a USB device,
which is attached to the same computer as the vision sys-
tem. This computer (an Apple iMac with a 2.4Ghz Intel
Core 2 Duo processor and 2GB of RAM) runs the control-
ling cycles including the receiving of state input commu-
nicated between programs via TCP/IP, as well as selecting
and sending the appropriate output via the USB controller.
The actions, which are given as output, are encoded in per-
centage of the maximally possible voltage.

In order to estimate baseline performance, the maximally
possible action of the car was selected, such that it was able
to complete the whole track at once without failure. The
corresponding ground action, which was found to be a =
25% of the maximum, results in a lap time of 6.10 seconds.
The best human performance is 4.50s.

Because of the need for a dynamic control of the car, the
temporal delay and the setup of the track, this real-world
application is particularly difficult to control and poses a
great challenge to model-free machine learning approaches.

Figure 1. The real world slot car system used
in the experiments. The state of the car is ex-
tracted from the image of an overhead cam-
era.

3. Batch Reinforcement Learning

The classical approach towards model-free reinforce-
ment learning is Q-learning in which an optimal value func-
tion of state-action pairs is learned iteratively and online
[10]. This means that the Q-function is updated after each
transition of the system. Typically, this approach requires
thousands of iterations until successful policies are found.
The classical Q-learning update rule is Qk+1(s, a) := (1−
α)Q(s, a) + α(c(s, a) + γminbQk(s′, b)). s is the origin
state of the transition, a is the chosen action and s′ is the
successor state. c(s, a) describes the immediate costs asso-
ciated with action a applied in state s. γ is the discounting
factor.

The crucial difference of batch reinforcement learning to
the classical approach is to perform the update of the Q-
function based on sets of past transitions instead of singu-
lar state transitions. Because of this, the general approach
of batch reinforcement learning consists of three steps [3].
First, sampling is done according to the currently active pol-
icy via interaction with the real system. Then a training pat-
tern set is generated, and finally the actual batch supervised
learning is applied.

One way of dealing with continuous state spaces, as in
the current system, is to use multilayer perceptrons (MLPs)
as function approximators for the value function. Because
MLPs approximate the value function in a global way, an
online change of one value might have unpredictable im-
pacts on the outcome of arbitrary other state-action pairs
[8, 4]. Batch training ensures global consistency and is thus
a perfect match for MLPs as function approximators. In ad-
dition, batch training has the advantage that more advanced
and powerful learning methods exist than for standard gra-
dient descent techniques. One of these methods, which is
also used in the current work, is the Rprop algorithm [7],
which allows for very fast training times and has also been
shown to find very good solutions and to be very insensitive
with respect to its parameter settings.

Although other batch reinforcement learning techniques
exist that are capable of learning in real-world settings,
the current work focuses on and extends Neural Fitted Q-
Iteration (NFQ) [6]. Training is based on sets of patterns
and an MLP is used to approximate the value function. The
data for the supervised training of the neural network con-
sists of state-action pairs as input and the target value. The
latter is calculated by the sum of the immediate transition
costs and the expected minimal path costs for the successor
state. The minimal expected path costs are estimated by the
policy which is stored in the preceding MLP.

The standard mode of using NFQ, alternating batch, di-
vides sampling and training into two distinct but alternating
processes. The current policy is applied greedily to col-
lect new (state, action, successorstate) - triples, which are



then used together with earlier samples to learn a new pol-
icy. The best policy is kept by a pocket algorithm. Thus,
the provided results always refer to the performance of the
best trained policy. Interaction with the system is required
because the car has to be put back on the track upon failure.

As an alternative to alternating batch, NFQ can also be
applied in an offline mode. In this setting, it is assumed that
the set of transition triples is given a priori and training is
thus purely based on collections of previously sampled data.
All samples are available from the first iteration and either
all or subsets of samples can be used for training. It has to
be noted that this data can be obtained in various ways: it
can be sampled from existing controllers, human interaction
with the system or even from a random policy.

