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Abstract— In this work we present a reinforcement learning
system for autonomous reaching and grasping using visual
servoing with a robotic arm. Control is realized in a visual
feedback control loop, making it both reactive and robust to
noise. The controller is learned from scratch by success or
failure without adding information about the task’s solution. All
of the system’s major components are implemented as neural
networks.

The system is applied to solving a combined reaching and
grasping task involving uncertainty directly on a real robotic
platform. Its main parts and the conditions for their successful
interoperation are described. It will be shown that even with
minimal prior knowledge, the system can learn in a short
amount of time to reliably perform its task. Furthermore, we
describe the control system’s ability to react to changes and
errors.

I. INTRODUCTION

The ability to react quickly to changes is essential for an

robotic application that hopes to be useful in natural ay-d
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Fig. 1. Setup of the system with the cameras, their visual tirgnd
the segmented object. Note that the markings visible on thie @ not
directly correspond to the training positions, but weredufa guidance
vhen placing the object.

environments. This includes the area of autonomous control

of actuators for reaching tasks, which is not only important
traditional robotic scenarios, but will also play an import
role in future human-robot interactions.

Classical planning approaches are limited in this respec
Even using modern hardware, planning a complete reachi

and grasping movement requires a significant amount
time, and is usually performed in an open-loop mann

incorporate visual information during the reaching stages
time requirements make fully reactive control difficulteev
while more recent works are nearly capable of planning

likely [7].

In contrast, visual servoing methods [8] inherently adher
to the reactive paradigm [9]. Here, a control signal is gen-

erated directly from the sensory input, without the need f

high-level reasoning. However, even approaches capable

truly reactive operation [10], [11], [12] typically incoopate
a significant amount of prior knowledge about the syste

camera calibration over the use of complete system mod

for generating the visual-motor Jacobian to hand-crafte

control strategies [13].

The authors are with the Machine Learning Lab, Departmenoof@uter
Science, Faculty of Engineering, Albert-Ludwigs-Uningref Freiburg, D-
79110, Germany (emaiftlampe,riedmille} @informatik.uni-freiburg.de).

e

Machine learning techniques constitute a useful tool for
reducing the amount of expert knowledge required for
autonomous control. Ideally a system would combine the
rFactiveness of visual servoing with the knowledge-free
Ig)blicy acquisition of reinforcement learning. One type of
learning paradigm that has proven well-suited to generat-

0 . ; .
INg a behavior even in the complete absence of domain

r . . i .
[1]. Closed-loop control is frequently limited to grasp ad(_almowledge is value-function-based learning, particylane

justments using force [2], [3], [4] or proximity sensors
[5] at or just before contact with the target, but does noE

variant of Q-learning. In recent years such approaches have
een largely overshadowed by policy-based methods, which
ave produced impressive successes in various applisation
of robotics, albeit with the use of system models and imi-

.fation learning [14], both of which constitute forms of prio

i . X
real-time [6] and may re-plan their target when failure SEemﬂnowledge and may not always be available. For instance,

models may become skewed over time in real applications
and demonstrations may be difficult to perform even for a
ﬁuman, like in the classical inverted pendulum problem. One
major reason for the comparatively rare usage of knowledge-
rc—;[.-e systems is the frequently high system interaction time
required, which prevents the application on robotic system
However, advanced value-based methods such as Neural

"Bitted Q Iteration [15] work in a much more data-efficient
and the task’s solution. Common requirements range fro Q [15]

rr?uanner and have proven to be usable in real-world systems
father than only simulated problems [16], [17].

