
Cognitive Concepts in Autonomous Soccer Playing

Robots

Martin Lauer

Institute of Measurement and Control, Karlsruhe Institute of Technology,

Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany

Roland Hafner, Sascha Lange, Martin Riedmiller

Institute of Computer Science, University of Freiburg, 79110 Freiburg, Germany

Abstract

Computational concepts of cognition, their implementation in complex au-
tonomous systems, and their empirical evaluation are key techniques to un-
derstand and validate concepts of cognition and intelligence. In this paper we
want to describe computational concepts of cognition that were successfully
implemented in the domain of soccer playing robots and show the interactions
between cognitive concepts, software engineering and real time application
development. Beside a description of the general concepts we will focus on
aspects of perception, behavior architecture, and reinforcement learning.

Key words: autonomous robots, reinforcement learning, behavior
architecture, robot soccer

1. Introduction

The development of autonomous, intelligent systems has been in the focus
of computer science, engineering, and cognitive science since many years. In a
wide field of disciplines many techniques have been developed which can serve
as building blocks for these kind of systems. Examples are logical systems for
reasoning and representation, visual perception systems, machine learning,
and cognitive architectures, among others. However, all of these techniques
cover only small subsets of all abilities a fully autonomous system must be
equipped with to be able to operate in a complex environment.

Preprint submitted to Cognitive Systems Research March 19, 2010

More than just assembling various modules from the before mentioned
disciplines the development of autonomous, cognitive systems requires ap-
proaches that develop the system as a whole taking into account the many
recurrent dependencies between individual modules. E. g. it is well known
that approaches of learning and reasoning heavily depend on the representa-
tion of the environment which is provided by the perception process which
again depends on the sensors and the physical setup of the system. As well,
decisions made by a process of learning or reasoning cause changes of the
system which might influence the perception process again. Hence, all mod-
ules of such a system including the physical setup interfere with each other
in a complex manner. Among others, this argument is one of the key ideas
in the debate of embodiment [1].

To foster the development of complex autonomous systems and to be able
to compare different approaches the idea of creating soccer playing robots
and to compare their performance in games has been brought up in the last
decade [2]. The overall goal is to further develop techniques in robotics,
artificial intelligence, and cognitive systems so that a team of autonomous
humanoid robots is able to play successfully against the human soccer world
champion team in the year 2050. Meanwhile, after more than 10 years of
development, robot soccer has brought the ideas of an integrated develop-
ment of cognitive techniques to a broad scientific community, fostered the
development of techniques in perception, reasoning, and behavior generation
for autonomous robots, and created many interesting insights into the nature
of artificial cognitive systems.

In this paper we want to describe a selection of cognitive techniques that
were developed by the robot soccer team Brainstormers Tribots, one of the
most successful robot soccer teams, and embed them into the scientific con-
text of cognitive systems. The paper will concentrate on the question of
an adequate software and agent architecture, issues of perception and sens-
ing, and reinforcement learning approaches to make the robots learn au-
tonomously a reasonable behavior.

We will start with a survey of RoboCup and a brief introduction to our
team Brainstormers Tribots. It is followed by a description of the software
framework that we are using for our robots in section 3, the techniques of
sensor fusion and world representation in section 4, our behavior framework
in section 5, and reinforcement learning techniques for soccer robots in section
6.

2

2. Robot Soccer

2.1. RoboCup

The idea to make robots play soccer has been organized within an inter-
national scientific community named RoboCup which organizes yearly world
championships and regional championships on several continents. To be able
to compare the performance of different teams a set of leagues has been de-
fined in which the robots differ in terms of autonomy, sensing, and robot
hardware. By doing so, different aspects of robot soccer can be analyzed in
parallel [3, 4]. These leagues include:

• the soccer simulation league in which the soccer robots are simulated
agents in a soccer simulation environment. This league uses high-level
abstraction of hardware, sensors, and actuators and focusses on high
level multi agent strategies.

• the small-size-league which uses wheeled robots with a height of 15cm.
The robots get their commands by wireless communication from an
external computer that is connected to a fixed camera above the field
which yields an eagle-eye-perspective of the situation. This way of
sensing ensures that all agents share the same, complete knowledge of
their environment.

• the standard-platform-league which uses fully autonomous, legged robots.
All teams use the same robot hardware. The computational power of
the robots and the cameras is very limited so that an important ques-
tion in this league is to make algorithms work with bad sensory input
and limited computational power.

• the middle-size-league which uses 80cm high, wheeled, fully autonomous
robots with on-board computers and on-board sensors. The robots are
not standardized like in the standard-platform-league so that the league
combines software and hardware development.

• the humanoid league which investigates biped, fully autonomous robots.
Since the control of biped robots is much harder than the control of
wheeled robots the main focus is to achieve smooth, fast, and stable
movements in bipedal running and kicking.

3

Besides the before mentioned leagues some more leagues have been intro-
duced during recent years which focus on different applications than soccer
playing, i.e. rescue scenarios, educational robots, and human-robot interac-
tion. These applications are not further discussed here.

2.2. RoboCup Middle-Size-League

Since we want to focus on the middle size league throughout this paper
we will describe the challenges of this league a little bit closer. The robots
are equipped with different kind of sensors to perceive their environment and
actuators to move themselves, dribble and kick the ball. Since the robots
must be fully autonomous they are equipped with on-board computers for
the interpretation of the sensor signals and the calculation of a reasonable
behavior. To start and stop the robots remotely when the game is interrupted
and continued they obtain start- and stop-signal via wireless communication
from a referee computer. The robots of a team may also exchange information
via wireless communication. However, remote control of the robots is strictly
prohibited. A team consists of up to five robots.

Games are played between two teams on a soccer field of 18m length and
12m width (see fig. 1). The fields look like normal soccer fields. There
are only a few adaptations to the needs of soccer robots, e.g. the ball is
colored orange to simplify the process of visual perception. However, these
adaptations are removed step by step.

The game is controlled by a human referee. The rules are adapted from
human soccer and a halftime takes 15 minutes. There are fouls (e.g. pushing
another robot), kick-off and free-kick procedures, corner kicks, goal kicks,
and penalty kicks. Instead of performing a throw-in the ball is kicked in
when it leaves the field on the sideline since the robots are not yet equipped
with arms to throw the ball.

While the abilities of the soccer robots were very limited in the early days
of robot soccer [3] important improvements concerning the perception of the
robots, the dynamics of the games, and the cooperation between the robots
could be achieved throughout recent years. The maximal driving speed has
increased up to 3m

s
, the kicking strength up to 7m

s
[5, 6]. The robots are able

to dribble the ball [7] and to perform chip kicks. Most robots find a path
to a target position even in a complex and dynamically changing geometric
configuration [8, 9]. Cooperative strategies can be observed among many
teams [10, 11, 12, 13, 14], pass playing becomes more and more usual. The
team strategies are typically based on roles where one robot is designated

4

Figure 1: Picture from the final of RoboCup 2006 in the middle size league. During the
last two years the color coding of the corner poles and the goals has been removed and
the field size has been extended.

as goal keeper, one or two as attackers and the remaining ones as defenders.
Some teams are using dynamic exchange of roles depending on the situation.

The teams compare the performance of their robots in games and in so-
called technical challenges, in which the robots have to complete a predefined
benchmark, e.g. showing cooperative game playing (2006), playing on a soc-
cer field without colored landmarks (2007), or playing with an arbitrarily
colored ball (2008). Furthermore, the teams are presenting their best scien-
tific and technical improvements of the last year to the other teams. The best
further development is rewarded with a special technical challenge award.

Since every team is allowed to build its own robots, the mechanical setup
of the robots varies from team to team. However, like in an evolutionary
process some solutions have been shown to be superior to others so that
variants of these approaches have been realized by almost all teams.

For instance, holonomic drives [15] have replaced differential drives which
have been used before1. Holonomic drives consist of three or more mecanum
wheels, each of which can be driven individually by an electrical motor. By

1holonomic drives are also called omnidirectional drives

5

combining at least three wheels arbitrary movements can be realized, i.e.
the robot is not restricted to forward and backward movements but can also
move into any other direction and turn at the same time independently.

Similar to holonomic drives omnidirectional cameras are used by many
teams [16]. Figure 6 shows an image of the soccer field taken by an omnidi-
rectional camera. Omnidirectional cameras are built out of a digital camera
with standard lens and a mirror of curved shape which is mounted above
the camera. Hence, the robot obtains a 360 degree view with only a single
camera. Although the advantages of this technique are evident it comes at
the cost of low image resolution for far areas and a strong distortion of the
image.

At present, the recognition of objects in the camera images is predomi-
nantly based on color information [17, 18]. However, many teams are working
on approaches using shape and gray level edges [19, 20] since the color coding
of objects like the ball will disappear during the next years. The information
extracted from the images is used in sensor fusion and tracking approaches to
obtain a consistent geometric model of the environment [21, 22]. The robots
are able to determine their own pose on the field [23, 24, 25] and estimate
the ball movement [26, 27, 28].

Besides cameras some teams are using additional sensors like lidar [29]
or optical odometry [30]. Interestingly, although lidar presently plays a very
important role in the domain of autonomous robots it has almost disappeared
in robotic soccer during the last years so that the sensing of the robots has
become more similar to human sensing. Reasons can be found in the fact that
the dynamics of the games has increased so that the sampling rate of typical
laser scanners is too low and that the game has become three dimensional,
i.e. the ball leaves the ground during chip kicks. Hence, a single row laser
scanner cannot detect the ball in critical situations.

Furthermore, the soccer robots are equipped with kicking devices. Typi-
cally, these devices are electrically or pneumatically driven levers which can
kick the ball with a speed of up to 20 km/h and a maximal height of 3m
above ground [5]. But not only the strength of kicking is important but also
the ability to control the ball movement accurately. E.g. to play a pass it is
inappropriate to execute a chip kick but it is better to play a flat kick with
moderate strength and to control kick strength and kick direction accurately.

For improved ball handling most of the robots are also equipped with
“dribbling fingers”, flexible foam fingers which keep in contact with the ball
throughout dribbling so that the ball does not roll away so easily. Although

6

omnidirectional
camera

wireless
communication
adapter

lever of kicking
device

dribble
fingers

kicking device

compressed−air
vessel for

chassis with motors,
wheels, and batteries
(not visible)

board
motor controller

perspective
camera

laptop

bumper

Figure 2: A robot of the team Brainstormers Tribots without paneling exhibits the main
components of a soccer robot. The image shows the state of the year 2007.

these devices are passive and only put a small force on the ball they have
been shown to improve ball handling considerably. Some teams developed
active dribbling devices that are able to control the ball even if the robot is
moving in backward direction [31].

While the before mentioned robot equipment is similar in almost all
teams, the robots of different teams differ in the overall configuration of these
devices. As example, the configuration of the team Brainstormers Tribots is
shown in figure 2. Since the physical properties of a robot limit the cognitive
abilities in scene understanding and behavior execution the co-development
of both, the mechanical setup of the robots and the algorithms and concepts
of cognition is one of the key issues in robot soccer and is one of the major
differences to classical forms of research.

7

2.3. Team Brainstormers Tribots

One of the teams participating in the RoboCup middle size league is the
team Brainstormers Tribots which has been initiated in 2002 in our research
group. The team is composed out of master, bachelor, and Ph.D. students
and the number of members varies between eight and fifteen. It is one of the
most successful RoboCup teams of recent years becoming world champion in
2006 and 2007 and winning the technical challenge in 2006, 2007, and 2008.