Algorithm 1 NFQ main loop (adapted from [4])
input: a set of transition samples D, # of iterations N
output: neural Q-value function QN
k = 0;
init MLP()→ Q0;
while (k < N ) do

generate pattern set P from D
for l = 1 to size(pattern set) do
inputl = (sl , al);
targetl = c(sl, al, s′l) + γ ∗minbQk(s′l, b);
P(l) = (inputl , targetl );

end for
Rprop training(P )→ Qk+1

k+ = 1
end while

4. Finding Neuralgic Parts of the State Space:
Neuralgic Pattern Selection

Whenever dealing with large amounts of patterns, the
question arises whether all patterns need to be used in ev-
ery training step, or whether there exists a way in which
only parts of the patterns can be selected while still allow-
ing for successful training and good policies [5]. There are
two reasons for this. First, it is clearly beneficial from a
computational point of view to reduce the time needed for
training by reducing the numbers of patterns. Also, large
amounts of patterns might even become computationally
intractable [2]. Second, some parts of the state space are
learned quickly, they are comparably safe and do not need
excessive training. However, many reinforcement learning
problems also contain parts which are harder to learn than
others (called neuralgic states hereafter). These areas form
the crucial points of failure and demand more training than
others. Because of this, it is reasonable to concentrate the
learning process on exactly these more difficult parts of the
problem space.

The idea of Neuralgic Pattern Sampling (NPS) is to learn
a probability distribution of failure for the state space (or
parts of it) and to use this distribution as basis for pattern
sampling. The initial distribution assigns equal probability
to each part of the state space because the neuralgic parts
are not yet known. Whenever a failure occurs, the value
which corresponds to the position of failure (xfail) and its
neighboring positions are increased. This way, the proba-
bility distribution shapes over time, revealing the neuralgic
parts of the state space.

For the experiments with the slot car system, we used the
position on the track as basis for the probability distribution.
Note, however, that NPS is applicable to multiple state di-
mensions (leading to multi-dimensional Gaussian distribu-
tions). In the offline version of the algorithm, each position
of failure out of all patterns is first surrounded by a Gaus-
sian distribution. This is done in order to increase sampling
in a greater area around the failure. Then, the resulting val-
ues are added to the distribution. This can also be seen as
forming a histogram of failure, with Gaussian smoothing of
each pattern in a bin. Finally, the distribution is normalized
to form a probability distribution.

In the described form, NPS is closely connected to the
current application because of its relying on ’failures’ dur-
ing training. Still, NPS can be extended to cope with prob-
lems that do not contain explicit failure states but neverthe-
less exhibit neuralgic parts. In this case, sampling could
be based on the amount or variance of the expected costs
with higher sampling rates at cost-intensive areas or regions
which still have high variance in the expected costs.

Algorithm 2 Neuralgic Pattern Sampling
state hist = split space(hist granularity);
for all x ∈ Xfail do

for shift = 0 to shift max do
pos = x− shift;
state hist(pos) += 1

σ
√

2π
exp(− (pos−x)2

2σ2 )
end for

end for
state hist = state hist/sum(state hist);

5. Experiments & Results

5.1. Training Setup

In its most basic version, the state description of the slot
car contains information about the position of the car, its
velocity and whether it is on- or off-track. The position of
the car is calculated with regard to the overall length of the
track and given in percentage. To overcome the problem of
delayed state information, an action history in form of the



last selected action is included in the state description. The
resulting state space contains four dimensions (position, ve-
locity, on/off track and action history). Because a sampling
frequency of 15 Hz is sufficient for successful training and
produces less redundant patterns, it was used for the exper-
iments.

The actions of the system were chosen to be multiples
of the baseline action (a = 25% of the maximal action).
Together with the ’brake’ action, a = 0%, the action set
was A = [0, 25, 50, 75, 100]. In order to let the train-
ing lead to time-optimal policies, the associated immediate
costs were selected to favor fast over slow actions. Fail-
ure, however, was punished with maximal costs. The im-
mediate costs associated with the given actions are c =
[0.06, 0.03, 0.01, 0.003, 0], failure induces costs of c = 1.
γ was set to 0.95.

