
Taming the Reservoir: Feedforward Training for
Recurrent Neural Networks

Oliver Obst
Commonwealth Scientific and Industrial Research Organisation

ICT Centre, Adaptive Systems
Marsfield, NSW 2122, Sydney, Australia

Email: oliver.obst@csiro.au

Martin Riedmiller
University of Freiburg, Department of Computer Science

Machine Learning Lab
79110 Freiburg, Germany

Email: riedmiller@informatik.uni-freiburg.de

Abstract—Recurrent neural networks are successfully used
for tasks like time series processing and system identification.
Many of the approaches to train these networks, however, are
often regarded as too slow, too complicated, or both. Reservoir
computing methods like echo state networks or liquid state
machines are an alternative to the more traditional approaches.
Echo state networks have the appeal that they are simple to train,
and that they have shown to be able to produce excellent results
for a number of benchmarks and other tasks. One disadvantage
of echo state networks, however, is the high variability in their
performance due to a randomly connected hidden layer. Ideally,
an efficient and more deterministic way to create connections
in the hidden layer could be found, with a performance better
than randomly connected hidden layers but without excessively
iterating over the same training data many times. We present
an approach – tamed reservoirs – that makes use of efficient
feedforward training methods, and performs better than echo
state networks for some time series prediction tasks. Moreover,
our approach reduces some of the variability since all recurrent
connections in the network are trained.

I. INTRODUCTION

Recurrent neural networks (RNN) are successfully applied
to tasks like time series prediction, filtering and system identi-
fication. Methods that are used to train RNN, like Backpropa-
gation Through Time (BPTT) [1], involve many iterations over
the training data and possibly also larger amounts of memory.

Echo state networks (ESN) [2], on the other hand, are a type
of RNN that can be trained with relatively simple methods.
A key element of ESN is the randomly constructed, fixed
hidden layer, also called reservoir. In reservoir computing
approaches like ESN or liquid state machines [3] typically only
connections to output units are trained. Appeal and challenges
of ESN [4] are the simple one-shot training methods that can
be used, and their impressive performance for some tasks
(see, e.g., [2]) on the one hand, but significant variation in
performance [4]–[6] on the other.

To address this issue, self-organised approaches that help to
improve randomly constructed reservoirs have been used [7]–
[9]. These approaches are based on the idea to either maximise
available information at each internal unit, or to maximise
information transfer between units by changing the behaviour
of individual units. Another option to improve randomly
created reservoirs is to apply BBTT for one time step [6].

The approach presented here is different in the sense that it
does not try to improve a randomly connected hidden layer,
but instead in an intermediate step generates a feedforward
network that uses input provided through a tapped delay line
(also called a focussed time-delay neural network (FTDNN)).
In a second step, we sample and store activations of the
FTDNN hidden units. The third step uses these activations
to train a recurrent layer to approximate the dynamics of the
FTDNN. Even if the feedforward network is trained only for
a fixed number of steps, activations in the hidden layer should
be able to inform the design of reservoirs that perform better
than randomly created ones. The final step uses the “tamed
reservoir” obtained in that way to train the output layer similar
to regular ESN, for example by using the Moore-Penrose
pseudoinverse over the history of reservoir states multiplied
by the desired output of the network.

In the following section, we start with some preliminaries
and a high-level overview of our method. In Sect. III we
give details about every step in the proposed approach. To
demonstrate the performance of our method, we present results
for some benchmarks, and conclude with a discussion.

II. FEEDFORWARD TRAINING WITH A TAPPED DELAY LINE

In theory, feedforward neural networks can learn to model
relationships according to any mathematical function [10]. To
model time series or dynamical systems however, some form
of memory is needed. One way to provide this memory is
by using recurrent connections. A more explicit method for
providing memory to a feedforward network is to use a tapped
delay line for the input time series. Dependent on the task,
the delay line needs to be quite long in order to achieve
acceptable performance. With increasing number of input units
(i.e., longer delay lines), training times may grow thanks to
the larger amount of data required. It is also necessary to
explicitly choose the length of the delay line, in contrast
to RNNs where the memory is provided implicitly through
internal units. The idea behind our approach is that the internal
dynamics of a (possibly partially) trained feedforward network
with tapped delay line can be used to train the hidden layer
of a recurrent network that is treated as an ESN otherwise.
Before we give an high level overview of our approach, we



start with some preliminary notation and definitions in the
following subsection.