In parallel to developing the robot hardware depicted in figure 2 the
team was creating the control software containing software modules for visual
perception, geometric and dynamic representation of the environment, robot
behavior, inter-robot communication, hardware drivers, and monitoring. The
growth of the control software from 40,000 lines of code to 150,000 lines of
code within six years reflects the increasing complexity of the robot behavior,
the requirement of better perception and representation of the environment,
and the desire to increase the autonomy of the robots incorporating self-
surveillance and self-calibration approaches [32].

Located at a machine learning research group the major scientific focus
of the team was on developing autonomous behavior based on learning ap-
proaches, especially reinforcement learning [33]. Furthermore, the domain of
fusing sensory information and to build a consistent internal representation
of the robot became a large field of scientific work. In the subsequent sections
of this article we will show some major results from these areas of reserach.

3. Software Architecture

3.1. Software Framework of a Single Robot

While we introduced the hardware setup of a typical soccer robot in the
last section we will focus on the software, now, and introduce the framework
used by the team Brainstormers Tribots. As mentioned before the control
software runs on an on-board computer, i.e. a laptop, and has to consider
input and output from several sensors and actuators. Figure 3 shows the in-
formation flow between these devices. While the on-board computer obtains
the camera images directly from the cameras, the motors and the kicking
device are actuated by a motor controller board which communicates with
the on-board computer periodically. The motor controller board implements
PID controllers for motor control and adapts motor voltages autonomously.

8

desired wheelspeed
kicker command

on board
computer
(laptop)

motor−
controller

board

motors

wheel encoders

magnetic valve
of kicking device

start/stop signals
robot state

strategy messages

computer
coach

actual wheelspeed

30 times/sec

images

30 times/sec

images

omnidirectional
camera

perspective
camera

0−7 times/sec
WLAN

30 times/sec

Figure 3: Illustration of the devices incorporated in a soccer robot. While the motor con-
troller board implements the actuation of the motors and the kicking device the cognitive
processes of perception and behavior generation are executed on the on-board computer.
The latencies as well as the frequencies of communication differ from device to device.

Therefore, from the perspective of the on-board computer it can be inter-
preted as a complex actuator with a certain degree of autonomy that manages
motor control upon desired wheel velocities.

The on-board computer can communicate via wireless communication
with an autonomous coach computer. It allows to transmit information about
the strategy of the team, the present situation on the field, and intentions of
teammates.

A software framework that is able to deal with such a heterogeneous
structure of devices, latencies, and communication frequencies and that can
be used to generate complex behavior must meet the requirements of three
domains:

• it must carfully design the asynchronous structure of the devices and
model their individual latencies, exhibit a clear control flow so that
the temporal dependencies are well-defined, and must meet real-time
constraints, i.e. the computation time of each software component must
be limited. In our case, the software was designed to evaluate 30 camera
frames per second and to communicate with the motor controller every
33 milliseconds.

• it must be tractable due to the ideas of software engineering. Since the
code size easily exceeds a hundred thousand lines of code and since it
is developed in teamwork over several years it needs strict modularity
with reliable interfaces, easy interchangeability of modules, and real-
time monitoring, logging, and debugging techniques

9

• it must fulfil the demands of a cognitive architecture in the sense that it
allows the integration of different techniques of cognitive modeling like
learning, planning, reasoning, perception, etc. In particular, to apply
reinforcement learning it was important to model the environment as
a discrete time Markov decision process (MDP) [33].

To support all these requirements we developed a modular software struc-
ture with five software components. Each component solves one subtask
which is specified by its input-output-relationship (see fig. 4).

• the vision component grabs images from the cameras, extracts ob-
jects from the images and provides geometric information about the
objects in robocentric coordinates. It encapsulates all tasks related to
the camera, its geometric properties, and image interpretation.

• the behavior component generates reasonable driving commands for
the robot. It encapsulates the robot behavior and the soccer strategy.
It is described in detail in section 5.

• the controller and drivers component communicates with the mo-
tor controller and encapsulates the kinematic model of the robot. It
provides information about the desired driving speed and the actual
speed measured by the wheel encoders.

• the world model which collects preprocessed sensory input from the
other components (e.g. object positions from the vision component,
actual robot velocities from the controller and drivers component), in-
tegrates and fuses it to obtain a consistent view of the environment.
The information is represented on a geometrical and dynamical level,
i.e. in terms of positions on the field and velocities. We avoid sym-
bolic respresentation at this point since we believe that an adequate
symbolic representation is closely related to the robot behavior and
different strategies might require different symbolic representation.

• the control and communication component which manages the
control flow, calls the update methods of the other components, and is
responsible for the communication with the coach computer. It imple-
ments a perception-action-loop that is executed 30 times per second.

The interfaces of all components are designed according to the design-by-

contract-principle [34], i.e. the syntactical interfaces are supplemented by

10

preconditions on the information available for the component, postcondi-
tions on the information provided by the component, general obligations,
and constraints on the maximal computation time. Although we are not
using automatic assertion checking in our software these design principles
helped to implement code that preserves temporal dependencies, that can be
executed in real time, and that allows to combine software moduls developed
by different programers in different years. Alternative implementations for
each component can be plugged into the software framework easily without
changing the existing code. The specification of the components is strong
enough to define the information exchange between them, however, it is
weak enough to allow the implementation of different cognitive approaches
and techniques.

While the control flow is managed by the control-and-communication
component, the data flow is managed by the world model. In contrast to a
database [35], the world model processes its input by fusing all information to
a consistent description of the present situation and providing information on
a higher level of abstraction to the other software components. It is further
described in section 4.2.

3.2. Communication and Coach Computer

The rules of robot soccer allow the robots to communicate with each
other and with an external “coach computer” via wireless LAN. The coach
computer must work autonomously without manual interference. It might
be used for monitoring and team coordination. However, the communica-
tion bandwidth is not very large, the delays in communication vary between
50ms and more than 1s, and the reliability of communication is low, i.e.
communication breaks down occasionally.

To enable the robots to communicate with each other the software frame-
work contains a communication interface that allows to exchange typed and
untyped information. The typed information exchange is used to transmit
messages independent of the robot strategy, e.g. the ball position, the robot
position, the state of the robot, etc. For some pieces of information like the
robot state or start/stop signals the information exchange is safe, i.e. mes-
sages are copied by the receiver, while for dynamically changing information
like the ball position no copying is used.

The untyped information exchange is used for messages which are related
to the strategy. Like in a pipes-and-filters approach messages in terms of
strings can be exchanged between the robots and the coach computer. The

11

− control flow
− communication with coach computer

information about
game state and
environment

desired
and actual

driving speed

− fusion and integration of preprocessed sensory input
− integration of information obtained by communication with coach computer
− short−term prediction of situation
− provide information about the environment and the game state to other software components

information about
game state and
environment

calls calls driving command

 positions

− grabbing images from
 camera

− object recognition
− image segmentation

− calculation of object

− situation analysis
− behavior selection
− robot skills

information about
game state and
environment

robocentric

positions
object

behavior controller & driversvision

control & communication layer

geometric and dynamic world model

calls

driving command
calls

 motor controller
− communication with

− model of kinematics
 and inverse kinematics

Figure 4: Structure of the main software components. Each of the components is equipped
with a small, abstract interface which allows to replace alternative implementations easily.

12

interpretation of the messages depends on the strategy applied. Hence, the
communication framework does not restrict communication to a predefined
set of messages.

We use a star-like network topology where the coach computer is the cen-
tral node of the network and robots are only communicating with the coach
computer. The coach computer might interpret the messages it received from
the robots or it might forward them to the other robots. The robots and the
coach computer are exchanging messages between five and seven times per
second.

4. Perception and Information Fusion

4.1. Visual Perception

One important capability of an autonomous robot is to sense its environ-
ment. In the domain of robot soccer optical sensors have been turned out to
be the most powerful sensor type. As described in section 2 omnidirectional
sensors are used by almost all teams including our team. Figure 6 shows
an image of a soccer environment taken by such a sensor. The robot must
be able to recognize relevant objects like the ball, the field markings, and
the other robots. Since image interpretation must be done in real time the
computational complexity of the algorithms is extremely limited.

To simplify the process of image interpretation some of the relevant ob-
jects are color coded: the ball is orange, the field is green, the field markings
are white, and the robots are mainly black. Hence we could use low level pro-
cedures like thresholding in the HSI-color space to detect regions of interest
for object recognition. To be able to play under the conditions of mixed sun-
light/artificial light with varying brightness we additionally use an adaptive
auto exposure and auto white balance procedure.

Additional heuristics are used to eliminate misclassified objects. These
heuristics consider the shape of the colored areas, their size, and their rela-
tive positions. However, a small percentage of erroneously detected objects
remains. The advantage of this kind of image interpretation is that it can be
executed very quickly. On a 1 GHz subnotebook the analysis of one image
with 640× 480 pixels takes less than 10 milliseconds.

Finally, the positions of all objects found are transformed into robocen-
tric coordinates projecting them onto the ground plane. Thereto, we use a
geometric model of the catadioptric camera which is calibrated once before
the games.

13

While the interpretation of the omnidirectional camera images is done in a
similar way by almost all robot soccer teams we extended the optical system
of our robots by a second camera to obtain a stereo system. In contrast
to approaches which use two omnidirectional cameras of the same type in
a stacked setup [36, 37, 38] we combined the omnidirectional camera with
a perspective camera that observes the area in front of the robot. Figure
5 illustrates our setup [39]. The advantage of this setup is that we can
combine the 360◦ view of the omnidirectional camera with the long and
narrow field of view of the perspective camera. Similar to peripheral vision
in the perception of humans the omnidirectional camera offers information
of a large area with small image resolution while the perspective camera
provides higher resolution images with smaller aperture angle similar to foveal
vision. Additionally, the robot can calculate the distance to objects in the
overlapping part of the fields of view of both cameras.

The three-dimensional position of objects can be obtained analyzing the
epipolar geometry of the camera system. In contrast to standard stereo cam-
era systems we have to consider the strong distortion of the omnidirectional
camera and the different resolution of both images in the overlapping part
of their fields of view. Figure 6 shows a pair of images of the stereocamera
system. Due to the special mounting of the two cameras the epipolar lines
in the omnidirectional camera are radial lines while the epipolar lines in the
perspective camera are lines which intersect in a point below the image.

For the task of soccer playing full three-dimensional perception is not
necessary since we can assume that objects like robots, field markings, and
the goals are standing on the floor. Only the ball might leave the ground so
that we can restrict computationally intensive stereo matching approaches
to this object category. Thereto, the ball is detected in both images of a
stereo image pair using color segmentation as described above. After deter-
mining the center of the segmented areas we apply depth calculation based
on a trigonometric model of the camera projections. Taken together the time
needed to analyze the perspective camera image and to calculate the depth
estimates, the stereoscopic camera requires approximately additional 7 mil-
liseconds per image pair so that we can analyze up to 30 frame pairs per
second.

4.2. Information Fusion

Due to the limitations of the optical sensor, its restricted field of view,
and the imperfection of the object recognition approaches, the information

14

camera
omnidirectional

camera
perspective

the world
object in

robot

Figure 5: Sketch of the stereo camera system combining an omnidirectional camera (on
top) and a perspective camera (below). The red lines show the optical path.

Figure 6: Pair of images from the omnidirectional camera (above) and the perspective
camera (below).

15

obtained from the video sensor is incomplete, noisy, and sometimes even er-
roneous. It only shows a spotlight of the present situation without taking
into account the dynamics of the scene. Hence, it does not deliver any infor-
mation about the movements and the interactions of the objects. Moreover,
some objects might not be recognized due to occlusions or due to the limited
field of view. Therefore, a behavior which relies solely on the information ex-
tracted from the present camera image necessarily would be quite simplistic.
Precise interaction with moving objects, e.g. the ball, would be impossible.