It is important to note that we do not aim to pit the system
against state-of-the-art visual servoing methods; a syste
created using prior knowledge will obviously outperform
one learned from scratch. Instead, we intend to illustrate
that value-based methods can still be applied in the domain



of autonomous manipulation, which may be advantageo(i80] required the use of a model of the process. Learning
in cases where knowledge about the process model or thes addressed in a subsequent work [31], though it took
problem solution is difficult to generate. To do so, weplace only in a simulated environment, still utilizing dama
consider a combined reaching and grasping task in whidhsight.

a robotic arm is required to pick up an object. The setup To summarize, all previous approaches to visual servoing
illustrated in Fig. 1 notably includes the use of a handfor reaching and grasping rely on calibration or the presenc
mounted camera. Such monocular eye-in-hand setups afedomain knowledge. In contrast, the system we present in
generally desirable in manipulation tasks, as they allowhe following requires no information about the solution of
for more precise control and additional robustness againite task, but instead acquires it completely from scratch.
errors due to occlusion. However, they also make extracting
an accurate 3D pose of an object, which is used in most
manipulation systems [1], difficult, and generally require  To illustrate our approach, we consider a combined reach-
known system model as well as a calibrated camera fang and grasping task in which a Kinova Jaco robotic arm
use in planning. Hand-mounted cameras can eliminate ti& required to pick up a bowl located on a planar surface.
need for camera calibration [18], though at the cost of th€éhe arm is expected to cover a working area of 35gem
requirement that the final camera input at the end of th20cm x 20cm and reach the target from arbitrary positions
movement be known in advance. The desire to avoid evemithin. The target itself is movable as well, spanning a ing
such information motivates our use of a value-based methed 30cm along the area’s long side, while being roughly
capable of learning only from experience. centered along the short one.

As per our main goal, knowledge about the problem The system includes two PlayStation Eye USB cameras
provided to the learner will be limited to a bare minimum.arranged in the manner shown in Fig. 1, with one mounted
The only assumption will be to split the reaching task int@n the table and one in the robot’s gripper. Neither camera is
three parts, including coarse and fine control as well azlibrated, and the hand camera in particular does not point
vision-based success prediction. into the exact same direction that the actuator is oriemed i
but is skewed to one side by more than®1iformation
about the object, is only available in the cameras’ frame of

Among recent successful visual servoing approaches teference. The object, which is distinctively colored frdm
reaching and grasping using eye-in-hand setups, there d&@ckground, is detected through simple color segmentation
several attempts to reduce the required amount of informasth the centers of gravity of the resulting color regions
tion. Like our system, Piepmeier et al. [19] have used abeing made available to the system. It is worth noting that
uncalibrated camera, while Shademan et al. [20] estimatéide despite the high visual salience of the object against
the visual-motor Jacobian without knowledge of the systenits background, which can be seen in Fig. 1, the position
though hand-crafted control laws were used. is still only approximate, as no features such as curvature

Reaching and grasping tasks have been extensively care used to find the true center and the distance of the
ered using combinations of policy iteration techniques andbject, and changes in lighting condition may introduce
imitation learning [1], [7], [21], [22]. There has been artde errors. Furthermore, the object cannot simply be grasped
to reduce the amount of knowledge needed, allowing theentrally, but possesses two admissible zones along the rim
generation of trajectories using only a generic initidima that the agent will be required to find. This introduces a
[6], [23]. degree of insecurity with which the learner will be forced to

Similar to the split of the system into controllers ofcope.
different scopes, Kim et al. [24] divide the motion into gsos Both the kinematic pose of the actuator and the robot's
and fine components, solved by table- and hand-mountgmint angles are also available to the system.
cameras, respectively. An early application of such a scopeThe robot can be controlled directly in Cartesian coordi-
split in neural reinforcement learning can be found in [25]pates. Only its spatial position is to be adjusted here, with
used for thermostat control. the actuator’s orientation remaining static relative t® tiase

Along the same lines of the implicit grasp success predigeint’s rotation. Finger movement is limited to the closing
tion used here, Detry et al. [26] learned affordance densidf the gripper at the system’s signal. Consequently, the
ties of objects, which were explored through pick-and-dropontroller will be required to learn to position the actudto
movements. However, this was done in task space, while osuch a way that this automated action results in a successful
approach works directly on sensory inputs. Grasping pointgasp closure.
in task space have also been extracted explicitly, with no While the task may appear trivial to a human observer, it
knowledge of or assumptions about the target's shape [27$, considerably less simple given the amount of information
[28]. — or rather lack thereof — available to the system and the