A. Preliminaries

Our RNN model consists of K input units, N units in the
hidden layer, and L output units. The respective activations at
time step n are:

u(n) = (u1(n), ..., uK

(n)),

x(n) = (x1(n), ..., xN

(n)),

y(n) = (y1(n), ..., yL(n)),

For the experiments in this paper, we used univariate input,
with an extra input unit used for a constant bias (i.e., K = 2),
however, multivariate input is also possible. It is also possible
to attach several output units, each for a different task, to the
network (in the same way this is possible for ESN), however,
we present our approach to train the hidden layer for a single
task.

Three connection matrices are used: Win is a N⇥K matrix
from input to hidden layer, W the recurrent N ⇥ N weight
matrix, and W

out the L ⇥ N output weight matrix (i.e., we
use no connections from input units to output, and no feedback
from the output back into the network).

The hidden layer is then updated according to

x(n+ 1) = tanh(Win
u(n+ 1) +Wx(n)). (1)

The output uses linear units and is computed as

y(n+ 1) = W

out
x(n+ 1). (2)

Assuming univariate input, the feedforward network for the
intermediate learning step consists of K̂ = 1 + ` input units,
where ` is the length of the tapped delay line. The extra input
unit is used for a bias, all other input units contain data from
the current and the past `� 1 steps. Activation of input units
at time step n are then

û(n) = (u(n� `+ 1), ..., u(n), 1). (3)

We use û

⇤(n) = (u(n� `+1), ..., u(n)) to denote the tapped
delay line activations without the extra bias.

With N the number of hidden units in the RNN to be
trained, and tapped delay line length `, we use N̂ = N � `

hidden units in the feedforward network. The number of output
units L in the feedforward is the same as in the RNN.

The input weight matrix Ŵ

in consists of N̂ ⇥ K̂ elements;
output weight matrix Ŵ

out has the size L ⇥ N̂ . The update
equations for the hidden layer are

x̂(n) = tanh(Ŵin
û(n)), (4)

and for the output

ŷ(n) = Ŵ

out
x̂(n), (5)

respectively.

B. Overview of our training method
The following is an overview of all steps in our approach.

Each step is then expanded in a subsection of the next section.
1) Training input u

train together with the desired output
d

train is used to train a FTDNN. In our approach we
stop the training after a fixed number of epochs, i.e.,
the feedforward network may not be fully trained after
this step.

2) The training input u

train is used to drive the trained
FTDNN for T steps. At each step, state information from
the N̂ units is collected in two (T �1)⇥ N̂ matrices S

x

and S

y

, with S

x

(n) the state of the units at step n before
passing it through the nonlinearity, and S

y

(n) after the
nonlinearity at the same step. As we will describe later,
it is beneficial to extend the training input data in this
step by a larger, randomly generated time series.

3) Together with the training input utrain, matrices S

x

and
S

y

are used to train W

in and W using linear regression.
4) Training input utrain, and desired output dtrain are used

to train the output weights W

out of the RNN with input
weights Win and recurrent weights W. At this point, the
RNN is treated as an ESN, so that Wout can be trained
using linear regression like any other ESN. Win and W

remain unchanged from the last step.
All training methods used in the steps above a either simple

regression or backpropagation as used in feedforward net-
works. The backpropagation is not necessarily fully completed
but only run for a few steps.

III. FROM TAPPED DELAY LINE TO RECURRENT
CONNECTIONS

In this section, we detail each of the four steps of our
method.

A. Step 1: Training the intermediate feedforward network
A first step of our approach consists of creating a feed-

forward neural network with a tapped delay line as an input.
Parameters to choose are the length of the tapped delay line
`, and the number of epochs for the training. The number
of hidden units is set to the number of hidden units of the
recurrent reservoir N . With an additional bias unit, the network
has ` + 1 input units, and the number of output units L is
determined by the training data (in our experiments, we used
one output unit). In the hidden layer, we did not use any bias
unit to match the structure of the feedforward network with the
recurrent network that we would like to create (Alternatively,
using a bias unit in the hidden layers of both the RNN as well
as in the FTDNN is also possible). The hidden layer units are
nonlinear (tanh) units, and for the output we are using linear
units.