To overcome these limitations we developed algorithms which fuse, inte-
grate, and filter the information obtained from the camera images and which
build a consistent geometric and dynamic model of the situation on the field.
We name this model the world model of our robots. Note, that our world
model acts on a geometric and dynamic level, not on a symbolic one. The
interpretation of geometric configurations is left for the behavior component
of our software. By using a geometric and dynamic world model we can
overcome the before mentioned limitations and predict the development in
future, at least for a short-term period.

The process of information fusion and extraction of dynamic information
consists out of several subtasks including:

• estimation of the pose of the ego robot (self-localization)

• estimation of the angular and linear velocity of the ego robot

• estimation of the ball position and its velocity

• estimation of the position of the other robots and their movement

• recognition of stuck situations in which the ego robot is blocked by
another robot

4.2.1. Self-Localization

Two sensors are available for the robot to solve the task of self-localization:
the odometry, i.e. the movement of the wheels measured by wheel-encoders,
and the camera images. None of both sensors provides the full information.
On the one hand, the wheel-encoders are very noisy due to slippage and ki-
netic effects so that dead reckoning easily loses track of the actual position,
on the other hand, the images of the camera often do not provide enough
information to determine the position uniquely. Therefore, we combine both
ideas for our self-localization approach.

16

The key idea of visual self-localization is to use landmarks, significant
objects that can be recognized easily, and to measure the distance and the
angles at which the landmarks are seen in the camera image. However, the
soccer field does not provide an adequate number of landmarks. Therefore,
we are using the white field markings instead. Although, white lines can be
extracted easily in the camera images, they are not uniquely identifiable, the
robot does not know which line segment it actually sees.

We modeled the task of self-localization as an error minimization task by
defining an error function which takes its minimum at the most likely robot
pose. Given a set of positions ~si in robocentric coordinates at which white
points in the image have been found, the problem is to solve:

minimize
~p,φ

E(~p, φ) :=
n

∑

i=1

ρ(d(~p +

(

cos φ − sin φ

sin φ cos φ

)

~si)) (1)

where ~p denotes the position of the robot and φ its orientation. ρ(·) is a
robust error measure, e.g. the error measure of an M-estimator [40], d(·) is
the function that measures the distance of a point ~x on the soccer field to
the closest field marking. The distance function d uses a geometric model
of the soccer field. Hence, E(~p, φ) measures the error between the model
of white markings and the white points seen in the camera image assuming
robot position ~p and orientation φ. In case of ~p being the actual position and
φ the actual pose the white points found in the image match the model very
well so that the error E is small. Figure 7 illustrates this case.

Using a nonlinear minimization approach and starting from an initial
guess which is not too far away from the actual pose we can find the minimum
of E efficiently. However, in some situations the structure of the line points
that are recognized in the camera image is poor, i.e. not enough line points
are found or the line points all belong to parallel lines. In these cases the
minimum of E is not distinctive and we cannot determine the pose uniquely.
To overcome these problems we developed an approach that estimates the
reliability of the pose estimate exploiting the local curvature of the error term
E around its minimum. If the curvature is large the minimum is distinct and
the estimate is reliable.

Taking together the pose estimate obtained from the white lines in the
camera image and the way covered since the previous camera image measured
by the wheel encoders we can complete the self-localization approach using
a Kalman filter [41]. The initial pose used to find the minimum of E is

17

Figure 7: Illustration of the self-localization approach. Based on white field markings
recognized in the camera image the robot pose is estimated. The figure on the left shows
a greylevel plot of the error term E which is minimized. For each possible robot position
the grey level indicates the value of E assuming an optimal robot orientation. Bright
colors refer to small values of E, dark colors to large values. The optimal position, i.e.
the minimum of E is indicated by the circle. For this optimal position estimate, the figure
on the right shows a projection of the white points recognized in the camera image (black
spots) onto a map of the soccer field. The black spots are very close to the field markings
of the model.

taken from the predicted pose of the Kalman filter while the optimal pose
found by minimizing E is used for the innovation step. The details of our
self-localization approach are described in [42].

The self-localization approach is able to track the pose of a robot very
reliably and accurately once an initial pose is given. The error in position
determined in experiments was, on average, less than 20 cm on a field of
12 m length and 8 m width. Moreover, analyzing the value of E it is also
possible to distinguish situations in which the robot knows where it is (low
value) from those situations in which it lost track of its position (high value).
We use this information for monitoring. It is also possible to relocalize the
robot autonomously in the latter situations using global search instead of
local search to minimize E. We provide an outline of such a relocalization
procedure in [42] and we were able to demonstrate that it works successfully
in practice at the RoboCup 2007 technical challenge.

The self-localization approach based on error minimization works effi-
ciently. On a 1 GHz subnotebook we need less than 10 milliseconds compu-
tation time for one update. A particle filtering approach [43, 44] either needs
a multiple of time or yields estimates with lower accuracy [25].

18

4.2.2. Ball Movement Estimation

Another important prerequisite for soccer playing is to know the posi-
tion and movement of the ball. The cameras of the robot are only providing
snapshots of the present situation without velocity information. Further-
more, depending on the position of the ball relative to the robot it is visible
in the image of both cameras (omnidirectional and perspective one) so that
we can determine its three-dimensional position, or it is only visible in one
of the camera images (cf. figure 6).

To overcome this problem we developed an approach to estimate the
position and movement of the ball [27, 39]. It estimates the ball movement
projected onto the ground plane (x-y-plane) and the movement in the vertical
direction (z-direction) and can also deal with mixed monocular and binocular
observations.

The basic idea of motion estimation in the ground plane is to assume a
linear ball movement, i.e. the ball movement can be described by a linear
model of the form:

~b(t) = ~b0 + ~v · t (2)

where ~b(t) refers to the ball position in the ground plane at point in time t,
~b0 is an initial ball position, and ~v the ball velocity. Obtaining a sequence of
observations of the ball we can use linear regression to estimate the model
parameters ~b0 and ~v. In case of very noisy observations ridge regression [45]
improves the results slightly.

To take into account that the ball velocity might change we use a tem-
poral windowing technique, i.e. we only consider the latest observations for
estimating the ball movement. Moreover, we integrated a consistency check
that observes whether new observations fit to the present motion model. If
not, we assume that the ball has been kicked or has collided with another
object. In such a case we reduce the number of observations that are used
for the regression analysis to the latest two and forget the older ones so that
the adaptation of the velocity estimate to the new ball movement is speeded
up.

Due to the special setup of the stereo camera system described in section
4.1 we do not always obtain binocular observations of the ball but sometimes
only monocular. Hence, we have to deal with a mixed set of monocular
and binocular observations. We modeled this scenario as an incomplete data
estimation problem in which the distance of monocular observations from
the observer is missing. We derived a maximum likelihood estimator for this

19

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

time (s)

 0

 0.5

 1

 1.5

 2

 2.5

 28 30 32 34 36 38

Figure 8: Example of the linear velocity driven by a soccer robot. While the dashed line
shows the desired velocity which is constant over the whole time, the solid line shows
the actual velocity measured by the wheel encoder. Interestingly, the velocity estimates
obtained from the self-localization positions (dotted line) remain significantly below. The
difference can be explained by slippage.

situation which is able to take into account both, monocular and binocular
observations. It is based on an ECM algorithm [46] and alternately estimates
the parameters of the motion model and the missing distances. Compared
to an estimator which ignores monocular observations it yields significantly
better results.

4.2.3. Egomotion and Other Robots

Furthermore, the robot must be able to determine the position and ve-
locity of the other robots on the field and its own velocity. For both tasks
we use similar algorithms as for the estimation of the ball velocity. Other
robots are assumed to perform a movement with constant velocity so that
we can use the same approach as for the estimation of the ball velocity. The
only difference is that we cannot identify the other robots unambiguously so
that we have to solve a data association problem first.

The estimation of the egomotion is also done using a regression approach.
The position estimates obtained from self-localization are used as observa-
tions. Although the wheel encoders already provide information on the veloc-
ity of the ego robot an independent estimate is necessary since the odometry
suffers from slippage. Figure 8 illustrates this phenomenon.

We are using a motion model with constant linear and angular velocity to
estimate the egomotion of the robot, i.e. we assume that the robot moves on

20

a circular arc of unknown radius. Although this motion model is non-linear
we can use a hierarchical approach to estimate all parameters with linear
regression. Thereto, we estimate the angular velocity first. Once we know
the angular velocity we can simplify the remaining estimation task and solve
it analytically. The whole approach is described in [23].

Not only is the odometry-independent estimate helpful to create a rea-
sonable behavior of the robot but also can it be used for self-surveillance of
the robot. It sometimes happens that the robot wants to drive into a certain
direction although an obstacle blocks its way. Thus, the robot gets stuck.
While the wheels are turning the robot does not move. Although it will never
be possible to avoid these situations completely, they are undesirable since
they prevent the robot from executing its intentions and since the motors of
the robot might get damaged. Comparing the odometry with the egomotion
estimates it is possible to recognize stuck situations [23]. If the difference
between both becomes too large over a longer period of time (e.g. 500 mil-
liseconds), the robot is assumed to be stuck. To avoid false alarms we further
exclude time intervals of acceleration from this analysis since the egomotion
estimates are not as accurate as necessary during these intervals.

4.3. Latencies

On the basis of the geometric and dynamic world model the robots must
determine their behavior. However, all information that is created within
the information fusion process refers to the point in time at which the latest
camera image has been made. In contrast, all decisions which are made
by the robot will take effects at a certain point in the future. Since the
environment is changing dynamically, the situation at this point in future
will be different from the situation shown in the latest camera image. The
time interval between the last camera image and the point until decisions
take effect is between 150 and 200 milliseconds for our robots, depending on
the actions that are taken by the robot. Assuming a camera frame rate of
30 frames per second this means that the effects of an action do not become
visible until the fifth-next camera image. Meanwhile, a robot driving with
2m

s
has covered a distance of at least 30 cm which is more than the diameter

of the ball.
It is well known from the domain of control theory that systems with

latencies are difficult to control and tend to overshoot. From the point of view
of stochastic modeling they do not meet the Markov-condition which states
that the system behavior in future only depends on the present state of the

21

system but not on past states or past actions. This property is very important
for reinforcement learning approaches (see section 6) and it can simplify
behavior generation a lot. Therefore, we tried to extend the geometric world
model in such a way that it violates the Markov condition as little as possible.

The key idea is to use the model of the environment to predict the future
configuration on the soccer field [47]. By doing this, the decisions of the
behavior generating process are made upon the predicted state of the soccer
environment for the point in time at which the decisions take their first effects.
To predict the future pose of the robot we consider the latest desired wheel
velocities and use an approximate motion model of the robot. The future
ball position and the position of the other robots are predicted assuming
constant linear velocities and taking into account interactions between the
ego robot, the ball, and other robots.

5. Behavior Framework and Strategy

5.1. Behavior Framework

5.1.1. Requirements

The generation of complex robot behavior is one of the core tasks in devel-
oping autonomous soccer robots. Various scientific approaches on this topic
have been proposed in recent years. On the one hand, cognitive architectures
like belief-desire-intention (BDI) [48], production rule systems [49], and oth-
ers have been proposed to generate emergent behavior. On the other hand,
engineering approaches from robotics and control theory have been discussed
to implement robot behavior in an iterative process like Brooks’ subsump-
tion architecture [50], motor schemas [51], and hierarchical state machines
[52]. Due to the advantages of modular software frameworks behavior-based
approaches [53] have attracted an increasing interest throughout recent years.