The system was trained and results are presented for
the alternating- and offline batch mode. Each training se-
quence included 150 NFQ iterations. The network setup
of the MLP included five input neurons (four state dimen-
sions plus one action dimension), two hidden layers with ten
units each, and one output layer. Each network was trained
for 300 epochs using Rprop. In offline mode, training was
based on patterns that were sampled during an earlier al-
ternating batch training. In total, about 30.000 transition
samples (s, a, s′) were collected.

In addition to the baseline-experiments, the performance
of NPS was estimated. NPS is generally applicable in the
alternating- as well as in the offline mode of NFQ. How-
ever, the offline mode is especially well suited for the cur-
rent experiments because it allows for using the same set
of patterns in different conditions and therefore permits di-
rect comparison (alternating batch mode creates a different
set of samples in each experiment). Because of this, the
presented experiments on NPS were conducted in offline
mode.

5.2. Results

Alternating & Offline NFQ: Baseline Results
As a first proof of concept and in order to provide the re-

quired data for later offline learning experiments, the system
was first trained in alternating-batch mode. After only 104
episodes, the time required for a complete lap was improved
to only 4.45s as compared to 6.1s at ground speed. Figure
2 shows the selected actions of two exemplary policies: (a)
shows the behavior of the first successful policy, (b) shows
the behavior of a later policy. Whereas the early policy is
still highly random and clearly suboptimal, the later policy
is much more homogenous. More importantly, this policy
clearly shows that the car acts according to the varying dif-
ficulties of the track. In corners with provided cushions, the
car drives at higher speeds than in more insecure curves. (c)

shows the actions of the car taken during one run selected
according to the policy described in (b). The success of the
alternating batch training, which found a very good policy
in only 104 iterations, demonstrates the efficiency of the
overall approach.

In a second experiment, offline NFQ was trained with all
patterns available. Ten training runs were performed on the
complete set, leading to ten sets of 150 policies. In con-
trast to alternating batch mode, in which pattern sampling
automatically gives an estimate of the performance of the
latest policy, the resulting policies of offline NFQ need to
be tested after training. Because each of the ten training
runs created 150 policies, testing every single one of them
in the real system is clearly too time-consuming. Instead,
five policies were randomly selected for policy screening
on the real system out of the 150 policies of each run.

Of all the tested policies, 79% were successful. The
best performance of the tested policies was found to be
4.53s, the mean performance of all successful policies is
4.91s. This again is a major improvement compared to
the one-action baseline of 6.1s. Also, these results are
comparable to the current human record of 4.50s.

Pattern Selection using NPS
In the experimental implementation of NPS, the track

positions were separated into bins with a granularity of
0.01% of the track’s length. The standard deviation of the
Gaussian distribution was set to 3. Also, the increase in
probability of positions around xfail were only applied to
10 bins prior to xfail. Once the distribution is calculated, it
can be used as basis for pattern sampling. Figure 3 shows
the estimated sampling distribution which results in a more
intense sampling of difficult parts of the track as compared
to easier ones.

To ensure the functioning of the overall approach and to
yield a first estimate of the performance, some preliminary
experiments were performed comparing NPS to a random
sampling method. Table 1 shows the experimental results.
In this test setting, the random approach required sampling
of up to 22500 patterns to yield a successful policy whereas
NPS needed only 5000. Note, however, that the results
are based on ten randomly selected networks based on one
training set each.

Having ensured the functioning of the overall approach,
more detailed experiments were performed. As in the of-
fline NFQ baseline experiments, performance was evaluated
based on ten sets. However, instead of using the complete
set, the selected number of patterns was sampled with the
corresponding technique. Then, these sets were used as ba-
sis for training. Again, results were estimated from ran-
domly selecting five networks out of all trained ones. Table
2 shows results from training with randomly selected pat-
terns (naive approach) and results from the same amount of



(a)

(b)

(c)

Figure 2. This figure shows the selected ac-
tions of two policies. The action ’brake’ is
encoded by a circle, for the other actions the
size of the bars correspond to the power of
the action (longer bars correspond to faster
actions). (a) An early successful strategy. (b)
The actions selected by a later and faster pol-
icy. The selected actions are more homoge-
nous and directly match the difficulty of the
corresponding parts of the track. (c) The ac-
tions selected during one round.