Assuming we have univariate input data, one point at a
time is fed into the delay line. Multivariate input requires a
separate delay line for each dimension. The network is trained
using resilient backpropagation (RPROP) [11] in batch mode,
for a fixed number of epochs. RPROP is an improvement
to standard back propagation, and converges faster thanks to



adaptive update values. In RPROP, the sign of the derivative
is used to indicate the direction of the weight update with an
adaptive update value �(n)

ij

:

�w

(n)
ij

=

8
><

>:

��(n)
ij

, if �E

(n)

�wij
> 0

+�(n)
ij

, if �E

(n)

�wij
< 0

0 , else.

(6)

In batch mode, �E

(n)

�wij
denotes the summed gradient infor-

mation over all patterns of the training set. The update value
�(n)

ij

is then determined in a second step:

�(n)
ij

=

8
>><

>>:

⌘

+ ⇤�(n�1)
ij

, if �E

(n�1)

�wij
⇤ �E

(n)

�wij
> 0

⌘

� ⇤�(n�1)
ij

, if �E

(n�1)

�wij
⇤ �E

(n)

�wij
< 0

�(n�1)
ij

, else,

(7)

with 0 < ⌘

�
< 1 < ⌘

+. For further details, we refer to [11].
In our experiments, we used a fixed number of epochs to

train the feedforward network, i.e., the network is not neces-
sarily fully trained. Dependent on the problem, longer training
times may further increase performance of our approach.
The initial weights for the FTDNN were drawn uniformly
at random, ŵin

i,j

2 (�0.1, 0.1), and ŵ

out
i,j

2 (�0.2, 0.2). The
learned input weights are the essential output of this step, the
quality of the output weights is not important since they will
not be used in the subsequent steps.

B. Step 2: Collect state information from the feedforward
network

After stopping the training of the feedforward network, the
same training data utrain is used once again to drive the network
and to collect information on internal network states in (T �
1)⇥N̂ state collection matrices S

x

and S

y

. For each step n =
2, ..., T , the total input to each of the hidden units is collected
in S

x

, i.e., S
x

(n) = Ŵ

in
û(n). For each step n = 1, ..., T �1,

we collect the states after they passed through the nonlinearity
in S

y

, i.e., S
y

(n) = tanh(Ŵin
û(n)) from each step). We use

these matrices containing the collected states to train input and
recurrent weights in step 3.

If the time series available for training is short, random
data can be used in this step to obtain larger state collection
matrices. These random data may help to fully explore the
state space of the FTDNN, and also serve regularisation. In our
experiments, the use of additional random data helped to both
improve individual results, as well as to prevent unfavourably
large values in the computed recurrent weight matrices that
lead to unstable solutions.

C. Step 3: Train RNN input and recurrent weight matrices
In this step, S

x

and S

y

are used to train the input and
the recurrent connections of the new network. More con-
cretely, we use extended matrices Ŝ

y

and Ŝ

x

, with Ŝ

y

(n) =
(S

y

(n), û(n), u(n)) as input to a one step prediction of
the (known) successor state before the nonlinearity Ŝ

x

, with
Ŝ

x

(n) = (S
x

(n), û⇤(n)). Since the history of all states is
known, it can be used, together with input activations and bias,

to compute (estimate) the successor state of the network, i.e.,
the input to all hidden units at the next time step Ŝ

x

(n+ 1).
We can use the collected state information Ŝ

x

and Ŝ

y

over
a number of steps to compute a set of weights W

all that
approximate this update by regression, e.g., by using the
Moore-Penrose pseudoinverse:

W

all = (Ŝ�1
y

Ŝ

x

)t. (8)

From W

all, we can now extract the recurrent weights matrix
W, and the input weight matrix W

in for our RNN:

W =W

all
1..n,1..n (9)

W

in =W

all
1..n,(n+1)..(n+2) (10)

Extending the state matrices obtained from the FTDNN by
the states of the tapped delay line leads to an embedding of the
delay line in the hidden layer of the resulting tamed reservoir.
It is also possible to only use internal states of the FTDNN
and the current input into the network. In this case, the size
of the FTDNN hidden layer needs to match the desired size
of the hidden layer in the tamed reservoir, and the extended
state matrices Ŝ

y

and Ŝ

x

are Ŝ

y

(n) = (S
y

(n), 1, u(n)) and
Ŝ

x

(n) = S

x

(n), respectively. In this case, we aim to predict
the next network state before the nonlinearity S

x

(n+1), using
the previous network state after the nonlinearity, the bias unit,
and the current input value u(n) (but not the delay line û).