For the development of soccer playing robots we could rely on a well-
established theory of soccer playing. Hence, the main focus of our approach
was not on creating emergent behavior but on transferring existing soccer
strategies to robots. Due to the highly dynamic, continuously changing en-
vironment it was essential to achieve a very lively robot behavior with low
response times that reacts immediately on changes. Further important issues
have been the creation of a modular software framework for behavior gener-
ation which can be refined incrementally, clear interfaces, and a transparent
decision making process.

22

5.1.2. Basic Idea

We follow a behavior based approach that allows us to combine purely
reactive behaviors with deliberative building blocks and learned submodules.
Thereto we were inspired by ideas from both worlds, the behavior focused,
highly reactive subsumption architecture, and cognitive architectures using
explicit shared world models, planning, and deliberation.

The result is a combination of a BDI-like control loop with slim modules
as building blocks that calculate both, their applicability and desired actions.
As in the subsumption approach, the complex behavior of the whole system is
made up by the interaction of a number of relatively simple behavior modules
each of which implementing only a small sub-strategy. The behavior modules
are organized in a hierarchical tree structure that allows abstraction and task
decomposition.

These principles can be compared to human soccer playing. A soccer
player is able to perform a set of basic skills like dribbling the ball, running
to a target position, kicking, etc. which can be interpreted in our frame-
work as the building blocks of the strategy. They can be combined to form
more complex moves like executing a wing attack or a complex dribbling
move. In the next level of abstraction a number of moves can be combined
to a complex attack strategy or a complex defense strategy. On the highest
level of abstraction complex sub-strategies are combined to the overall soccer
strategy. Additional, intermediate levels of abstraction are possible.

The task decomposition which is implemented using a hierarchy of be-
haviors can be compared to the assignments a coach would give his players.
The coach describes the desired moves and actions depending on distinctive
situations. These situations can be characterized using boolean conditions.
Once a move is started it will be persued until either a) the prerequisites to
continue this move are violated (e.g. the ball is lost during dribbling) or b)
the move has reached its goal (e.g. a dribbling has reached its target posi-
tion) or c) another move of higher priority can be executed (e.g. a promising
shot on goal).

Behavior modules2 can be interpreted as partial strategies which map sit-
uations onto driving commands. For soccer robots driving commands consist
out of desired linear and angular velocities and an attribute to control the
kicking device. To avoid limitations on purely reactive strategies behaviors

2or, for short, behaviors

23

must be able to store information about past situations and plans in their
internal memory and allow for randomized policies [54]. Therefore, behaviors
can be modeled as partial, randomized finite state machines which take as
input situations of the environment and yield as output driving commands.
Their transition function is total and allows to update their internal memory
while their output function is partial and yields reasonable driving commands
only for those situations which are in the domain of the behavior.

Given a set of behaviors as building blocks we can build a strategy upon
them applying a generic decision scheme inspired by the BDI interpreter
outlined in [55]. The decision scheme is shown in algorithm 1. Due to
the similarity to the BDI interpreter we use the nomenclature of the BDI
architecture from here on naming all available behaviors the options of the
decision process and naming the option selected for execution the intention.
As mentioned before, each option can be interpreted as a possible plan while
the intention is the plan that the robot actually executes.

Algorithm 1 Generic decision scheme inspired by the BDI interpreter

loop

determine the present situation s

filter applicable options A = {option o|s ∈ domain(o)}
select one option i from A and make it the intention (arbitration)
execute i

end loop

Note that the third step in algorithm 1 which selects the intention from
all applicable options is not yet specified. Various arbitration strategies are
possible like selecting options randomly or selecting the highest ranked op-
tion in a priority list. Interestingly, the latter arbitration strategy can be
interpreted as the decision making process implemented by the subsumption
architecture. However, from the point of view of practicability not a single ar-
bitration strategy will be adequate for all cases. Therefore, we provided four
generic arbitration schemes which cover typical cases of arbitration. These
are (a) highest priority first arbitration, (b) finish plan arbitration, (c) ran-
dom arbitration, and (d) sequence arbitration. A common property of these
arbitration schemes is that the arbitration strategy is not situation-specific,
i.e. given the set of applicable options A it selects its intention without con-
sidering the present situation s. By doing so, we obtain a strictly modular
behavior concept in which the arbitrators do not have to know anything

24

about the semantics of their options nor about the prerequisites necessary
for applying them but all information about what a behavior does and when
it can be applied, is completely encapsulated inside the behavior. The four
arbitration schemes are outlined in section 5.1.4.

Combining a set of behaviors using an arbitrator generates a robot strat-
egy that can be interpreted itself as a behavior. Those composite behaviors
can contribute to other arbitration processes as options again. Hence, we
can build a hierarchical tree structure of behaviors with the leaves of the
tree being the simple building blocks of the strategy and the inner nodes
being composite behaviors implementing arbitration strategies. In contrast
to many other architectures that use a fixed number of layers in the behavior
generating process (e.g. a strategy layer, a path planning layer, and an obsta-
cle avoidance layer) the proposed method allows hierarchies of variable depth
and branching factor. It fosters the ideas of task decomposition (composite
behaviors), incremental refinement (adding options to a composite behavior
or expanding a leave node to a subtree), and abstraction on different levels.
An example of a behavior tree is shown in figure 9.

5.1.3. Implementation

The ideas presented in the previous section have been implemented as
an object-oriented software design pattern [56] for behavior creation. An
abstract interface models the general structure of a behavior as finite state
machine. It is composed out of:

• a state transition function, potentially randomized

• an output function to generate driving commands

• an invocation condition that specifies in which situations a behavior
might be applied

• a commitment condition that specifies in which situations an active3

behavior can continue its work

• a method gainControl that is called when a behavior becomes active

• a method looseControl that is called when a behavior becomes inactive

3a behavior is said to be active if its output function is called to determine the present
driving command (i.e. if it is the present intention of an arbitrator)

25

Note that the domain of a behavior is represented by the invocation condition
and the commitment condition. In the sense of design-by-contract [34] the
user of a behavior must guarantee:

• to call the transition function periodically independent of whether the
behavior is active or not, and

• to call the gainControl method immediately before the behavior be-
comes active, and

• to call the looseControl method immediately after the behavior became
inactive

Vice versa, the behavior guarantees that its output function returns a rea-
sonable driving command whenever

• its invocation condition is true and it has been inactive before, or

• its commitment condition is true and it has been active before

To meet these constraints is essential to guarantee consistency of the behavior
generation process.

In contrast to other approaches we do not use trigger or termination
conditions since a trigger condition can be expressed with the help of the
invocation condition while the termination condition can be simulated by
means of the commitment condition.

Since the behavior interface is chosen as small as possible it does not make
any assumption on the technique which is used to implement the behaviors,
so that it can subsume reactive behaviors, learned behaviors, as well as be-
haviors which are based internally on a deliberation process. Deriving from
the abstract behavior interface we can implement concrete behaviors like
Patrol, ApproachBall, DribbleAlongTouchLine, etc. (cf. section
5.1.5).

Generic arbitrators are also derived from the behavior interface. Com-
mon to all arbitrators is that they contain a list of options4 and an index
variable that indicates the present intention. They implement the arbitra-
tion strategy in their transition function while the output function just calls
the output function of the present intention. Moreover, they are equipped

4i.e. a list of objects derived from the behavior interface

26

with generic invocation and commitment conditions to guarantee the con-
sistency constraints mentioned above. “Generic” means that the invocation
and commitment conditions of the arbitrators only depend on the invocation
and commitment conditions of their options.

5.1.4. Generic Arbitrators

Four generic arbitrators have been implemented which will be described
in this section. To be able to describe all arbitration schemes in a logical
form we introduce the following notation. O denotes the set of all options
of an arbitrator, it its intention at time t, invoc and commit its invocation
and commitment condition, At the set of applicable options at time t, and
st the present situation. invoco and commito refer to the invocation and
commitment conditions of an option o.

Highest priority first arbitration. The highest priority first arbitration is an
arbitration scheme that organizes its options in a priority list of fixed order.
Among all applicable options it selects the one with the highest priority and
makes it its intention. Denoting with ≻ the order on the options induced by
the priority list, the selection procedure and the generic conditions can be
expressed by:

At = {o ∈ O|invoco(st)} ∪ {it−1|commit it−1
(st)} (3)

it ∈ At with it ≻ o for all o ∈ At \ {it} (4)

invoc(st) =
∨

o∈O

invoco(st) (5)

commit(st) =
∨

o∈O

invoco(st) ∨ commit it−1
(st) (6)

Note that the highest priority first arbitrator will interrupt the present in-
tention when the commitment condition of an option with higher priority
becomes true. Hence, it implements a highly reactive arbitration scheme
similar to the subsumption architecture.

Finish plan arbitration. Similar to the highest priority first arbitration the
finish plan arbitration scheme uses a priority list to organize its options. In
contrast to the before mentioned arbitrator it does not allow interruptions
of its present intention by options of higher priority. Hence, it guarantees
that an intention is executed until its own commitment condition becomes

27

false. While the invocation and commitment conditions as well as the set
At are calculated in the same way as described for the highest priority first
arbitration (3), (5), (6) the selection procedure can be described as:

it ∈ At with

{

it = it−1 if commit it−1
(st)

it ≻ o for all o ∈ At \ {it} otherwise
(7)

If no previous intention it−1 exists the first case in (7) drops. The finish plan
arbitration allows to model decisions which cannot be altered afterwards
even if another option seems to be more promising than the one chosen. A
typical example is the behavior of an attacker executing a penalty kick. Once
he has decided to kick to the left or right corner of the goal he should not
alter his plan although the situation might change slightly. Note, that the
finish plan arbitration might be interrupted itself if it is used as an option
for another arbitrator. In this case the present intention of the finish plan
arbitrator is interrupted even though its commitment condition is true. This
case resembles the situation in a soccer game when the referee interrupts the
execution of a penalty kick.

Random arbitration. Similar to the finish plan arbitration the random arbi-
tration makes decisions that cannot be altered afterwards. However, it does
not organize its options in a priority list but assigns probabilities po > 0 to
them. Among all applicable options it selects one randomly. The arbitration
scheme can be expressed as follows while the invocation and commitment
conditions as well as the procedure to determine At do not differ from (3),
(5), and (6):

it ∈ At with











it = it−1 if commit it−1
(st)

it is chosen randomly with

probability proportional to pit otherwise

(8)

The random arbitration scheme allows to randomize the robot strategy which
is an important technique in multi agent domain to obtain an optimal strat-
egy [54]. Note that random selection only considers options with invocation
condition true so that the arbitration strategy can only guarantee that the
actual selection probabilities are proportional to the pre-defined probabilities
po.

28

Sequence arbitration. While the previously described arbitrators select one
among several possible reactions on a certain situation, the sequence arbi-
trator implements a sequential execution order of its options. It allows to
create moves built out of several stages of processing while every stage is
implemented as a behavior. As example, during a wing attack in soccer a
soccer player dribbles the ball (first stage), then turns towards the middle
of the field (second stage) and finally passes the ball to a teammate (third
stage). Implementing the three stages as individual behaviors we can use the
sequence arbitrator to generate a temporal sequence of them.