While not related to autonomous reaching, the setup usg@eculiarities of the setup. Without complete 3D informatio
in [29] to achieve real-time reactive control in a high-gbee of the environment it is not possible to intuitively detenai
ball-bouncing task was quite similar in its nature. In casty whether a sensor state would result in a successful grasp,
however, its solution by means of Model-Predictive Controand neither is the sensor configuration at admissible grasp

I1l. DESCRIPTION OF THEPHYSICAL SYSTEM

Il. RELATED WORK



The SRC is to activate only if the object is visible in
the hand-mounted camera. In addition, it should not be too
close to the image border, as that region can be expected
to be underrepresented in the training data and thus be
difficult to acquire a stable policy for. Formally we defineth
SRC’sactivation areaas any state that satisfies the condition
—-0.9 < ¢ff <0.9, with (./,.]7) being the object position
in the camera scaled to the intenjat1;1]. The LRC will
naturally be required to be capable of reaching such a state.

Due to the distinct scopes and requirements both con-
trollers will be designed using different learning techreg
Fig. 2.  Architecture of the combined system during contrdenients  gnd modeling. The focus of this work will lie largely on the
fgéﬂeeﬂ:ﬁhggﬁgc:ﬁgssem modules generated by means of redeaining, SRC, which implements more precise control and will be ac-

quired through reinforcement learning. In contrast, theCLR
needs to perform only comparatively coarse movements,
poses provided in advance. Such information can only k#beit over the entire working area, and will be implemented
acquired through a lengthy test of moving the arm to asing supervised learning.
different location and checking whether the object moved
along. In addition, no transition model, i.e. knowledge hows. Success Prediction

choosing a certain action would affect the system, is given. . ) ]

As the actuator's orientation in task space and thus the AS We do not provide the algorithm with a camera model,
relation between hand camera and object changes as tH8 target states for the visual servoing task, i.e. those in
arm rotates, a simple directional proportional contraitstgy which closing th(_a fingers should resu_lt ina s_,uccessful mcku
cannot be used either. The inability to either control th&'® NOt known in advance. To avoid having to perform a
system by hand or design a simple controller prevents tHiCkup test after each training episode, we therefore in-
use of imitation learning, and the system will have to agguiriroduce a further split within the SRC by means of the
a strategy purely through exploration. This in turn incesas Success predictorwhich learns, using supervised learning,
the required amount of system interaction, thus requirieg t to anticipate grasp success based on the current visual
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use of a data-efficient design. information. The output of this module can then be used
by the reinforcement learner to determine the outcome of a
IV. CONTROL ARCHITECTURE trajectory in lieu of an actual test. The prediction will be

To solve the task in the face of these issues, we propose tig@Presented using a standard feed-forward neural network
following system design, illustrated in its entirety in Fgy ~Mapping object locations to success.
The system most notably includes two features: firstly, & spl This bootstrapping approach offers the advantage of being
into two separate controllers that operate at differenk tasible to both generalize over both sparse data and represent
scopes, and secondly the use of a mechanism to predict gré@gecurities. Using a neural network as function approxima

success. does not result in a mere binary prediction of success or
failure, but a continuous one as illustrated in Fig. 3. lnsec
A. Controller Scope grasp positions that do not guarantee success, such as the

Intuitively, to allow precise reaching and grasping acrosexact center of the image, result in intermediate network
the robot’s entire working area, both cameras would need &stivations, which can be interpreted as low prediction-con
be used in conjunction. The hand camera has a limited fiefflences. By choosing an appropriate confidence threshold,
of view and may easily lose the target from sight duringpne can implement a desired amount of “caution”, and a high
long movements. Meanwhile, the table camera, just like artreshold will result in a system that only attempts gragsps a
single static camera, possesses a poor spatial discriorinatpoints that guarantee success.
along one direction of the working plane. Furthermore, it is Learning this prediction separately from the controller’s
subject to occlusion of the object by the arm itself. behavior can be expected to lead to an increased stability of

