
Learn to Swing Up and Balance a Real Pole
Based on Raw Visual Input Data

Jan Mattner*, Sascha Lange, and Martin Riedmiller

Machine Learning Lab
Department of Computer Science

University of Freiburg
79110, Freiburg, Germany

{mattnerj,slange,riedmiller}@informatik.uni-freiburg.de

http://ml.informatik.uni-freiburg.de

Abstract. For the challenging pole balancing task we propose a system
which uses raw visual input data for reinforcement learning to evolve a
control strategy. Therefore we use a neural network – a deep autoencoder
– to encode the camera images and thus the system states in a low
dimensional feature space. The system is compared to controllers that
work directly on the motor sensor data. We show that the performances
of both systems are settled in the same order of magnitude.

Keywords: neural network, pole balancing, deep autoencoder, rein-
forcement learning, visual input

1 Introduction

One of the main applications of reinforcement learning (RL) is controlling a dy-
namic system. In the ideal case the RL controller adapts automatically to a new
system without the need to incorporate additional domain specific knowledge.
Thus part of the setup has to be learned as well as the controlling task itself. A
promising way is to use the raw and high dimensional image data of a camera,
which monitors all relevant parts of the dynamic system, in order to learn a
low dimensional feature space, that can be used for classical RL methods [1].
However when applying this to a real dynamic system, there appear three major
problems. Firstly we have a delay. The camera information is not instantaneously
available and the applied actions will not immediately have an effect. This re-
sults in observation and action delay, which cannot be handled by standard RL
methods. Secondly, an image is just a snapshot of the dynamic system, so we
have to add motion information of the moving parts of the system. Therefore
a correct velocity estimation is needed. Thirdly, by creating a low dimensional
map (feature space) of a manifold some information is always lost or obscured.
This noise in the feature space may disturb the actual control task.

We analyze these problems and apply the proposed solutions to the well-
known pole balancing task (see figure 1). Here the controller has to apply actions
via a motor to a pole with a weight at its end in order to swing up and balance



2 Learn to Balance a Real Pole Based on Raw Visual Input Data

Fig. 1. The pole mounted on a table. The controller has to learn to swing up and
balance the pole using only the downsampled visual data from a camera in front of the
pole.

the pole in an upright position. The actions are so weak such that from the
start position a constant action doesn’t bring the pole into the goal area. So the
controller has to learn to really swing the pole in both directions to increase it’s
momentum and beeing able to reach the top. For reducing the dimensionality
of the raw image data and creating the feature space a deep encoder neural
network is used. The actual controller for the pole balancing task uses a kernel
based approximate dynamic programming method [2].

2 Related Work

The pole balancing task and its dynamics are well known [3]. It is also known
as ’inverted pendulum’, ’rotary pendulum’ or ’cart-pole task’ with an additional
cart which has to be moved instead of direct motor interaction with the pole. It
exists as a simulation [4] or real task [5]. In early research [6] a neural network
was used to control the cart with small input images based on the simulation
data. Visual input was used for a fixed control strategy too [7, 8], however the
main issue was to explicitly extract and calculate the position of the cart and the
angle of the pole by handcrafted methods. We instead use deep neural networks
[9] to autonomously encode the system state and learn a control strategy by
RL methods. The deep networks were quite successful [10] and have proven to
be able to provide a useful feature space for RL methods [1]. In our work we
want to use this approach for the challenging pole balancing task and compare
its performance with strategies which are learned directly on motor sensor data
instead of the feature space.