The sequence arbitrator operates as follows. It keeps its present intention
until its commitment condition becomes false. If the invocation condition of
the next option is true at the same time it becomes the new intention of the
arbitrator. Otherwise the sequence arbitrator stops executing the sequence
of options by altering its own commitment condition to false. The execution
of the sequence always starts with the first option. If we denote with it the
present intention, with it + 1 the option subsequent to the present intention,
and with o1 the first option we can describe the arbitration scheme as:

it =

{

it−1 if commit it−1
(st)

it−1 + 1 otherwise
(9)

invoc(st) = invoco1
(st) (10)

commit(st) = commit it−1
(st) ∨ invocit−1+1(st) (11)

Selection rule (9) specifies that the point in time of switching from one
option to the next one is triggered by the commitment condition of the
present intention. It is motivated by the idea that a behavior should be able
to finish its task before the subsequent behavior becomes active. However, in
some cases it is more convenient to let the subsequent option determine the
change-over point, i.e. as soon as the invocation condition of the subsequent
option becomes true the execution of the previous option is interrupted and
the subsequent option becomes the new intention. To be able to combine both
methods in the same sequence we allow to specify for each option whether it
might be interrupted or not. Denoting with interruptible(o) whether option
o might be interrupted we can reformulate (9):

it =

{

it−1 if commit it−1
(st) ∧ ¬(interruptible(it−1) ∧ invocit−1+1(st))

it−1 + 1 otherwise

(12)

29

Another possibility to increase the power of the sequence arbitrator is
to allow individual options to be skipped if their invocation condition is
not true on time and the execution of the sequence would break, otherwise.
Although the semantics of skippable options is quite simple, the combination
of skippable and interruptable options might cause unexpected effects and is
hard to analyze. A formal description of the resulting selection scheme and
generic conditions is possible, however, it goes beyond the scope of this text.

5.1.5. Example

At this point let us illustrate the behavior framework with an example
from robot soccer. A simple soccer playing robot might be able to perform
three different moves:

• Patrol: go into your own half and wait

• ApproachBall: approach the ball provided that the position of the
ball is known

• WingAttack: dribble the ball along the touch line into the opponent
half, turn to the middle of the field and kick. This move can be executed
provided that the ego robot is in ball possession

We can implement each of these moves as individual behavior and use a
highest priority first arbitrator to build a soccer strategy out of these build-
ing blocks. While WingAttack is given the highest priority Patrol is
given the lowest priority. Hence, the priority arbitrator will always make
WingAttack its intention whenever the preconditions are fulfilled, e.g. the
ego robot is in ball possession. If the preconditions of WingAttack are not
fulfilled but the prerequisites of ApproachBall are met the arbitrator will
select ApproachBall while Patrol is executed when the preconditions of
the two options of higher priority are not met.

The wing attack move can be further decomposed into the three stages
DribbleAlongTouchLine, TurnToMiddle, and Kick which can be
implemented as individual behaviors. They can be composed to a sequence
using the sequence arbitrator. Figure 9 depicts the resulting behavior tree.
The invocation and commitment conditions of the three behaviors are chosen
appropriately to model the transitions between them. That means, the com-
mitment condition of DribbleAlongTouchLine remains true as long as

30

ApproachBall Patrol

TouchLine
DribbleAlong TurnToMiddle Kick

WingAttack

AttackerStrategy
(highest priority first arbitrator)

(sequence arbitrator)

Figure 9: Behavior tree of a simple attacker in robot soccer as described in the text.

the robot does not reach a certain point in the opponent’s half at which con-
tinuing to dribble is not promising. We declare the option DribbleAlong-

TouchLine of the sequence arbitrator to be non-interruptible to guarantee
that the dribbling is not interrupted until reaching this point. In contrast, we
declare the behavior TurnToMiddle to be interruptible which allows us
to trigger the transition from TurnToMiddle to Kick by the invocation
condition of the latter. This approach is convenient because only the kicking
behavior knows which preconditions must be fulfilled for a promising pass.
Figure 10 illustrates with an example the course of actions achieved with this
behavior tree.

Certainly, the strategy described in this example is quite incomplete but it
already shows how decomposition of complex strategies into simple building
blocks works using the behavior framework. The actual soccer strategy of the
team Brainstormers Tribots is built in the same way combining 81 behaviors
to a much more sophisticated policy. The fact that arbitration is controlled by
boolean invocation and commitment conditions creates a transparent decision
making process without the overhead of a fully deliberative approach and
with much larger flexibility than decision trees and finite state machines.

5.2. Multi-Agent Coordination

More than just acting as isolated agents the robots of a soccer robot team
must cooperate to be successful. They can use wireless communication to
exchange information among each other or with the coach computer. How-
ever, as described in section 3.2 the reliability of communication is low. That
means, it is impossible to use a master-slave architecture in which the scene
interpretation and the decisions about the robot and team behavior are made
by the coach computer and just executed by the robots. In contrast, a dis-

31

(a) (b) (c) (d) (e)

Kick

ApproachBallWingAttack Patrol

AttackerStrategy

TouchLine
DribbleAlong TurnToMiddle Kick

WingAttack

AttackerStrategy

TouchLine
DribbleAlong TurnToMiddle

PatrolApproachBall

Kick

WingAttack

AttackerStrategy

TurnToMiddle

PatrolApproachBall

DribbleAlong
TouchLine

Kick

WingAttack

AttackerStrategy

PatrolApproachBall

TurnToMiddleDribbleAlong
TouchLine

AttackerStrategy

PatrolApproachBall

DribbleAlong
TouchLine

TurnToMiddle

WingAttack

Kick

Figure 10: A sequence of situations which illustrates the method of operation of the be-
havior framework assuming the simple attacker strategy shown in figure 9. The above
row shows a sequence of situations on the soccer field while the row below shows which
options have become intentions (light green) and which ones lost the status of being the
present intention (dark red). Uninvolved behaviors are shown in white. In situation (a)
the robot followed the Patrol-Behavior until it perceived the ball so that the invocation
condition of the ApproachBall-Behavior became true. Hence, the priority arbitrator
switches its intention since ApproachBall has higher priority than Patrol. (b) As
soon as the robot reaches the ball the invocation condition of WingAttack becomes true
and the priority arbitrator switches its intention again. Since WingAttack is a sequence
arbitrator it starts with its first option DribbleAlongTouchLine which becomes its
intention. (c) After reaching a certain point in the opponent half the commitment con-
dition of DribbleAlongTouchLine becomes false and WingAttack makes the next
option TurnToMiddle its present intention. (d) As soon as the robot is in a good pass-
ing position the invocation condition of the behavior Kick becomes true. Assuming that
the previous behavior TurnToMiddle has been declared interruptible the sequence ar-
bitrator in WingAttack switches its intention to Kick. (e) Finally, after having kicked
the commitment condition of the kick-behavior becomes false and thereby the commit-
ment condition of WingAttack becomes false. Now, the highest priority first arbitrator
AttackerStrategy selects among its options the one with highest priority and true
invocation condition. Here, this might be the Patrol-Behavior again.

32

tributed decision making framework is needed which can deal with temporal
delays in communication. Even if the wireless communication breaks down
for some seconds the team of robots must go on working properly.

The requirements of robustness with respect to communication delays,
breakdowns, a varying number of active robots, and the limited transmis-
sion bandwidth fostered the development of a cooperative structure that is
characterized by the following properties:

• every robot makes its own decisions and is able to play soccer, even if
the communication breaks down. In such a case, the team performance
might be worse but at least a reasonable behavior is exhibited by the
robots.

• every robot is assigned with a role that specifies its behavior. Roles
are, e.g., goal keeper, attacker, left defender, right defender, etc. The
assignment of roles is done by the coach computer which analysis the
present situation and the number of active robots and might change
the roles of the robots dynamically. As well, the coach computer might
change some parameters of the team strategy like the readiness to play
passes or the aggressiveness of the team.

• a robot that is in ball possession becomes captain of the team and
might send orders and messages to its teammates, like stay away from

the ball or be prepared for receiving a pass. Loosing the ball the robot
also looses its captain position.

The communication structure defines two featured agents among all robots:
the robot that is in ball possession and the coach computer. The coach com-
puter works like a coach in soccer, it defines the team formation, assigns roles
to the robots and defines the overall team strategy. It obtains state informa-
tion from the robots to be able to make its decisions. However, the decisions
of the coach only affect the behavior of the robots in the long run. They are
not adequate for short-term team coordination, e.g. for coordinating pass
playing.

In contrast, the robot that is in ball possession might affect the behavior of
its teammates immediately. As a kind of team captain it controls which move
is executed during the next seconds based on its individual perception of the
environment. By communicating its decision, it might therefore influence the
behavior of its teammates, if appropriate. For instance, in case of playing

33

a pass the captain is sending a message to its teammates to announce its
intention so that its teammates can already go to an appropriate position.

This way of communication does not use negotiation between the robots.
Due to the delays in communication, negotiation would need too much time
so that successful moves could be interrupted easily by the opponent team.
However, since only at most one player is in possession of the ball, we obtain
a well-defined process of team coordination even without negotiation.

5.3. Interactions between Behavior and Perception

The design of our software is guided by the idea that the behavior gener-
ating software components can rely on accurate information provided by the
perception and sensor fusion process and that the perception process is inde-
pendent of the action that is executed by the robot. This idea is supported
by the catadioptric camera sensor that provides a 360◦ field of view inde-
pendent of the robot orientation. However, a complete decoupling between
behavior generation and perception is not possible due to some limitations
of the camera system, i.e.

• the mirror mounting of the omnidirectional camera system generates
dead angles in which relevant objects might be hidden.

• the perspective camera of the goalie has a limited aperture angle of
80◦. Hence, 3D reconstruction is only possible for objects in front of
the robot. The outfield players are not equipped with stereo sensors.

• the catadioptric camera has a very limited field of view. Objects of the
size of a ball can be recognized only up to a distance of 5 meters.

• teammates and opponents might occlude relevant objects like the ball.

As consequence of these limitations the robot behavior had to be adapted to
avoid undesirable side-effekts for perception. Examples are, among others:

• to benefit from the mixed stereo camera system the goalie always turns
towards the ball so that it can see the ball in both cameras.

• when the goalie does not see the ball it slightly turns left and right to
avoid that the ball is hidden in dead angles.

34

• when the ball position is unknown the outfield players spread out over
the entire field to guarantee that all areas of the field are observed by
at least one robot.

• in case of an opponent set-play the ball is often occluded by opponent
robots. Therefore, one of our robots takes a position at which it can see
the ball and notify its teammates when the set-play has been executed.

• pass playing requires precise tracking of the ball movement. Since the
outfield players are not capable to determine the ball position when
the ball leaves the ground we had to modify the kicking devices of the
robots to be able to execute flat kicks for passing.

As can be seen from these examples, the perception process has consequences
for the strategy of the robots. Not only is an accurate recognition of the
scene a prerequisite for sucessful soccer playing but also has the strategy
to take into account the consequences of an action for visual perception.
Although of general interest for cognitive systems, a systematic analysis of
this phenomenon in the context of soccer robots is lacking up to now.

6. Reinforcement Learning

6.1. Background

Reinforcement learning (RL) [33] follows the idea that an autonomously
acting agent learns its behavior policy through repeated interaction with its
environment on a trial-and-error basis. In the following, we will delineate
how this learning methodology can be profitably employed in the context of
learning soccer robots.

Reinforcement learning problems are usually described as Markov Deci-
sion Processes (MDP) [57]. MDPs model a time-discrete, stochastic state-
transition system in which the RL agent can choose from a set of actions
to change the course of state transitions. Formally, an MDP is described
as a 4-tuple M = (S, A, p, c) where S denotes the set of states and A the
set of actions the agent can perform. Function c : S × A × S → R denotes
immediate costs c(s, a, s′) that arise when taking action a ∈ A in state s ∈ S

and transitioning to s′ ∈ S. The probability pss′(a) = p(s, a, s′) of ending up
in state s′ when performing action a in state s is specified by the conditional
probability distribution p : S×A×S → [0, 1]. Furthermore, we assume that

35

the transition probabilities are independent of the past, i.e. the system is
Markovian.