Different methods for regression and regularisation may
also be used to enforce particular constraints on the resulting
weight matrices.

D. Step 4: Train RNN output weight matrix
In the final step of our approach, we now use the training

data u, and the weight matrices W and W

in to collect state
information from the pre-trained reservoir. For T training
steps, we obtain a T⇥N state matrix M (commonly, a number
of initial states are discarded to wash out initial transients).
Like in the previous step to compute the recurrent weights,
we can use the pseudoinverse method to compute our output
weight matrix:

W

out = M

�1
d. (11)

With this step, all weight matrices of the RNN have been
computed, and the network is fully trained.

IV. EXPERIMENTAL RESULTS

To evaluate our approach, we have conducted two different
kinds of experiments:

1) With three different time series, we perform a one-step-
ahead prediction with both tamed reservoirs and ESN.
Three data sets have been used for each task: a training
set, a validation set to adjust hyper-parameters as well
as to select the best performing network from a set, and
finally a test set for the actual evaluation of such selected
networks.

2) Our second experiment is a comparison of both ap-
proaches using data from arbitrary feedforward networks
with a delay line.



Even though the number of units used varies between the
tasks, ESN and tamed reservoirs always use the same number
of units when directly compared against each other. For the
intermediate FTDNN, the number of units in the hidden layer
is reduced by the number of units in the tapped delay line. For
all tasks, we measure the performance using the normalised
root mean squared error

NRMSE =

p
h(ỹ(n)� y(n))2i

n

h(y(n)� hy(n)i
n

)2i
n

, (12)

where ỹ(n) is the sampled output and y(n) is the desired
output.

A. Selection of hyper-parameters

A number of hyper-parameters have to be selected specific
to each of the task in the following subsection. Our first step
consists in a search for the ESN reservoir size N , and for the
spectral radius of the connectivity matrix ⇢(W) for which,
on average, 10 randomly generated ESN perform best on a
validation set. This search is performed over the following
configuration space:

• hidden layer size N 2 [40..130] in steps of 10,
• spectral radius ⇢(W) 2 [0.1, 1.0], in steps of 0.1.

ESN input weights are fully connected to the reservoir and
randomly initialised, w

in
i,j

2 (�1, 1). All weights are drawn
from a uniform random distribution, and the reservoirs are
densely connected.

In a second step, the remaining hyper-parameters for the
tamed reservoir have to be selected. The number of units
available is already determined by the ESN reservoir size;
hyper-parameters left to choose are the length of the delay line
for the intermediate FTDNN, as well as the RPROP parameters
⌘

+ and ⌘

�. We use random search (see also [12]) over the
following configuration space:

• delay line length ` 2 [1..30],
• ⌘

� 2 (0, 1), and ⌘

+ 2 (1, 2).
In our search we evaluate 500 randomly generated configura-
tions. Initial weights for the FTDNN are drawn from a uniform
random distribution (ŵin

i,j

2 (�0.1, 0.1), ŵout
i,j

2 (�0.2, 0.2))
— a source of variation in performance. For each configu-
ration, we create 10 networks, use them for training with
RPROP, and select the configuration that performs best on
average on our validation set.

A hyper-parameter that we did not explore in our search is
the amount of additional random data to drive the FTDNN in
step 2 of our approach. In addition to the respective training
set, we use time series with 100000 values drawn at random
from a normal distribution N (0, 2) in all experiments on the
one-step-ahead prediction tasks.

B. One-step-ahead prediction

For each of the one-step-ahead prediction tasks, we train
10 newly created tamed reservoirs as well as 10 newly
created ESN, using the hyper-parameters as determined in the
previous step. The tamed reservoir and the ESN that perform

TABLE I
TIME SERIES PREDICTION RESULTS

NRMSE (�) Electrical Laser AR(3)
Average best
- Tamed RNN 0.3573 (0.0068) 0.0623 (0.0019) 0.1716 (0.0006)
- ESN 0.4261 (0.0108) 0.1470 (0.0025) 0.1724 (0.0006)
- FTDNN 0.8283 (0.0982) 0.5548 (0.0208) 0.2138 (0.0212)
Absolute best
- Tamed RNN 0.3479 0.0591 0.1706
- ESN 0.4120 0.1426 0.1705
- FTDNN 0.7211 0.5310 0.1815

best on our validation set are selected for comparison against
each other, using the test set. This test is repeated 10 times,
with results for each task reported in Table I.