Based on the general assumption that many tasks, withe learning process. The late discovery of insecure locati
grasping being one of them, require particular precision iduring the training of the SRC would otherwise necessitate a
state regions close to the goal state, short reaching mowe-learning of the policy by propagating the new informatio
ments and the grasp itself will be performed by gteort- all the way from the target. In addition, by interpolating
range controller (SRC) using the hand-mounted camerahe success map from a limited number of observations,
which activates once the object is visible in the latterthe required total system interaction time can potentially
Guiding the actuator to such a state for any starting pos® reduced, since most likely one of the two tasks will be
and for any target object position is the responsibility ofearned more quickly than the other, and we therefore avoid
the long-range controller (LRC), which utilizes the table- having to continue collecting data for a task that has aijread
mounted camera for a wider view. been learned completely.
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V. LEARNING METHODS
0.8

As the aforementioned system components will be created
using several methods of machine learning, we will briefly,
introduce the specific techniques used in the following.

Reinforcement learning problems are commonly repr
sented as a Markov Decision Problem (MDP), a 4-tupl
{S, A, p, c} consisting of a set of system statés possible
actions A, a state transition functiop(s,a) — s’ and
a transition cost functiore(s,a,s’) — R. Notably, p is 06
unknown in our case, forcing us to perform model-free s
reinforcement learning, and evens not completely known; p
as mentioned in the previous section, the goal regionis 108 06 ’0-4Hori-z‘i:tal Ima‘;e c[,o?fmate 04 06 08 1
not explicitly specified.

Once we have formulated our task as an MDP, we can o - . .
g. 3. Activation of the success prediction network givesrmalized

. . . . Fig.
turn towards Ieammg of the Q-function, Wh'C.h_ maps _pa'r§amera coordinates as input. The contour line marks valuegahreshold,
of states and actions to an expected remaining trajectompich would cause a training episode to be considered agssitt during

cost. For discrete action sets, policies can be easilyeretr learning and trigger finger closure during execution. The ted regions
correspond to the edges of the bowl; their shift from the eergnd

online from this functionQ(s,a) — R for a given state asymmetry result from the highly skewed alignment of the cametain
s by comparing the function values across possible actions: robot's actuator, which is one of the challenges theesydtas to cope
and choosing the one minimizing it, i.ergmin,Q(s,a). Wt

The task of learning the Q-function will be solved using

Neural Fitted Q Iteration (NFQ) [15], a variant of Fitted
Value Iteration [32] tailored specifically to using a multi-
layer perceptron to approximate the Q-function. Since pa.
experiences are explicitly stored and reused throughaut th

raining pr he meth rforms in rticular .. . .
training process, the method performs in a particula etabéase joint’'s current rotatiofly, the end-effector’s height,

and data-efficient manner. While NFQ is a well-estabhsheand the Cartesian velocities of the actuatoranduv,. At an

algorithm for reln_forcement learning, the approach has thumterval of 100ms, the system can take a three-dimensional
far not been applied successfully for grasp control due ¢o th

: N 3 . L
difficulty of dealing with higher-dimensional actions cdeib actiona ¢ { 1,0, 1}. » Which translates to the c_j|rect|on of ,

: . o ; movement in Cartesian space, performed by using the robot’s
with strong interaction time constraints.

inverse kinematics.

Both the Q—fu_nctlon used in NFQ and the ones in the One integral part of the MDP, the cost function, is only
two other constituents of our system are represented b

feed-forward multi-layer perceptrons, which are trained ip%rtially specified, since it is based on the success piedict
! which is in turn implicitly represented in a neural network.

a supervised manner by providing pairs of input and desireﬂ]e net is trained through supervised learning using ptter

output patterns. The output error is minimized through the_ - . . . . HOHy
o . ) consisting of object positiong:L', ;') in the camera as
application of backpropagation [33], which passes thererrg ; Y
input, and corresponding observed grasp test succesgas tar

from the output layer toward the input layer. To update the . W H _ ;
local parameters of the network, the Rprop heuristic [34iutput. It thus realizes a mappird, , , ) — [0; 1] which

. . . an be used together with a prediction threshbl define
is used, a variation of momentum-based gradient desce{‘h.e cost function as:

Here, the momentum term is independent of the value of the
{ 0 if o(H,0) >0

e
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The object is represented by the center of gravity of its
projection in the camera, designated @8 ,.), which is
ormalized in the interval—-1; +1].