3 The Feature Space

In order to apply RL methods to control the system we have to reduce the
dimensionality of the input image data. Instead of manually extracting features,
which describe the distinct system states, we are using here a deep autoencoder
[9]. This is a neural network that can be divided into two separate networks:



Learn to Balance a Real Pole Based on Raw Visual Input Data 3

Fig. 2. Overview of an autoencoder.

the encoder and decoder (see figure 2). The input layer neurons of the encoder
correspond to the pixel values of the camera images. After multiple hidden layers
the encoder reduces the information of the image to a small number of output
neurons, which build the encoding layer. The topology of the decoder is mirrored,
so these encoding neurons are the input layer of the decoder and its (overall)
output layer is again an image, ideally the same image that has been used as the
encoder’s input. Hence the autoencoder is actually trained to yield the identity
function of the camera images and therefore pushing all information through the
bottleneck of the encoding layer, which then contains all necessary features to
describe the visually perceptible system state. For a detailed description see [1].
The architecture of the used autoencoders is described in 5.1

This feature space has the property that visually close system states are
represented by points in the feature space which are close together as well. Thus
if there are only small changes, the evolution of the system states over time is
reflected as a line of sample points through the feature space. In the case of the
pole balancing task the pole can only turn around one axis. This circle topology
causes the feature points to form a closed strap (see figure 3). Due to the used
gradient descent update method the autoencoder may get stuck in a bad local
optimum. For a 2D feature space this could mean dense agglomerations and
many crossings of the strap. This can result in two completely distinct system
states that cannot be distinguished only by their feature points. This problem
is discussed in the next section.

4 Technical Details

In a real dynamic system there are always delays, be it due to sensor information
capturing, transport and processing or due to inertia of the physical objects
which move within the system. [11] introduces Deterministic Delayed Markov
Decision Processes (DDMDP). In the pole balancing task we have deterministic
observation and action delay. In [11] is also shown, that a DDMDP can be



4 Learn to Balance a Real Pole Based on Raw Visual Input Data

reduced to a simple MDP, which is needed for RL methods, by augmenting the
state space. Thus for observation delay o and action delay a the state vector has
to be augmented by the last o + a actions. So we just have to determine the
delays.

The observation delay is quite easy to measure. This is the time from the
moment when the camera acquires the image until the point right before the
application of the action, for which the image has been used for the first time
to choose an action. This of course heavily depends on the synchronisation of
sensor and motor.

Determining the action delay is more involved. This is the time from the
action application until the action can be uniquely distinguished in the obser-
vation data from all other actions. Therefore we design an experiment with two
action sequences, which are identical up to time step t, when one sequence ap-
plies a different action. Having the velocity data obtained by the motor sensor in
several sample runs, we can determine, e.g. with the Welch’s t-test (which suits
well, as we have continuous data with possibly different variances), for a certain
α-level at which time step the velocity sample values are drawn from different
distributions.

A correct velocity estimation is crucial for controlling a dynamic system. As
the feature space learned by the autoencoder is based on still camera images, we
have to manually add velocity information. Adding action history as described
above does not suffice unless all past actions are used, which is of course no
option since this would drastically increase the dimensionality. Instead we have
to estimate the velocity by adding either a past feature point (implicit) or the
difference of the current and a past feature point (explicit) to the augmented
state representation.

Estimating the velocity in such a way is of course problematic because the
distance between the feature points usually does not correspond to the actual
changes in the real world. But although the distance and direction in feature
space as velocity introduces a systematic error, it works fairly well in practice.
This is most likely because in general the velocities in the feature space are locally
similar, i.e. states with similar position and velocity in the real world fall into
the same area in the feature space and have similar predecessor feature points.
Thus the controller can implicitly learn these local similarities. This problem
does not inhibit the controller from learning a successful policy and therefore
can be neglected.

The automatic mapping of the high dimensional images to the feature space
does not work perfectly in all cases. One phenomenon is ambiguities of feature
points. Figure 3 shows a two dimensional feature space with a crossing of the
strap in horizontal and vertical direction. The reconstruction in (v2) of the ver-
tical point at the crossing is wrong. Apparantly the autoencoder preferred here
the horizontal hypothesis since the vertical reconstruction corresponds to the
horizontal one in (h2). Only knowing a feature point near the crossing, it is
impossible to decide if the pole is pointing up or down. This would be an am-
biguous state. A simple solution is to add the information of where the pole was



Learn to Balance a Real Pole Based on Raw Visual Input Data 5

Fig. 3. A feature space with a crossing and each 3 corresponding example images. The
example images consist of the original (left) and the reconstruction by the autoencoder
(right).

one step before. If we know the previous feature point we can clearly tell that
(v2) actually is on the vertical line. However this information is already given if
we have added a correct velocity estimation.