a) Task 1: Electrical load prediction

The data used for this task represent the daily electrical
consumption in Poland [13]. We use 700 values of the series
for testing (see also Fig. 1), and two series of 350 values each
as a validation and test set, respectively. The hyper-parameters
found to work best for ESN are a reservoir size of 90 units,
and a spectral radius of 1.0. Parameters found for the FTDNN
are a tapped delay line length of 23 units, resulting in 67
remaining hidden units, and RPROP parameters ⌘+ = 1.0083,
and ⌘

� = 0.3428.
For one trial, we train 10 tamed reservoirs as well as 10

ESN, and select the ones that perform best on our validation
set. We record results of the best performing networks from
10 different trials. This results in an average best NRMSE
for tamed reservoirs of 0.3573, with a standard deviation
� = 0.0068. The absolute best NRMSE is 0.3479. The
average best NRMSE for ESN is 0.4261, with � = 0.0108.
Absolute best NRMSE of the tested ESN is 0.4120. The
difference in performance is statistically highly significant
(p ⇡ 3 · 10�11). The performance of the intermediate average
best FTDNN on the test set is considerably worse than both
recurrent networks, with an NRMSE of 0.8283 (� = 0.0982).

b) Task 2: Santa Fe Laser Data

From the Santa Fe Laser Data set (set A.cont), we create a
training test series (4500 values), and validation and test series
of 2250 values each (see Fig. 2 for a sample interval of the
data, along with a small interval of predictions from both a
tamed reservoir, and an ESN). Based on our hyper-parameter
search, we use 130 reservoir units and a spectral radius of 0.4
for the ESN.

For our tamed reservoirs, we train FTDNN with a delay line
of length 10, with 120 hidden units, and RPROP parameters
⌘

+ = 1.0937, and ⌘

� = 0.5859, respectively.
From 10 trained tamed reservoirs, we select the best per-

forming on the validation set. Using the test series, we measure
performance of the network and repeat this procedure 10 times.
The average best performing tamed reservoir has a test error
of 0.0623, with standard deviation � = 0.0019. The NRMSE



0 100 200 300 400 500 600 700

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time step

Fig. 1. Training interval of the electrical load prediction data. 700 values
of the data set have been used for training, 350 for validation, and 350 for
testing.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

130 140 150 160 170
0

0.2

0.4

0.6

0.8

1

 

 

 Target
 Tamed Reservoir
 ESN

Fig. 2. Sample interval of the Santa Fe laser data. 4500 values from the data
set have been used for training, and 2250 for testing. Inset: a small interval
of the target, with approximations from both a tamed reservoir and an ESN.

of the absolute best performing tamed reservoir is 0.0591.
The same procedure for ESN yields an NRMSE of 0.1470,

with � = 0.0025 for the average best ESN, for the absolute
best ESN the NRMSE is 0.1426. The difference between these
two results is statistically highly significant (p ⇡ 3 · 10�23).

For comparison, the test NRMSE of the average best
feedforward network used in the intermediate step was
0.5548, � ⇡ 0.02 after 50 epochs of RPROP.

c) Task 3: Autoregressive Model ar(3)

Prediction of a time-series created using the following
autoregressive model of order 3 is a simple task:

y(n) = a1 y(n� 1) + a2 y(n� 2) + a3 y(n� 3) + ✏, (13)

0 200 400 600 800 1000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time step

Fig. 3. The AR(3) training data used for task 3.

with a1 = 0.8, a2 = 0.6, a3 = �0.41, and ✏ ⇠ N (0, 0.01).
It is nevertheless interesting to use this series, because for a
comparison the optimal prediction can be computed using (13)
without the noise term. We create a training set, a validation
set, and a test set with 1000 values each (see Fig. 3 for a
sample interval of the data). The error of the optimal prediction
on our test set computes to 0.1688. Hyper-parameters as a
result of our search are: reservoir size of 40 units, a spectral
radius for the ESN of 0.3, RPROP parameters ⌘

+ = 1.3456,
and ⌘

� = 0.1347, respectively, as well as FTDNN with 37
hidden units and, perhaps unsurprisingly, 3 units for the tapped
delay line.

The average best results for both tamed reservoirs and
ESN are close to the optimal prediction. With NRMSE of
0.1716 and 0.1724, respectively, and � = 6 · 10�4 for both,
the difference between the two approaches is statistically
significant (p < 0.01), but practically hardly relevant. NRMSE
of the absolute best performing networks are 0.1706 for tamed
reservoirs, 0.1715 for ESN, and 0.1815 for the intermediate
FTDNN.