Information about the robot is provided in the form of the

gradient itself, and adjusted only on the basis of changes in (') by
its sign. This approach is known to lead to particularly fast 0.01  otherwise
convergence of the learning process.

0 is chosen to b€.95, with the intent that insecurities should
be treated as failures to ensure maximum robustness.
It is worth noting that task failure does not result in high
The sub-task handled by the SRC most closely resemblggsts, as one would usually assume. Instead, any observed
a classical combined reaching and preshaping task. Beeng thansition to the failure state is replaced by a virtual cierf
focus of this work, its design will be described in particula the predecessor state to itself. By doing so, we avoid region

V1. SHORT-RANGE CONTROLLER TRAINING

detail. of extremely high costs in the Q-function, which due to their
. proximity to the target state could lower the perceived galu
A. Problem Modeling of the goal region, and thereby hinder learning.

The problem can be stated as a Markov Decision Process, o
which is then to be solved through reinforcement learning>: Success Prediction
Sensory information about the object is incorporated in the Since the cost function, and thus the training of the
system state = {Lf,Lf,go,Tz,’Um,Uy}. reinforcement learner, requires the presence of the ssicces
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Fig. 4. System architecture during the SRC reinforcementieg stage.
Neither LRC nor grasp modules are being used while the Q-femt being
updated, though the success prediction module is employechfoulating
the costs. Fig. 5. Number of failed grasps for the chosen policy fromediht initial
actuator positions relative to the target object. Posstiaiithin the shaded
region lie in the SRC’s activation area; again, asymmetrylt@drom the

prediction module, the latter is generated first. It is repSmeras skewed alignment.

resented by a feed-forward network, this time with one

hidden I_a;_/er Of_ size 30. Prior tp the r_elnfor(_:ement I_earnm o allow the algorithm to stabilize as far as possible, an
phase, it is trained on 189 pairs of visual information an

success. which were acauired during earlier experimen dditional 1000 updates are performed without interacting
u » Which w qui uring ' Xper Wth the robot, using only the transition data acquired thus

tTh'f training lasts for#])oo Rproplepochs, after Wh'(’;h ';h? r. Not all of these are tested, but only the last 10 resyiltin
es errortc?nverges. . I?jsfh sampdtlest,. spanning most o | Sm the offline training stage. For each, grasp success is
camera state space, yie € prediction mapping presen &Qtermined for 10 initial arm poses, with the object located

in Fig. 3. centrally in the working area. Testing for a given policy is
aborted once it failed to pick the object up from any starting

i L . __pose.
With the success prediction fixed, the resulting learning

system is as depicted in Fig. 4, where the prediction is usdd Results
to determine the costs. In total, training took up to 16 hours using a commodity

The multi-layer perceptron used to approximate the sysingle-core Pentium 4 setup, though only 35 minutes were
tem’s Q-function is comprised of two hidden layers of size 2@ieeded for actual system interaction, and the remaindéd cou
each. During each episode, it is updated using Rprop for 3¢& reduced simply by using a more powerful computer and
epochs. These values were chosen based on past experienggploying parallelization. All policies were at least chjea
and have been proven to be well-suited for many differerdf grasping at all but one target position, suggesting that
tasks [35]. While the number of epochs may not suffice foperformance was fluctuating around the optimum rather than
the network to converge to the true output values given thgiverging.
current observations, NFQ merely requires their magnitude Three of the policies were able to perform a successful
to be correct relatively to each other, rather than absiglute grasp in every case, and only these policies were used in