5 Results

5.1 Experiment Set-Up

The empirical evaluation was done for the pole balancing task (see figure 1) with
camera input (CAM) and direct motor sensor input (SEN). The controller has to
learn to swing up and keep the pole upright in the goal area, which is defined to
be at angle 0 with a buffer of 0.5 in both directions. The motor can apply actions
from −100% (counterclockwise) to +100% (clockwise). However the controller is
restricted to three actions: −40%, 0% (brake), +40%. This way it is not possible
to reach the goal area in one go from the start of an episode by just applying
constantly the same action. So the controller needs at least one swing to one
side and then move down away from the goal and swing up to the other side.
The goal is not terminal so it is a continuous time problem. The discounting
factor is set to 0.95. For each time step the controller gets a reward of 0 if the
pole is in the goal area and −1 for any other state. Each episode consists of 100
steps (or: cycles) but when the camera and motor run out of sync some of these
transitions have to be discarded for learning.

The camera runs at 60Hz, however camera and motor are synchronized such
that a full cycle with observation acquisition and action application lasts 100ms.
This comprises 6 images but only the first and fourth image are processed and



6 Learn to Balance a Real Pole Based on Raw Visual Input Data

encoded to 2-dimensional feature vectors f1 and f4. We use explicit velocity
estimation, so the state vector at time step t is st = (f1, f1 − f4). For a better
velocity estimation we use the latest available image instead of the last state. The
motor applies the action 83ms after the first image of a cycle is taken, which is
the observation delay. The Welch’s t-test of two action sequences with 30 sample
runs each and an α-level of 0.001 has revealed that there is no action delay. This
can be explained by the design of one motor cycle. Internally, the motor applies
an action at the beginning of its cycle and returns its sensor information at the
end of this cycle, after 33ms. Thus the true action delay is less or equal to 33ms,
however due to the cycle design the actions can be uniquely distinguished within
the same cycle of action application. All in all with the total delay of 83ms and
the overall cycle time of 100ms we have to augment the state space by 1 past
action. For explicit velocity estimation for the camera experiment the augmented
state vector at time t results in the 5-dimensional vector ht = (st, at−1) with
ai ∈ {−40, 0,+40}. The sensor experiment uses the same augmented state space,
but here the state consists of the two scalars ’pole angle’ and ’angular velocity’
which leads to a 3-dimensional augmented state vector.

For each camera based controller a separate autoencoder was trained offline
on 2000 independent training images of size 40x30, which took about 30min on
an 8-core CPU. The input layer therefore has 40x30 = 1200 neurons, followed by
2 convolutional hidden layers of size 40x30 and 20x15 with convolutional kernels
of size 5x5, which is important for tracking the 3x3 pixel large green marker at
the end of the pole. Then fully connected layers of size 150, 75, 37 and 18 up to
the encoding layer of 2 neurons complete the encoder. The decoder’s architecture
is exactly mirrored up to the output layer of size 40x30, which should reconstruct
the input image.

5.2 Empirical Evaluation

For the CAM and SEN experiments 5 independent controllers were each trained
for 35000 transitions. A test run tests a controller of a given number of tran-
sitions for 100 steps. Thus the mean reward per step (MRPS), which serves as
performance measurement, of a test run is in the range of the maximum (0) and
minimum reward (−1). Therefore an MRPS of e.g. −0.21 means that the pole
was in 21 steps not in the goal area. Since a random controller never reached
the goal area (MRPS: −1), the beginning of the learning phase was supported
by a fixed exploration policy until the controller collected one valid transition
into the goal area. Then an ε-greedy exploration strategy was applied.

Figure 4 shows the mean learning curves with standard deviation of the 5
independent CAM and SEN controllers with 5 test runs each. Although the
CAM controllers worked on higher dimensional input vectors and had to learn
the relations of the feature space, they only needed about 2 to 3 times more
transitions to come up with a competitive strategy.