The RL agent interacts with the MDP and observes the present state
and the cost arising from a transition but it does not know the transition
probabilities nor the cost function. The agent’s goal is to minimize the long-
term, expected costs. To do so, it learns a decision policy that is used to
determine the best action for a given state. Such a policy is a function
π : S → A that maps the current state onto an action from a set of viable
actions. It has been shown [58] that for every MDP there is an optimal
policy π⋆ which yields the lowest expected long-term costs among all possible
policies.

A number of algorithms has been developed to find an optimal policy
that minimizes the long-term expected costs, including policy iteration [59],
value iteration [60], and Q-learning [61]. While policy iteration and value
iteration require an explicit knowledge of the transition probabilities and the
cost function, Q-learning can be applied without this prior knowledge and
allows to learn from interactions with the system.

6.2. Q Learning

The basic idea of Q-learning is to learn the so-called Q-function first and
to derive the optimal policy by evaluating the Q-function afterwards. The
Q-function Qπ related to a policy π describes for every pair of state and
action (s, a) the expected long-term costs of applying action a in state s and
following policy π afterwards. It can be found that the Q-function Q∗ of an
optimal policy meets the Bellman-equation:

Q∗(s, a) =
∑

s′∈S

pss′(a)(c(s, a, s′) + min
a′∈A

Q∗(s′, a′)) (13)

Q-learning is derived from (13) observing that the optimal Q-function can
be estimated using Robbins-Monroe approximation. Thereto, the algorithm
starts with an arbitrary Q-function. By interacting with the MDP the RL
agent observes state transitions. Once a transition from a state st to st+1 with
cost ct applying action at is observed, the algorithm updates the Q-function
for the pair (st, at) in the following way while keeping the Q-function for all
other states and actions:

Q(s, a)← (1− α)Q(s, a) + α(c(s, a, s′) + min
a′∈A

Q(s′, a′)) (14)

36

α > 0 denotes a learning rate that decreases over time. For the case of finite
state and action spaces there are stochastic convergence guarantees. For the
details we refer to [33].

After the optimal Q-function Q∗ has been learned an optimal policy π∗

can be derived by greedy evaluation:

π∗(s)← arg min
a∈A

Q∗(s, a) (15)

6.3. Batch-Mode Reinforcement Learning

For reasonably small state spaces, Q-learning can be implemented using
a lookup-table based representation of the Q-function. However, interesting
RL problems usually have large and often continuous state spaces, where
table-based methods are not applicable any more. One way to deal with that
problem is to use function approximation to represent the value function.

Multilayer perceptrons (MLPs) [62] are known to be a very useful and
robust regression method to approximate Q-functions in a broad range of
different applications [63] [64]. However, some peculiarities have to be con-
sidered in order to make them work properly in practical applications. One
important property results from the fact that they approximate the func-
tion in a global way, which means that – in contrast to local approximation
schemes, e.g. lookup tables, radial-basis-function networks or nearest neigh-
bor approaches – changing the value at one point might well have impacts on
the outcome of arbitrary other points far away in the input space. Therefore,
we consider it as a crucial point for the successful application of multilayer
perceptrons for RL, that they are used in a batch-mode type of method,
where always a whole set of points is updated simultaneously.

Figure 11 shows a general framework for doing batch RL. It consists of
three main steps, namely sampling experience, generating a training pattern
set using dynamic programming methods, and finally doing batch supervised
learning to approximate the function represented by the training patterns.

During the sampling step new observations of state-transitions are cre-
ated interacting with the MDP. To efficiently sample from the MDP the
Q-function that has been learned so far is exploited to determine the most
promising action. The observed state-transitions are stored in a data base
together with the associated action and immediate cost.

In the second step, training patterns are built from the observed tran-
sitions imitating the Q-learning update rule (14). For an observed state-
transition from state s to s′ applying action a and creating costs c a training

37

Figure 11: A graphical sketch of the batch RL framework. It consists of three modules
(sample experience, generate pattern set, apply batch-mode supervised learning) that are
called sequentially in repeated loops.

pattern is created in the following way:

(s, a) 7→ c + min
a′∈A

Q̃(s′, a′) (16)

where (s, a) is the input pattern and the RHS the target pattern. Q̃ de-
notes the present approximation of the Q-function. For every state transition
stored in the data base one training pattern is generated.

In the third step the Q-function is retrained using batch-mode train-
ing algorithms for the function approximator. To speed-up convergence of
batch-mode reinforcement learning the second and third step can be repeated
several times before new samples are generated in the first step.

The convergence of batch-mode reinforcement learning can be guaranteed
for the case of linear function approximators [65]. The case of batch-mode
reinforcement learning with multilayer perceptrons is known as Neural Fitted

Q-Iteration (NFQ) [66]. Although for the latter variant no convergence proof
is known it has been shown to be very successful in practice.

6.4. Learning to Dribble

While the previous section described the ingredients of a successful rein-
forcement learning algorithm we want to exemplify its use with two appli-
cations from our soccer playing robots starting with the task to dribble a
ball. Dribbling in the context of this application means keeping the ball in
front of the robot, while driving to a given target position. Since the rules
of the middle-size-league do not allow to clamp the ball or to enclose it by

38

mechanical parts, the only way to dribble the ball is to develop a specialized
controller that is able to move the robot in the right way without losing
contact to the ball.

From experiments with a manually tuned dribbling approach we found
that the most difficult problem in dribbling is to make the robot turn into
the target direction without losing the ball. Once the robot has turned it
just needs to push the ball towards the target position which can be imple-
mented easily. Therefore, we focussed on the turning problem in our learning
approach.

Within the RL framework, we model the dribbling problem as a terminal
state problem with both a terminal goal state and terminal failure states, e.g.
once the robot reaches the goal state the trial is finished with zero immediate
cost while reaching the failure state finishes the trial with immediate costs of
c = 1. Intermediate steps are punished by small, constant costs of c = 0.01.

The state space consists of a six-dimensional vector with real valued en-
tries for (a) the speed of the robot in relative x and y direction, (b) the yaw
rate, (c) the x and y ball position relative to the robot, and (d) the heading
direction relative to the given target direction. A failure state is encountered
if the ball has left a certain area in front of the robot. A goal state is reached
whenever the absolute difference between the heading angle and the target
angle is less than 5 degrees.

We provided the robot with five possible actions which are characterized
as a combination of linear velocities and yaw rates described in table 1. The
target velocities specified by the actions are realized exploiting the kinematic
model of the holonomic drive and using a PID controller on the level of motor
voltages.

Interpreting the sign of the yaw rate situation-dependent we could exploit
the symmetry of the problem, i.e. a positive yaw rate turns the robot in such
a way that the angle between the robot orientation and the direction of
the target position becomes smaller while negative yaw rates increase the
angle. Analogously, the sign of the lateral velocity is interpreted situation
dependent.

Learning Procedure. For learning, we use the NFQ framework described in
section 6.3. The Q-function is represented by a multilayer perceptron with
9 input units (6 state variables and 3 action variables), 2 hidden layers of
20 neurons each and 1 output neuron. After each batch of 12 trials, we
did 10 NFQ iterations. Learning the target values was done in 300 epochs

39

Table 1: Action set used for dribbling

a1 a2 a3 a4 a5

velocity ahead 2m
s

2.5m
s

2.5m
s

3m
s

3m
s

lateral velocity 0m
s

0m
s

1.5m
s

1m
s

−1m
s

yaw rate 2 rad

s
1.5 rad

s
1.5 rad

s
1 rad

s
1 rad

s

of supervised batch learning, using the Rprop learning method [67]. After
learning was finished, the new controller was used to control the robot during
the next data collection phase. After 11 batches (= 132 trials), a very good
controller was learned. The complete learning procedure took about one
and a half hour, including the time used for offline updating of the neural
Q function. The actual interaction time with the real robot was about 30
minutes, including preparation phases.

The batch trials were performed as follows. At the beginning of each
trial, the robot waits until the ball is put onto the middle of the field, before
moving to a starting position 2m away from the ball. Next, it drives towards
the ball and as soon as it gets there, the dribbling trial is started. In every
trial, a different target direction is given. Here, we collected batches of 12
trials each without retraining the neural controller within a batch. After
each batch, the sampled transitions are added to the data set, and learning
is started. If the set of target values used for the 12 trials are the same
for each batch, then in parallel to data sampling, the performance of the
controllers can be evaluated and compared.

Performance. The neural dribbling controller is implemented as an autonomous
behavior within the behavior framework described in section 5. The behavior
is initialized with a certain target direction and the current state information.
It returns a three-dimensional driving command consisting of the desired for-
ward speed vx, lateral speed vy, and yaw rate vθ. It was the first behavior in
our robots that was completely learned on the real robot. without the help
of a simulation environment.

The neural dribbling behavior performed significantly better than the
previously used, hand-coded and hand-tuned dribbling approach, especially
in terms of space and time needed to turn to the desired target direction.
Figure 12 shows a trial run. It has been used successfully in our competition
team since 2007. With its help, we won the world championship 2007 in

40

���� � ��� ���� ���� ����

����

�

���

����

����

����

Figure 12: Comparison of hand-coded (dark red) and neural dribbling behavior (light
green) when requested to make a U-turn. The data was collected on our real robot. When
the robot gets the ball, it typically has an initial speed of about 1.5 to 2 m/s in forward
direction. The positions of the robot are displayed every 120 ms. The U-turn of the neural
dribbling controller is much sharper and faster.

Atlanta and became third at the world championship in 2008 in Suzhou,
China.

6.5. Learning Motor Speed Control

Fast, accurate and reliable motor speed control is a central requirement in
many real world applications, especially for mobile, wheel-based robots like
soccer robots. This low level motor control behavior is a crucial prerequisite
for higher level tasks to be efficient and successful. Especially changing load
situations depending on the overall system behavior are challenging and often
require immense effort to design an appropriate control law. Thus, being able
to learn such control laws automatically would be a great step forward.

On the omnidirectional robot, we have three DC motors in a specific con-
figuration, each driving a mecanum wheel. The motion and dynamics of the
robot depend directly on the speeds of the three motors. This gives the robot
a high mobility and avoids non holonomic constraints in motion planning.
However, the interaction of the three motors causes highly changing load
situations. Our goal is to learn a fast, accurate and reliable controller for
regulating the speed of each DC motor of the omnidirectional mobile robot,
solely by interaction with the robot.

41

Instead of learning a specialized controller for each motor, we show a
setup where we learn a single controller that operates independently on each
of the three motors. From the point of view of the controller, it gets the
state information and set point of a single motor and answers with an action
that will regulate this motor from its current state to the desired speed. In
other words, there is only one single DC motor in the view of the controller
that has to be controlled in a broad range of dynamical load situations. This
procedure is legitimate, since the three motors and wheels are of the same
type of construction. In the following, we will describe the learning system
setup in more detail. For doing so, we take the viewpoint of the controller,
so the task is DC motor speed regulation, based on the state information of
a single motor, to arbitrary set points under a broad range of load situations.

The control problem considered can be described as a Markov decision
process. The state of a general DC motor can be described sufficiently by
two variables, the present motor speed ω̇ and the armature current I. Since
our final controller has to deal with arbitrary target speeds, the information
about the desired speed must also be incorporated into the input. Here we are
using the error between the actual speed and the target speed, E := ω̇d − ω̇.