C. Comparison for various random time series

To compare the approach independently of the specific
feedforward training, we use randomly created feedforward
networks with tapped delay lines, and random input to create
training data for our method. The task for the recurrent
networks is then to approximate the output of the feedforward
network as closely as possible. The test procedure is as
follows:

1) Choose a tapped delay line of length `.
2) Choose a number of internal units N .
3) Create a randomly connected feedforward neural net-

work with ` input units, N internal units, and 1 output
unit.



Delay line length

H
id

d
e
n
 la

ye
r 

si
ze

 

 

5 10 15 20 25 30

40

50

60

70

80

90

100

110

120

130

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 4. Comparison of tamed reservoirs against ESN. The task was to approximate the output of a FTDNN with a tapped delay line of lengths 1...30 (delay
line length on the x-axis). The number of hidden units in the reservoirs was chosen between 31 and 130 (on the y-axis). Colours in the plot represent the
difference in performance (NRMSE). Negative values indicate an advantage for ESN. For this comparison, all NRMSE above 0.5 have been considered to be
equal. For each comparison, 10 ESN have been created from which the best one was used for evaluation.

4) Create a random “training” sequence u

train, and a ran-
dom test sequence u

test, uniformly from the interval 0..1.
5) Drive the network using u

train to obtain d

train, and using
u

test to obtain d

test.
6) Use the set u

train and d

train for training of a RNN
with our approach, as well as for training of 10 ESN
for comparison. For the tamed reservoir training, no
additional random data is used in sampling FTDNN
states. The ESN are initialised with random spectral radii
2 (0, 1).

7) The tamed reservoirs as well as the ESN are then evalu-
ated using the test set. We compare the tamed reservoir
against the best NRMSE out of the 10 generated ESN.

Figure 4 shows an overview of the error differences between
tamed reservoirs and ESN. From this graph, it can be seen that
for a large majority of the trials the trained RNN performs
better than ESN. In total, we performed 3000 comparisons
(with 10 ESN trained for each), in which our approach
performs better in 2430 of them (approx. 81%). One may also
argue that for cases where NRMSE are larger than 0.5 for both
approaches, neither of them manages to approximate the data
well enough to be considered. In 155 cases, the NRMSE was
equal to or larger than 0.5 for both approaches. The tamed
reservoirs performed better than the best of 10 ESN in 2336
out of the remaining 2845 cases (⇡ 82%). Independently of
the reservoir size, ESN perform better when we used short
delay lines to generate the training data.

In Fig. 5, we plot the NRMSE of the tamed reservoir for
each of the trials (capped to 0.5, i.e., all NRMSE greater than
0.5 were considered equally unsuccessful).

V. CONCLUSION

We presented tamed reservoirs, a novel approach for training
the internal layer of a recurrent neural network. Our training
procedure makes use of efficient feedforward training meth-
ods, and uses simple regression for training of all recurrent
weights. For all presented example time series, our approach
significantly improved results over the best performing ESN.
In the same way the RNN training is also an improvement over
the FTDNN networks, with only a few extra steps from where
the feedforward training stopped. Moreover, since all weights
in the recurrent network are trained, our approach removes also
some of the randomness that comes with reservoir computing
approaches, shown by the slightly smaller variance of tamed
reservoirs compared to ESN. However, with the random initial-
isation of the intermediate feedforward network used during
training, and possible local minima found during its training,
a certain amount of non-determinism remains.

Our results seem surprising from several point of views: for
the first two tasks of the one-step-ahead prediction experiment,
performance of the intermediate FTDNN is not even close to
performance of the ESN, but nevertheless approximating the
dynamics of their hidden layer in our tamed reservoirs helps
to substantially improve performance over ESN. One point to
note is that the performance of the FTDNN is not necessarily



Delay line length

H
id

d
e
n
 la

ye
r 

si
ze

 

 

5 10 15 20 25 30

40

50

60

70

80

90

100

110

120

130

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 5. NRMSE of tamed reservoirs over synthetical data generated from a
FTDNN with tapped delay lines of varying lengths (NRMSE capped to 0.5).
Darker colours represent better performance.

correlated with performance of the derived tamed reservoirs:
we do not make any use of the feedforward output weights in
our training, but these weights would have substantial impact
on the FTDNN results. It may also surprise that a finite, fixed-
size history of the inputs improves the prediction performance.
The partial training of the feedforward input weights may
direct the dynamics (and the resulting tamed reservoir) into
the “right” direction, so that it becomes easier to learn output
weights, i.e., the use of the FTDNN helps to learn features of
the recent past. The subsequent steps in training can then make
use of these features. It remains to be tested if this technique
also helps for longer term predictions, or completely different
tasks. For one-step-ahead predictions, the infinite, decaying
memory provided by recurrence appears to contribute to a
lesser extent to the prediction.