Figure 3. This figure shows a mapping from
the estimated sampling distribution to the
track. It can be seen that the sampling density
directly corresponds to the varying difficulty
of the track.

# of Samples Random (s) NPS (s)
5000 - 4.50
15000 - 4.55
22500 4.55 4.37
30000 4.57 4.57

Table 1. Results of the preliminary experi-
ments. This table shows the best perfor-
mance out of 10 randomly selected policies
after training. The training sets were either
randomly sampled or based on NPS. In the
case of the complete set no actual selection
is required.

patterns selected by NPS. Performance is also compared to
the results from training with the complete data set. The
results clearly show the advantage of using NPS instead of
a random selection method. Not only the performance is
closer to the performance of training with all patterns, but
also the success rate of the trained networks is significantly
improved (4 % vs 16 % successful policies). With regard
to training times, one iteration of NFQ on the complete set
of patterns takes 48 s whereas the training on a set of 5000
samples can be accomplished in only 8 seconds.

Still, compared to the performance based on the com-
plete set of patterns, a smaller amount of networks suc-
ceeded. A reason for this can be given by the fact that
sampling is only dependent on the position of the pattern,
but not on its success. Thus, the different sets contained
changing amounts of positive and negative patterns. In or-
der to increase the success rate, a straightforward solution
would be to add all negative patterns and sample the rest ac-



Method Success (%) Mean (s) Best (s)
30000 79 4.91 4.53
Rand 5000 4 5.07 4.78
NPS 5000 16 5.01 4.66
NPSneg 5000 87 6.54 5.20

Table 2. This table shows the success rates
and mean and best performance of the tested
policies. Results are given for the complete
training set, 5000 randomly selected patterns
and 5000 patterns selected by NPS. Finally,
results of NPS including all negative training
patterns are given (NPSneg).

cording to the described procedure. Results are also given
in Table 2 (NPSneg). As expected, the stability of the poli-
cies increased dramatically. However, the average lap time
is decreased because the small sample size does not contain
enough positive patterns. Put differently, the overhead of
negative training instances lead the system to behave overly
cautious.

6. Conclusions

The paper introduced a novel real-world RL application,
the Slot Car Racer System, and an extension of batch RL
addressing the problem of selecting appropriate patterns for
training. The effectiveness of the overall approach and sys-
tem was demonstrated via standard alternating- and offline
batch learning. After training the system for only 45 min-
utes, the resulting policies are equal to human performance,
the lap time of the best policy (4.37s) is clearly better than
the best observed human performance. The reported results
can be used as benchmark for later experiments with the
system.

Neuralgic Pattern Sampling (NPS) was applied to de-
crease the amount of needed patterns and to concentrate the
training on sensible parts of the state space. It was shown
that the number of patterns could be reduced from 30.000 to
only 5.000 while still obtaining comparable results and that
NPS is highly preferable over a random selection of training
patterns. The inclusion of all negative samples in the sam-
pling process was shown to lead to an increased amount of
successful policies. However, this was achieved at the cost
of performance. Future research will have to further inves-
tigate how an optimal amount of negative patterns can be
selected.

Apart from its application in offline mode, NPS can also
be applied in an online learning environment. In addition
to providing a means of selecting promising subsets of
the sampled data for learning, the evolving probability
distribution of neuralgic states can be used to drive learning
process to promising states. In an active learning paradigm,

the system could safely drive the car to selected positions
and like this concentrate the training and sampling on the
more difficult parts of the track.

Remark: In this paper, we have introduced a novel, com-
parably low-cost real-world reinforcement learning prob-
lem. The slot car system consists of a Carrera Evolution
Package, the vision software and the USB controller. In or-
der to allow for comparability of approaches across groups,
the software as well as the controller design can be provided
upon request.
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