
A Vision for Reinforcement Learning and its
Implications for Neural Compuation

Sascha Lange and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg - Dept. of Computer Science - Germany

Abstract. New methods in reinforcement learning like policy gradients
and batch reinforcement learning as well as a better understanding of the
strengths and limits of particular combinations of reinforcement learning
and function approximation have allowed for a significant step forward,
when it comes to stable and efficient learning on real systems. Due to
this progress, old research questions could been answered and completely
new arise. With the goal of giving some insights into where the field of
reinforcement learning is heading, this paper briefly presents the history
of reinforcement learning, continues with a short (subjective) discussion
of the present state of the art and finally comes up with ideas for new
research directions. A special focus is put on the implications of these
developments to neural computation.

1 A Very Brief History of Reinforcement Learning

The early optimism surrounding reinforcement learning (RL) was severely tested,
as it became clear, that the transition from learning in small discrete state spaces
towards solving real problems on real systems would not be as easy as expected
but would cause severe problems concerning the stability and complexity—even
in rather simple problem settings. Another drawback was the insight multi-
layer perceptrons and other popular function approximators do not guarantee
stable convergence with common reinforcement learning update rules [1, 2], but—
even worse—may lead to divergence in the general case. This was even a more
severe strike as researchers had quite high hopes for these techniques as they
had allowed for a number of impressive early successes in large and continuous
state spaces (see e.g. [3]).

In the following years the research efforts concentrated on finding stable
approximative versions of the known RL methods and on scaling them to con-
tinuous learning tasks on real systems. At the main focus were tasks from closed
loop control that still were of rather limited complexity. However, in the recent
past, there has been made significant progress. Thanks to new methods like pol-
icy gradients [4–6] and batch reinforcement learning [7–10] it’s now possible to
reliably solve many of these real-world problems directly by learning from in-
teracting with the real system [5, 11–15]. The number of necessary interactions
for learning good policies was reduced by orders from typically several million
interactions to a few thousands or hundreds.



2 Once Again Recalibrating the Research Focus

This situation now allows, or even demands, the recalibration of the research
focus, shifting it towards problems that have already been on the agenda in
the early days of reinforcement learning, but somehow nearly fell into oblivion
during the time of more pressing, more fundamental research on RL’s stability
and scalability. Among these questions are:

– the question about how and where to explore the environment. For maximiz-
ing the learning results, while at the same time reducing the invested effort
in form of interactions, it’s necessary to actively control the exploration in
a goal-directed mannor.

– the question about the state and where its particular representation comes
from. The design of the state space often involves important insights into
the system and in many cases heavily influences the task’s complexity and
the final results.

– the question about how an agent could autonomously break down a given
task into several smaller sub-tasks, define valid sub-goals and learn to solve
them sequentially. This is one of the questions treated in hierarchical rein-
forcement learning—but a real break-through is still missing.

– the related but more philosophical question about the origins of reward
and intrinsic motivations of an agent. How can an agent act and learn self-
motivated?

3 A Chance for Rebuilding the Cognitive Agent

We strongly believe future systems have to address these questions in order to
achieve further performance enhancements, to allow the application to more com-
plex problems, and to allow an improved autonomy of (reinforcement) learning
agents. Hence, it seems to be the right time to think about more complex archi-
tectures of learning agents, building upon the basic building blocks of stable and
efficient RL methods, and introducing higher levels of modules for monitoring,
directing and controlling the process and progress of learning. The goal would be
to (re-)introduce reinforcement learning into a broader context within artificial
intelligence and the cognitive agent. In this respect, we do not expect much less
than a small revolution, at its end having symbolic methods and sub-symbolic
methods—to which we count reinforcement learning—no longer opposed to each
other, but working together hand-in-hand, solving different sub-tasks on differ-
ent levels of the architecture. We clearly see reinforcement learning and methods
from neural computation at the lower levels of such an architecture, having more
deliberative and perhaps symbolic methods at its higher levels. From the area of
neural computation, we expect important contributions in two different areas: 1.
within the “core” of reinforcement learning, the approximation of value functions
and the representation of policies when learning on continuous, real systems and
2. within the outlined cognitive architecture and its supporting modules.