We are facing a set point regulation task, since no terminal states ex-
ist, but instead regulation is an ongoing, active control task. The control
objective is to first bring the motor speed close to the target value as fast
as possible and then to actively keep it at the desired level which can be
described by the following choice of the immediate costs c:

c(s, a, s′) = c(s) =

{

0 if |ω̇d − ω̇| < δ

0.01 otherwise
(17)

The first line denotes the desire to keep the motor velocity ω̇ close to its
target value ω̇d, where the allowed tolerance is denoted by δ > 0. Otherwise
(second line) the controller is punished.

The accurate regulation of the motor speed at arbitrary target values
would, in principle, require the output of voltages from a continuous inter-
val by the controller while reinforcement learning is limited to finite, usually
small action sets. To overcome this problem, we use an integrating output
approach [68]. The idea is that the controller does not return the desired volt-
age, but just the decrease or increase of the voltage by a certain amount △U .
By applying this trick, a wide range of resulting voltages can be produced,
whereas the set of actions available to the RL controller remains relatively

42

small. The final action set of the controller is

∆U ∈ {−0.3,−0.1,−0.01, 0.0, 0.01, 0.1, 0.3}

As a consequence, we have to extend the state of the MDP by the present
motor voltage U so that the controller is able to distinguish whether the
voltage is already high or low.

Learning Procedure. To train the controller, we use NFQ, described in section
6.3, with a multilayer perceptron whose topology consists of 5 neurons in the
input layer (4 for state description, one for the action), 2 hidden layers with
10 neurons each, and a single output denoting the Q-value of the respective
state-action pair.

To collect training data with typical load situations for the controller in
its final working range, we had to collect them directly in interaction with
the real robot. This was done by putting the robot on the ground and driving
it around by applying the controller for each of the three motors. Following
this approach, we can collect three different transition samples in different
load conditions in each time step. In contrast to the transition sampling
procedure that interleaves learning phases and data collection, we decided to
pursue a random strategy here, i.e. random control signals were emitted to
each of the three motors on trajectories of an episode length of 150 time steps
(5 seconds). A new set point was randomly selected for each motor after each
data collection episode in order to collect a broad range of set points. After
all data-collecting episodes are finished, the controller is trained by NFQ in
a purely off-line mannor.

We ran 50 data collection episodes which gave an overall of 50·150 = 7500
transition samples collected for each motor. Since the data was collected
simultaneously for all three motors, this resulted in an overall of 22500 tran-
sition samples that could be used for training the controller within the NFQ
framework. The whole process of data collection on the real robot needed
only 250s. After only 30 iterations through the NFQ loop, a highly effective
controller was learned.

Performance. In Figure 13, the learned controller is shown running on the
real robot. The global driving commands used as a demonstration here are
‘drive forward with 0.5m

s
’ and then ‘rotate by 2 rad

s
’. The inverse kinematics

are used to deliver the respective target speeds for each motor. The task of

43

Figure 13: The learned controller tested on a follow-up control on the real robot. The robot
was driven forward with 0.5m

s
changing to a rotational velocity of 2 rad

s
. The controller

is able to achieve the velocities for all three motors under the presence of noise generated
from the wheels.

44

’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08

simulation league

hard & precise kicking • • • • • • • • •

intercepting the ball • • • • ◦ ◦

going to position • • • • •

1-vs-1 aggressive defense • •

7-vs-8 attack ◦ • • • • • • •

penalty kick • • • • • •

middle-size-league

motor speed control ◦ ◦

going to position ◦ ◦ ◦

intercepting the ball • • •

dribbling • •

Table 2: Overview of a selection of behaviors that were learned by neural reinforcement
learning methods for the Brainstormers simulation league and middle-size-league teams
over the years from 2000 to 2008. Filled dots denote the application in the competition
team, empty dots denote that the skill was successfully learned, but finally did not make
it into the competition team. Many of the skills have been improved from year to year.

the learned controller is then to regulate each motor to the desired motor
speed.

As shown in Figure 13, the neural controller has learned to control the
motors very quickly and reliably to their desired target speeds. A highly
satisfying fact is that the learned speed controller works reliably under the
wide range of actual loads that occur within the real robot movement. It has
even learned to deal with the considerable noise that occurs in the measured
data due to the shape of the wheels. The whole approach is described in
more details in [64].

6.6. Extensions to the Strategy Level

The case studies described in the previous sections show how reinforce-
ment learning techniques can be used to derive elaborated control policies for
autonomous robots only from interactions with the environment. No physi-
cal model of the environment must be available nor do we need to do system
identification. This concept has been applied very successfully in our robot
soccer team. Beside the approaches to learn dribbling and motor control we
also made the robots learn to intercept the ball [69] and to drive to a target
position in a time-optimal way.

Our work also shows that reinforcement learning can be applied on very
different levels of abstraction. First, we were able to learn a motor controller
on the lowest level of control. Secondly, we were able to learn individual

45

skills like dribbling and ball interception. What remains is the strategy level
and the team level. On these abstraction levels the immense effort to run
experimental trials requiring two full teams of soccer robots prevented the
use of reinforcement learning up to now.

However, a look to the RoboCup simulation league shows that also on
these levels of abstraction learning is possible. In our affiliated simulation
league team which participates in RoboCup since 1998 we started to apply
reinforcement learning techniques in 2000 with very big success. While in
the beginning we were learning individual skills like kicking, going to a target
position, and intercepting the ball we extended the learning approach to skills
interfering with opponents (e.g. an aggressive defense behavior [70]) and to
the team strategy level where we learned 2-versus-2 defense strategies and
7-versus-8 attack strategies [71].

In order to finally yield a competitive software agent, the individual skills
must also prove their superiority to alternative approaches. Therefore, all
the learned skills that made it inside the competition code have proven their
superiority compared to previous hand-coded versions. When all the learned
skills are activated in our simulation league agent, up to 80 percent of the
decisions in a game are triggered by neural networks5.

In most cases, we used neural networks for representing the value func-
tion, using the batch RL framework described in Section 6.3 as the general
learning framework. The state dimension typically ranged from 5 to 10 real
valued state variables, the number of discrete actions was typically in the
range of up to 10 for real robot learning and up to several hundreds of
actions for learning in the simulation league agent. An overview of reinforce-
ment learning approaches that we implemented in our simulation league and
middle-size-league team is given in table 2.

7. Discussion

This paper described how cognitive techniques of learning and behavior
generation can be used in a team of autonomous robots. Using as example
the soccer robot team Brainstormers Tribots we were able to demonstrate
how these techniques can be integrated into a complex robot system and

5e.g. when activating all neural skills in our 2005 agent, a neural network is involved
in decision-making on average in 56.8% (defender), 73.0% (sweeper), 84.4% (midfielder),
82.6% (attacker), of its total number of actions

46

how they can contribute to an elaborated performance of the overall system.
The successful participation of the team at RoboCup emphasizes the gain in
performance using cognitive techniques.

The main challenge in developing integrated, complex systems is to bring
together the scientific concepts and the demands of the application. One
important consideration is to find appropriate methods to perceive and rep-
resent the environment adequately so that the representation meets the re-
quirements of the approaches for behavior generation and learning. In our
case building a consistent geometric and dynamic model of the environment
enabled us to predict the state of the environment into short-term future
to overcome the problem of latencies in sensors and actuators. Hence, the
environment can be modeled as a Markov decision process which is the basis
for efficient learning.

Based on the accurate representation of the world we were able to make
the robot learn individual skills like intercepting the ball and dribbling the
ball only from success and failure using reinforcement learning. An impor-
tant breakthrough could be achieved making those approaches work even
on real robots using neural networks as function approximators to represent
the value function and reusing old experiences in a memory-based reinforce-
ment learning approach. By doing so we were able to efficiently represent
value functions of six dimensions or more and to reduce the training time
reasonably.

Individual robot skills like dribbling the ball could be learned within a
training time of three hours. The learned control policy performed better
than a hand-coded dribbling approach. We could treat the robot as a black-
box system and did not need to develop a precise physical model nor perform
system identification. We could use the robot as best model of itself and
generate emergent behavior by learning on the robot.

To integrate various techniques of behavior generation into a complex
strategy a transparent software concept is essential. We developed a behavior-
based framework in this paper which combines ideas from various existing
behavior architectures into a common framework and which establishes a
software design pattern for behavior creation.

Its main idea is to encapsulate in a single software structure the execu-
tion of a behavior and the preconditions under which the behavior can be
applied, and to combine many behaviors using generic arbitrators which se-
lect an appropriate behavior on the basis of the invocation and commitment
conditions of all options. Hence, the annoying and error-prone process of

47

developing situation-dependent arbitration mechanisms can be encapsulated
in a small set of generic, general-purpose arbitrators. Furthermore, since the
arbitrators are equipped with generic preconditions they can be interpreted
as behaviors on a higher level of abstraction and can contribute themselves to
other arbitrators. Thus, it is possible to build behavior hierarchies of variable
depth and branching factor in an iterated software development process.

What is common to all techniques developed for robot soccer is that
they realize a balance between the ideas of cognitive modeling and goal-
oriented software engineering for a dynamic real-time application. They must
contribute to an integrated system including a team of embodied agents. This
means, instead of just optimizing a single, isolated technique it is essential
to optimize an integrated system and to reveal the conceptual relationships
between different areas like perception and behavior generation or hardware
design and cognitive abilities.

Beyond the cognitive techniques discussed in this paper there is ongoing
research to make soccer robots smarter. These ideas include reinforcement
learning on the level of cooperative behavior, an intelligent coach that ana-
lyzes the games automatically, and methods of self-monitoring and self-repair.
First approaches for all areas exist, however, up to now they are very specific
and do not allow generalization to other domains.

We believe that the techniques introduced in this paper – especially sensor
fusion on a geometric and dynamic level, a modular behavior framework, and
reinforcement learning as technique for behavior creation – are important
building blocks for cognitive architectures and can contribute to autonomous
systems in a wide variety of applications.

References

[1] R. Pfeifer, J. Bongard, How the Body Shapes the Way we Think: a New
View of Intelligence, MIT Press, 2007.

[2] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, H. Matsubara,
RoboCup: A challenge problem for AI, AI Magazine 18 (1) (1997) 73–85.

[3] H.-D. Burkhard, D. Duhaut, M. Fujita, P. Lima, R. Murphy, R. Rojas,
The road to RoboCup 2050, IEEE Robotics & Automation Magazine
9 (2) (2002) 31–38.

[4] P. Lima (Ed.), Robotic Soccer, I-Tech Education and Publishing, 2007.

48

[5] A. A. F. Nassiraei, Y. Takemura, A. Sanada, Y. Kitazumi, Y. Ogawa,
I. Godler, K. Ishii, H. Miyamoto, A. Ghaderi, Concept of mechatronics
modular design for an autonomous mobile soccer robot, in: Proceedings
7th IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 2007, pp. 178–183.

[6] A. Ghaderi, A. Sanada, A. A. Nassiraei, K. Ishii, I. Godler, Power and
propulsion systems design for an autonomous omni-directional mobile
robot, in: Proceedings 23rd Annual IEEE Applied Power Electronics
Conference and Exposition, 2008, pp. 267–272.

[7] M. Riedmiller, R. Hafner, S. Lange, M. Lauer, Learning to dribble on
a real robot by success and failure, in: Proceedings IEEE International
Conference on Robotics and Automation, 2008, pp. 2207–2208.

[8] P. Heinemann, H. Becker, A. Zell, Improved path planning in highly
dynamic environments based on time variant potential fields, in: Pro-
ceedings 37th International Symposium on Robotics, 2006, pp. 177–178.

[9] D. Bruijnen, J. van Helvoort, R. van de Molengraft, Realtime motion
path generation using subtargets in a rapidly changing environment,
Robotics and Autonomous Systems 55 (6) (2007) 470–479.