The box plot with minimum and maximum in Figure 5 shows the final per-
formance of the best controllers for both experiments and for a CAM controller
with a hand-picked autoencoder (well unfolded strap, only one crossing). Each



Learn to Balance a Real Pole Based on Raw Visual Input Data 7

Fig. 4. Mean learning curves with standard deviation.

was tested 20 times. The best SEN controller learned a perfect strategy, so in
all tests the pole needed 15 steps into the goal area and stayed there. In 13
out of 20 tests the best CAM controller performs similarly well (−0.15,−0.16).
Although the CAM controllers are in general less stable, in practice this means
that the pole reaches the goal area just some steps later than in the mean case or
drops out of the goal area for one downswing and is then immediately balanced
again. The special controller with hand-picked autoencoder is almost as stable
as the best SEN controller, only in 1 out of 20 tests the pole drops out of the
goal area. Indeed the quality of the feature space is crucial for the performance.
Considering the 1200 dimensional input for the overall system, even the lower
stability at such a high performance level is a remarkable result. Another CAM
controller outside these experiments with a hand-picked autoencoder was able to
run in infinite loop for several minutes without any such dropout. An example
video is available online at http://youtu.be/E0wZcYcoh-g

6 Conclusions

We have seen that the automatic feature extraction by a deep autoencoder can
be successfully applied to the inherently instable pole balancing task. The control
strategies can be easily obtained by RL methods and can compete with strategies
trained on direct motor sensor data instead of the feature space. Both controller
types show performances which are settled in the same order of magnitude. A
shortcoming of the used autoencoder approach is that the moving parts have to
be clearly visible, which is why a big green marker had to be attached to the
pole. However the autoencoder turned out to be robust towards small lighting
changes, which resulted in a small shift in the feature space, though not to
position or background changes.



8 Learn to Balance a Real Pole Based on Raw Visual Input Data

Fig. 5. Best final controllers of the camera and sensor experiments and of a camera
controller with hand-picked autoencoder.

References

1. Riedmiller, M., Lange S., Voigtlaender, A.: Autonomous Reinforcement Learning
on Raw Visual Input Data in a Real World Application. In: International Joint
Conference on Neural Networks. (2012)

2. Ormoneit, D., Sen, Ś.: Kernel-Based Reinforcement Learning. Mach. Learn. 49, 161–
178 (2002)

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

4. Riedmiller, M.: Neural Fitted Q Iteration - First Experiences with a Data Efficient
Neural Reinforcement Learning Method. In: 16th ECML, pp. 317–328. Springer
(2005)

5. Riedmiller, M.: Neural Reinforcement Learning to Swing-Up and Balance a Real
Pole. In: IEEE International Conference on Systems, Man and Cybernetics, pp.
3191–3196. IEEE Press, New York (2005)

6. Tolat, V.V., Widrow, B.: An Adaptive ’Broom Balancer’ with Visual Inputs. In:
IEEE International Conference on Neural Networks, pp. 641–647. (1988)

7. Wenzel, L., Vazquez, N., Nair, D., Jamal, R.: Computer Vision Based Inverted
Pendulum. In: Proceedings of the 17th IEEE Instrumentation and Measurement
Technology Conference, pp. 1319–1323. (2000)

8. Wang, H., Chamroo, A., Vasseur, C., Koncar, V.: Hybrid Control for Vision Based
Cart-Inverted Pendulum System. In: American Control Conference, pp. 3845–3850.
(2008)

9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neu-
ral Networks. Science 313, 504–507 (2006)

10. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep Big Simple
Neural Nets Excel on Handwritten Digit Recognition. Neural Comput. 22, 3207–
3220 (2010)

11. Katsikopoulos, K.V., Engelbrecht, S.E.: Markov Decision Processes with Delays
and Asynchronous Cost Collection. IEEE Trans. Autom. Control 48, 568–574 (2003)