We would like to briefly discuss three examples in the following:



Multi-layer perceptrons for approximating value functions Even in the
batch approach to reinforcement learning multi-layer perceptrons and other
“non-averagers” [7] do not guarantee a stable learning process in the gen-
eral case [8]. Nevertheless, when using mulit-layer perceptrons, the batch
approach with its separation of dynamic programming and function approx-
imation and its synchronous updates of the approximated value function
offers a significant improvement over older “direct” (online) methods with
asynchronous updates. This and the benefit of using a global approximator
are some of the reasons for Neural Fitted Q-Iteration (NFQ) already having
scored several impressive successes on real systems, and for NFQ—besides
FQI [9] and LSPI [16]—presently becoming an accepted standard method
that people discuss, use and compare against [17–19]. New theoretical ap-
proaches [18] moreover promise a better understanding of the conditions and
circumstances where particular non-averagers like MLPs might be save to
use or better should be avoided.

Winner-take-all networks for adapting grids At the border of 1. and 2. is
an application of winner-take-all networks (WTA) to the adaptation of the
structure of grid approximators. All kinds of constant and interpolating grid
approximators are still widely applied in RL, due to their conceptual simplic-
ity and their provable stability within batch methods [8, 9]. WTA methods
allow the automatic adaptation of the structure of such grid approximators
to the distribution of the relevant data in the the state space that is actually
unknown before starting the learning process [20]. This automatic adaptation
is especially helpful, if the data is situated on a low-dimensional mannifold in
a high-dimensional state space [20]. At the same time those methods could
help bridge the gap towards higher-level modules of the cognitive agent ar-
chitecture. Methods like vector quantization and especially self-organizing
maps and neural gas could help detecting clusters and structure in the data
and thus could allow to build a basis for a transition to deliberation and
symbolic reasoning about the structure of the problem, for example in order
to control exploration or to formulate new hypothesis on valid sub-goals.

Deep auto-encoders for learning feature spaces One important thing for
a success of RL is to contruct a suitable state space that carries the necessary
information (has the markov property), but is not overly complex. When us-
ing basic online-RL methods, this usually had to be done before starting the
learning procedure, since changing the state representation afterwards had
roughly the same effect as changing the structure of the function approxima-
tor (moving a support or basis function): all information learned about the
value function so far was lost in the worst case [20]. But batch RL techniques
allow for an immediate recalculation of the value functions in the changed
state space and thus make “seamlessly” switching the state space during the
learning process possible, without increasing the task’s complexity in form of
necessary interactions with the system [20]. Hence, the agent can deliberate
over an appropriate state representation by itself and can adapt it during
the learning process as thought necessary. This possibility already has been
implemented in practice. The DFQ algorithm [21] uses deep auto-encoder



neural networks [22, 23] for unsupervised learning of low-dimensional feature
spaces—these are used as basis for learning a value function—from high-
dimensional observations (images), as observed during learning to control
real systems based on visual data only [20].

One final thing to note is, from now on, all newly developed solutions have
to consider the needs of real systems. If we have learned one thing from the past,
it is that we can not develop fancy solutions for the discrete case and then hope
these will somehow scale to stochastic problems with continuous state and action
spaces. This already has failed once, even for the most simple algorithms, not
only for complexity reasons, but also for the fundamental difference of problems
when function approximation and stochasticity are involved. Thus, it’s now time
to once again rebuild the cognitive agent, but this time starting from the bot-
tom, building on practice-proven algorithms, first addressing the fundamental
questions and slowly moving towards the top.