It should also be noted that some applications require larger
hidden layers than the 40 – 130 unit reservoirs that we tested.
Figure 5 seems to suggest that performance of the tamed
reservoirs is particularly good for smaller reservoirs when the
task requires long short-term memory. On the other hand, from
Fig. 4 we can see that tamed reservoirs also perform well
compared to ESN towards the larger reservoir sizes, when the
task requires a short-term memory of more than 10 units.

These considerations suggest an investigation of different
time series, and along with that also effects of varying delay
line lengths and reservoir sizes. Dependent on the time series,
different types of delay lines may turn out to be more useful,
for example, the gamma model of de Vries and Principe [14].

Another possibly useful extension of the approach may be
to pre-train only a part of the recurrent weights, and have a
number of weights randomly connected. In particular for very
small reservoirs, or for shorter delay lines used during training,
forcing all weights so that all units approximate specific time
series becomes very difficult if the constraints are too rigid.

Some extra units that do not have to be trained may help
in removing some of the rigidity (but also re-introduce more
variance).

ACKNOWLEDGMENT

The authors would like to thank the High
Performance Computing and Communications Centre
(http://www.hpccc.gov.au/) for the use of their super-
computer cluster in performing some of the experiments for
this paper. MR gratefully acknowledges a grant from the
CSIRO OCE Distinguished Visiting Scientist Scheme.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal
representations by error propagation. Cambridge, MA, USA: MIT
Press, 1986, pp. 318–362.

[2] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication,”
Science, vol. 304, no. 5667, pp. 78–80, 2004. [Online]. Available:
http://www.sciencemag.org/cgi/content/abstract/304/5667/78

[3] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[4] D. Prokhorov, “Echo state networks: appeal and challenges,” in IEEE
International Joint Conference on Neural Networks (IJCNN ’05), vol. 3,
2005, pp. 1463–1466.

[5] J. Boedecker, O. Obst, N. M. Mayer, and M. Asada, “Initialization and
self-organized optimization of recurrent neural network connectivity,”
HFSP Journal, vol. 3, no. 5, pp. 340–349, Oct. 2009. [Online].
Available: http://dx.doi.org/10.2976/1.3240502

[6] M. Hermans and B. Schrauwen, “One step backpropagation through time
for learning input mapping in reservoir computing applied to speech
recognition,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems (ISCAS), Jun. 2010, pp. 521–524.

[7] J. Triesch, “A gradient rule for the plasticity of a neuron’s intrinsic
excitability,” in Proceedings of the International Conference on Artifi-
cial Neural Networks (ICANN 2005), ser. Lecture Notes in Computer
Science, W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, Eds. Springer,
2005, pp. 65–70.

[8] J. J. Steil, “Online reservoir adaptation by intrinsic plasticity for
backpropagation-decorrelation and echo state learning,” Neural Net-
works, vol. 20, no. 3, pp. 353–364, Apr. 2007.

[9] O. Obst, J. Boedecker, and M. Asada, “Improving recurrent neural
network performance using transfer entropy,” in Neural Information
Processing. Models and Applications, ser. Lecture Notes in Computer
Science, K. W. Wong, B. S. U. Mendis, and A. Bouzerdoum, Eds.
Springer, 2010, vol. 6444, pp. 193–200.

[10] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organisation in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, 1958.

[11] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” in IEEE International
Conference on Neural Networks, vol. 1, 1993, pp. 586–591.

[12] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, pp. 281–305,
2012.

[13] M. Cottrell, B. Girard, and P. Rousset, “Forecasting of curves using
a kohonen classification,” Journal of Forecasting, vol. 17, no. 5-6, pp.
429–439, 1998.

[14] B. de Vries and J. C. Principe, “The gamma model – a new neural model
for temporal processing,” Neural Networks, vol. 5, no. 4, pp. 565–576,
1992.