[10] A. Ferrein, C. Fritz, G. Lakemeyer, Using golog for deliberation and
team coordination in robotic soccer, KI Künstliche Intelligenz 19 (1)
(2005) 24–43.

[11] H. Fujii, M. Kato, K. Yoshida, Cooperative action control based on
evaluating objective achievements, in: RoboCup 2005: Robot Soccer
World Cup IX, 2006, pp. 208–218.

[12] O. Zweigle, U.-P. Käppeler, R. Lafrenz, H. Rajaie, F. Schreiber, P. Levi,
Situation recognition for reactive agent behavior, in: Artificial Intelli-
gence and Soft Computing, 2006, pp. 92–97.

[13] V. A. Ziparo, L. Iocchi, D. Nardi, P. F. Palamara, H. Costelha, Petri
net plans: a formal model for representation and execution of multi-
robot plans, in: Proceedings 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 2008, pp. 79–86.

49

[14] N. Lau, L. S. Lopes, G. Corrente, N. Filipe, Multi-robot team coordi-
nation through roles, positioning and coordinated procedures, in: Pro-
ceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009.

[15] F. Pin, S. Killough, A new family of omnidirectional and holonomic
wheeled platforms for mobile robots, IEEE Transactions on Robotics
and Automation 10 (4) (1994) 480–489.

[16] S. Baker, S. K. Nayar, A theory of catadioptric image formation, in:
Procedings 6th International Conference on Computer Vision, 1998, pp.
35–42.

[17] G. Mayer, H. Utz, G. Kraetzschmar, Towards autonomous vision self-
calibration for soccer robots, in: Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002, pp. 214– 219.

[18] P. Heinemann, F. Sehnke, F. Streichert, A. Zell, An automatic ap-
proach to online color training in robocup environments, in: Proceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006, pp. 4880–4885.

[19] A. Treptow, A. Masselli, A. Zell, Real-time object tracking for soccer-
robots without color information, in: Proceedings European Conference
on Mobile Robotics, 2003, pp. 33–38.

[20] D. A. Martins, A. J. R. Neves, A. J. Pinho, Real-time generic ball detec-
tion in robocup domain, in: IBERAMIA’08 - Ibero-American Confer-
ence on Artificial Intelligence: IROBOT’08 - 3rd International Workshop
on Intelligent Robotics, 2008, pp. 37–48.

[21] D. Bruijnen, W. Aangenent, J. van Helvoort, R. van de Molengraft,
From vision to realtime motion control for the robocup domain, in:
Proceedings IEEE International Conference on Control Applications,
2007, pp. 545–550.

[22] J. Silva, N. Lau, J. Rodrigues, J. L. Azevedo, A. J. R. Neves, Sensor
and information fusion applied to a robotic soccer team, in: RoboCup
2009: Robot Soccer World Cup XIII, 2010.

50

[23] M. Lauer, Ego-motion estimation and collision detection for omnidirec-
tional robots, in: RoboCup 2006: Robot Soccer World Cup X, 2006, pp.
466–473.

[24] P. Heinemann, J. Haase, A. Zell, A combined monte-carlo localization
and tracking algorithm for RoboCup, in: Proceedings IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2006, pp.
1535–1540.

[25] D. Stronger, P. Stone, A comparison of two approaches for vision and
self-localization on a mobile robot, in: Proceedings IEEE International
Conference on Robotics and Automation, 2007, p. 3915–3920.

[26] A. Ferrein, L. Hermanns, G. Lakemeyer, Comparing sensor fusion tech-
niques for ball position estimation, in: RoboCup 2005: Robot Soccer
World Cup IX, 2005, pp. 154–165.

[27] M. Lauer, S. Lange, M. Riedmiller, Motion estimation of moving objects
for autonomous mobile robots, Künstliche Intelligenz 20 (1) (2006) 11–
17.

[28] M. Taiana, J. A. Gaspar, J. C. Nascimento, A. Bernardino, P. U. Lima,
3D tracking by catadioptric vision based on particle filters, in: RoboCup
2007: Robot Soccer World Cup XI, 2008, pp. 77–88.

[29] A. Strack, A. Ferrein, G. Lakemeyer, Laser-based localization with
sparse landmarks, in: RoboCup 2005: Robot Soccer World Cup IX,
2005, pp. 569–576.

[30] A. Bonarini, M. Matteucci, M. Restelli, Automatic error detection and
reduction for an odometric sensor based on two optical mice, in: Pro-
ceedings IEEE International Conference on Robotics and Automation,
2005, pp. 1675–1680.

[31] J. de Best, R. van de Molengraft, An active ball handling mechanism
for robocup, in: Proceedings 10th International Conference on Control,
Automation, Robotics and Vision, 2008, pp. 2060–2065.

[32] M. Lauer, M. Riedmiller, Participating in autonomous robot competi-
tions: Experiences from a robot soccer team, Proceedings Workshop on

51

Competitions in Artificial Intelligence and Robotics at the International
Joint Conference on Artificial Intelligence (2009).

[33] R. Sutton, A. Barto, Reinforcement Learning. An Introduction, MIT
Press, Cambridge, USA, 1998.

[34] B. Meyer, Applying “design by contract”, IEEE Computer 25 (10)
(1992) 40–51.

[35] M. Goebl, G. Färber, A real-time-capable hard- and software architec-
ture for joint image and knowledge processing in cognitive automobiles,
in: Proceedings IEEE Intelligent Vehicles Symposium, 2007, pp. 734–
740.

[36] T. Kawanishi, K. Yamazawa, H. Iwasa, H. Takemura, N. Yokoya, Gen-
eration of high-resolution panoramic images by omnidirectional imaging
sensor using hexagonal pyramidal mirrors, in: Proceedings 14th Inter-
national Conference on Pattern Recognition, 1998, pp. 485–489.

[37] J. Gluckman, S. K. Nayar, K. J. Thoresz, Real-time omnidirectional
and panoramic stereo, in: Proceedings DARPA Image Understanding
Workshop, 1998, pp. 299–303.

[38] L. Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe, Stereo panoramic vision
for monitoring vehicle blind-spots, in: Proceedings IEEE Intelligent Ve-
hicle Symposium, 2004, pp. 31–36.

[39] A. Voigtländer, S. Lange, M. Lauer, M. Riedmiller, Real-time 3D ball
recognition using perspective and catadioptric cameras, in: Proceedings
3rd European Conference on Mobile Robots, 2007.

[40] P. J. Huber, Robust statistics, Wiley, 1981.

[41] A. Gelb, Applied Optimal Estimation, MIT Press, 1974.

[42] M. Lauer, S. Lange, M. Riedmiller, Calculating the perfect match: an
efficient and accurate approach for robot self-localization, in: Robocup
2005: Robot Soccer World Cup IX, 2005, pp. 142–153.

[43] S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust monte carlo local-
ization for mobile robots, Artificial Intelligence 128 (1-2) (2001) 99–141.

52

[44] A. Merke, S. Welker, M. Riedmiller, Line base robot localisation under
natural light conditions, in: Proceedigs ECAI Workshop on Agents in
Dynamic and Real-Time Environments, 2004.

[45] A. E. Hoerl, R. W. Kennard, Ridge regression: Biased estimation for
nonorthogonal problems, Technometrics (1970) 55–67.

[46] X.-L. Meng, D. B. Rubin, Maximum likelihood estimation via the ECM
algorithm: A general framework, Biometrika 80 (2) (1993) 267–278.

[47] S. Behnke, A. Egorova, A. Gloye, R. Rojas, M. Simon, Predicting away
robot control latency., in: RoboCup 2003: Robot Soccer World Cup
VII, 2003, pp. 712–719.

[48] M. Wooldridge, Reasoning about Rational Agents, MIT Press, 2000.

[49] D. Klahr, P. Langley, R. Neches (Eds.), Production system models of
learning and development, MIT Press, 1987.

[50] R. A. Brooks, Intelligence without representation, Artificial Intelligence
47 (1991) 139–159.

[51] R. C. Arkin, T. R. Balch, AuRA: principles and practice in review,
Journal of Experimental and Theoretical Artificial Intelligence 9 (2-3)
(1997) 175–189.

[52] D. Harel, Statecharts: A visual formalism for complex systems, Science
of Computer Programming 8 (3) (1987) 231–274.

[53] R. C. Arkin, Behavior-based robotics, MIT Press, 2000.

[54] M. L. Littman, Markov games as a framework for multi-agent reinforce-
ment learning, in: Proceedings International Conference on Machine
Learning, 1994, pp. 157–163.

[55] M. Georgeff, A. Rao, Rational software agents: From theory to prac-
tice, in: N. R. Jennings, M. J. Wooldridge (Eds.), Agent Technology:
Foundations, Applications, and Markets, Springer, 1998.

[56] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,
Addison-Wesley, 2004.

53

[57] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiley-Interscience, USA, 2005.

[58] D. Bertsekas, J. Tsitsiklis, Neuro Dynamic Programming, Athena Sci-
entific, Belmont, USA, 1996.

[59] R. A. Howard, Dynamic Programming and Markov Processes, The
M.I.T. Press, 1960.

[60] R. Bellman, Dynamic Programming, Princeton University Press, Prince-
ton, USA, 1957.

[61] C. Watkins, P. Dayan, Q-Learning, Machine Learning 8 (1992) 279–292.

[62] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice
Hall, 1998.

[63] M. Riedmiller, M. Montemerlo, H. Dahlkamp, Learning to Drive in 20
Minutes, in: Proceedings of the FBIT 2007 Conference, Springer, Jeju,
Korea, 2007.

[64] R. Hafner, M. Riedmiller, Neural Reinforcement Learning Controllers
for a Real Robot Application, in: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 07), IEEE Press, Rome,
Italy, 2007.

[65] D. Ernst, P. Geurts, L. Wehenkel, Tree-Based Batch Mode Reinforce-
ment Learning, Journal of Machine Learning Research 6 (1) (2006) 503–
556.

[66] M. Riedmiller, Neural Fitted Q Iteration – First Experiences with a Data
Efficient Neural Reinforcement Learning Method, in: Machine Learning:
ECML 2005, 16th European Conference on Machine Learning, Springer,
Porto, Portugal, 2005.

[67] M. Riedmiller, H. Braun, A Direct Adaptive Method for Faster Back-
propagation Learning: The RPROP Algorithm, in: H. Ruspini (Ed.),
Proceedings of the IEEE International Conference on Neural Networks
(ICNN), San Francisco, 1993, pp. 586–591.

54

[68] M. Riedmiller, Generating Continuous Control Signals for Reinforce-
ment Controllers Using Dynamic Output Elements, in: Proceedings of
the European Symposium on Artificial Neural Networks (ESANN 1997),
Bruges, Belgium, 1997.

[69] H. Müller, M. Lauer, R. Hafner, S. Lange, A. Merke, M. Riedmiller,
Making a robot learn to play soccer using reward and punishment, in:
KI 2007 Advances in Artificial Intelligence, 2007, pp. 220–234.

[70] T. Gabel, M. Riedmiller, F. Trost, A Case Study on Improving Defense
Behavior in Soccer Simulation 2D: The NeuroHassle Approach, in: L.
Iocchi, H. Matsubara, A. Weitzenfeld, C. Zhou, editors, RoboCup 2008:
Robot Soccer World Cup XII, LNCS, Suzhou, China, 2008, pp. 61–72.

[71] M. Riedmiller, A. Merke, Using Machine Learning Techniques in Com-
plex Multi-Agent Domains, in: I. Stamatescu, W. Menzel, M. Richter,
U. Ratsch (Eds.), Adaptivity and Learning, Springer, 2003.

55