During training, the starting position of the actuator isa second, extended testing phase. Here, the position of the
being varied randomly over an area of>x3%cm, while its target object was displaced to each side in by increasing
height is fixed at 10cm above the table. The target itself ismounts of up to 15cm, and each of the resulting targets
also placed at three different positions spaced 15cm apagas again tested for success from 10 relative robot poses.
with each being used with equal frequency. Through this procedure, the policy with the highest relia-

The system alternates between greedy episodes, where Bility over both target and starting pose variation was enos
best action returned by the current policy is used, and on@s can be seen in Fig. 5, this policy managed to successfully
during which standare-greedy exploration is performed. We pick the bowl up at all positions lying in its activation area
choose a high probability of = 0.2 in order to ensure a In fact, even those poses located further at the image border
sufficient number of exploratory actions even during thatshoresulted in a successful grasp in most cases, though this was
total training duration that we expect. 300 such episodes anot required for the combined system.
performed, each followed by an NFQ update.

While the algorithm used offers no theoretical guarantees
that the algorithm will converge to an optimal solution, one To allow the SRC to be usable for every possible target
can, given sufficient data, expect policies to fluctuate maglou object position, we must design the LRC in such a way
one. This neccessitates an evaluation of the final policies to reliably provide visibility of the object in the hand
regarding their performance to locate the best possiblétres camera within its activation area. This can be achieved by

C. Policy Acquisition

VIlI. L ONG-RANGE CONTROLLER TRAINING



been shown to ensure exactly this visibility. In this way
grasping can be achieved from arbitrary starting positians
the robot’s working range, regardless of the object’s parsit
and visibility in the hand camera. On average, performing
one entire grasp sequence takes abb06 seconds from
starting to move until closing the fingers around the object.
This constitutes no significant difference to th85 seconds
needed by a human operator using a three-axis joystick and
the same speed settings. In addition, the architectures give
rise to further traits, allowing the grasps to be performed
adaptively and reliably.

Fig. 6. Distance of the object in the hand camera from the imagéec ~ A. Object Pursuit

as a function of object position in task space. The peak ofitsibution Thus far all evaluations have been performed in a com-
lies at0.8006, well within the range required for the SRC.
pletely static environment. But since we chose to design
our system specifically in a reactive feed-back manner to
generating a camera transformation that generates roug@al with dynamic settings, it is also capable of adapting to
desired tool center point positioris,, 7,) from the object's changes such as a moving object. To illustrate this ability,
image coordinate&”, .1'). We use a multi-layer perceptron we used the setup of a sub-task from the ICRA 2012
to approximate this mapping, as its generalization abilit}obile Manipulation Challenge [36], in which the bowl to be
enables learning the relation from a limited number o@rasped was placed on a turntable. By varying the distance
samples. Since the generation of a target position requireésthe object to the table’s center we could effectively atju
only a forward pass of the current visual input through théhe speed and movement range of the object.
network, it can easily be re-evaluated for every new frame The maximum radius we examined was 10cm, as it was
provided by the camera, providing real-time control. Théhe largest one possible to describe a path that lay within
third degree of freedom, the height of the gripper, is fixed the system’s 35cm20cm training area, outside of which
at a value of 10cm, which was the same height from whiciis behavior could not be predicted. This amount, which
the SRC started during training. This pose can then be movégrresponded to an object speed of 2.1cm/sec, still allowed
towards by using the robot’s inverse kinematics. reliable grasping by pursuing the object as illustrated in
A set of 758 pairs of camera positions and correspondinfgg. 7.
robot poses are generated by placing the object in t
arm’s gripper and moving it along the working area. Wi
again choose a network with two hidden layers of 20 units, In addition, our system also attains robustness against
which is trained on this set for 300 iterations of Rpropvarious types of sensor errors.
gradient descent, after which the training error converges The use of a short-range eye-in-hand controller enables it
This training stage takes less than a minute. to cope with errors relating to the localization of the targe
After training, the LRC is evaluated by placing the targepbject by the table-mounted camera. Despite the fairlysbbu
at different positions in the robot’s working area, waitfiog ~ color segmentation used here, large errors can be expected
the system to move to the pose generated by the netwoiR, result temporarily from occlusion of the object by the
and measuring the distance between the object positiorein t@ripper itself, as well as smaller ones for longer times due
camera and the image center. To reiterate, for a position & changes in lighting conditions. We therefore tested the
lie within the SRC’s activation area, it would have to fulfill LRC’s ability to still reach the SRC's activation area even
the constraint thak”| < 0.9 for i € {z,y}. Therefore we With an error applied to the camera projectign, ., ). SRC
merely need to computeax; |/ | for each point and check activation and thus grasp success could still be maintaiped
if it lies below 0.9, i.e. in the inner 90% of the visual area.to an error of 3.5 in any direction, which, given the size and
As can be seen in the evaluation results illustrated iflistance of the bowl, corresponds to an occlusion of roughly
Fig. 6, this is clearly the case, with the distance neve®ne third of the object.
even exceeding 0.8. Consequently, the LRC is capable ofA second type of error is constituted by general camera
generating admissible starting positions for the SRC fer thnoise, which leads to small fluctuations in the detectedabbje