4 Conclusion

There are many interesting challenges for neural methods in RL. We see many
opportunities for such methods directly at the heart of reinforcement learning as
well as in key areas of a more general, cognitive agent architecture. The newly
proposed techniques for training deep neural architectures already have led to
a notably increased interest in neural methods and are also of great importance
in the context of RL. Winner-take-all networks can help to adapt the structure
of function approximators to the distribution of the data in a very natural way
and may play a role in bridging the gap to symbolic and deliberative modules in
the higher levels of a cognitive agent architecture. Eventually, autonomous aerial
and ground vehicles and especially autonomous robots will find entrance into our
every-day live. In such systems that ultimately should be able to operate in our
environment and to interact with us autonomously, modules using reinforcement
learning and neural computation will almost certainly realize important aspects.

References

1. L. Baird. Residual algorithms: Reinforcement learning with function approxima-
tion. In Proc. of the 12th International Conference on Machine Learning, pages
30–37, 1995.

2. G.J. Gordon. Chattering in SARSA (λ). Technical report, 1996.
3. G. Tesauro and T. Sejnowski. A Parallel Network that Learns to Play Backgam-

mon. Artificial Intelligence, 39(3):357–390, 1989.
4. R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy Gradient Methods

for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems 12 (NIPS 1999), pages 1057–1063, 2000.

5. A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang. Autonomous Inverted Helicopter Flight via Reinforcement Learning.
In Experimental Robotics IX, The 9th International Symposium on Experimental
Robotics (ISER), pages 363–372, 2004.



6. J. Peters and S. Schaal. Policy Gradient Methods for Robotics. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2006.

7. G. Gordon. Stable Function Approximation in Dynamic Programming. In Proc.
of the 12th ICML, pages 261–268, 1995.

8. D. Ormoneit and Ś. Sen. Kernel-based reinforcement learning. Machine Learning,
49(2):161–178, 2002.

9. D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement
Learning. Journal of Machine Learning Research, 6(1):503–556, 2006.

10. M. Riedmiller. Neural Fitted Q Iteration – First Experiences with a Data Efficient
Neural Reinforcement Learning Method. In ECML 2005. Springer, 2005.

11. L. Wehenkel, M. Glavic, and D. Ernst. New Developments in the Application of
Automatic Learning to Power System Control. In Proc. of the 15th Power Systems
Computation Conference (PSCC05), 2005.

12. M. Riedmiller, M. Montemerlo, and H. Dahlkamp. Learning to Drive in 20 Minutes.
In Proc. of the FBIT 2007, Jeju, Korea, 2007.

13. M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement learning for
robot soccer. Autonomous Robots, 27(1):55–73, 2009.

14. J. Peters and S. Schaal. Learning to Control in Operational Space. The Interna-
tional Journal of Robotics Research, 27(2):197–212, 2008.

15. M. Deisenroth, J. Peters, and C. Rasmussen. Approximate Dynamic Programming
with Gaussian Processes. In Proceedings of the 2008 American Control Conference
(ACC 2008), pages 4480—4485, Seattle, USA, 2008. IEEE Press.

16. M. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine
Learning Research, 4:1107–1149, 2003.

17. D. Schneegaß, S. Udluft, and T. Martinetz. Improving optimality of neural rewards
regression for data-efficient batch near-optimal policy identification. Artificial Neu-
ral Networks–ICANN 2007, pages 109–118, 2007.

18. A. Antos, R. Munos, and C. Szepesvari. Fitted Q-iteration in continuous action-
space MDPs. Advances in neural information processing systems, 20:9–16, 2008.

19. S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement
learning. The Journal of Machine Learning Research, 7:917, 2006.

20. S. Lange. Tiefes Reinforcement Lernen auf Basis visueller Wahrnehmungen. Dis-
sertation, Universität Osnabrück, 2010.

21. S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In International Joint Conference on Neural Networks (IJCNN 2010),
Barcelona, Spain, 2010.

22. G.E. Hinton and R.R. Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, 2006.

23. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, and Q. Montreal. Greedy
Layer-Wise Training of Deep Networks. In Proc. of the NIPS 2006. MIT Press,
2007.