. Robustness against Vision Errors

system’s entire working area. projections. Such noise appears and disappears rapidlig and
thus naturally compensated for by the reactive architectur
VIIl. C OMBINED PERFORMANCE which prevents short-term errors from having a lastingagffe

Our main goal, the system’s ability to grasp a target in
its working area, follows naturally from the combination
of its constituents. The SRC was capable of performing a Our system has been shown to perform its intended task
successful grasp from any initial position at which the obje reliably, being able to pick up an object in its working
was well visible in the hand camera, while the LRC hasange for arbitrary initial positions of arm or target. This

IX. DISCUSSION& OUTLOOK
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Fig. 7. An example grasp sequence performed by the final systeanrmoving object.

was possible even in the presence of vision errors or if these of such an arrangement at present.

object was moving.

Given our goal of including only minimal amounts of task-
related prior knowledge in our system, a brief summary off1]
the information used is in order. For one, the split of the sys
tem into several components and the assignment of specifig
pieces of sensor information can be considered to require a
degree of understanding of the problem solution. However[3]
such an amount of modeling is ultimately unavoidable in
any robotic system that does not use forgo representations
entirely [37], and does not constitute any information @bou 0
how the problem is to be solved.

While we do not use a model of the process, we do employ
an inverse kinematics model to move the robot in Cartesia
space, particularly in the case of the LRC. The reasons for
this were primarily of technical nature, as controlling the
robot in joint space would have disabled security feature%]
that avoid collisions with itself and the environment, whic
is obviously undesirable in a system intended to learn gurel
by exploring its action space. But even beyond that, we argu ]
that since the reinforcement learning methods used do not
make any assumption about how the actions generated by
the controllers are interpreted, the approach should wesk | (6]
as well if controlling the robot in joint space. Ultimately,
the overall amount of expert knowledge is still lower than[9]
in other contemporary systems, as it avoids aids such as a
process model, object models, calibration, or demonetiati 10
of the solution, and in the case of the SRC even of the desired
goal. 11
As the LRC was secondary to the SRC, the implementa-
tion we used was comparatively simple, though sufficient to
solve the task at hand. Future improvements could inclu
training it in the same manner as the SRC through reinforce-
ment learning with only a different goal state. By learnin
to adapt to factors such as the skew of the camera, it mié}h3
contribute further to the robustness of the combined system

Currently, the system’s ability to pursue the object result[14]
purely from its reactive design. By including object movey;
ment in the training process, an implicit movement predicti
could be acquired and even more robust strategies learned.

The limited depth discrimination ability of the LRC could
be solved by replacing the single table-mounted camera with
a stereo setup, which would increase the system’s workir§’]
area. While preliminary attempts show promise, the difficult
of processing three camera streams in real time precludes th
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