
On Experiences in a Complex and

Competitive Gaming Domain:

Reinforcement Learning Meets RoboCup

Martin Riedmiller and Thomas Gabel
Neuroinformatics Group

Department of Mathematics and Computer Science
Institute of Cognitive Science

University of Osnabrück
49069 Osnabrück, Germany

Email: martin.riedmiller@uos.de, thomas.gabel@uos.de

Abstract— RoboCup soccer simulation features the challenges
of a fully distributed multi-agent domain with continuous state
and action spaces, partial observability, as well as noisy per-
ception and action execution. While the application of machine
learning techniques in this domain represents a promising idea
in itself, the competitive character of RoboCup also evokes the
desire to head for the development of learning algorithms that
are more than just a proof of concept. In this paper, we report
on our experiences and achievements in applying Reinforcement
Learning (RL) methods in the scope of our Brainstormers
competition team within the Simulation League of RoboCup
during the past years.

Keywords— reinforcement learning, neural networks, robotic
soccer simulation, RoboCup, single- and multi-agent learning

I. INTRODUCTION

The RoboCup robotic soccer initiative was founded to
establish a fair and competitive testbed for the development of
intelligent and autonomous agent designs [1]. The simulation
league in particular aims at the development of intelligent
control architectures that are able to tackle questions of both
agent individual skills and team cooperation behavior.

From its very first beginnings in 1998, the aim of the
Brainstormers project was to develop machine learning tech-
niques for a competitive soccer playing robot. In particu-
lar, Reinforcement Learning methods [2], that are able to
autonomously learn from the only information of success
or failure, are in the center of our interest. However, the
challenges of such a complex domain as robotic soccer are
far beyond the problems typically tackled by Reinforcement
Learning methods: continuous states, large amount of actions,
considerably delayed rewards, and the requirement of a highly
competitive solution.

Of course, solving such a complex problem needs some
external structure. In our case, we distinguish between in-
dividual skills (like intercepting a ball, going to a certain
position, or kicking) and team behavior skills (like for example
playing a coordinated attack). Starting with the application of
neural Reinforcement Learning methods to individual skills,
we meanwhile developed a wide range of learned behaviors
that have been or still are actively used within our competition

agent. Of course, being actually competitive requires much
more than a simple ‘proof of concept’: learned behaviors must
be continuously evaluated against alternative solutions. This
leads to an overall architecture, where hand-coded and learned
modules work together side by side and, moreover, have to be
integrated into a harmonized overall concept.

Our effort has been accompanied by repeated placings
among the top-three teams, including the World Champion
title at RoboCup 2005 in Osaka. The paper at hand gives an
overview over approaches and experiences with Reinforcement
Learning methods applied in our Brainstormers competition
team within the Simulation League of RoboCup during the
years 2000 to 2006. RoboCup is an extremely competitive
domain where rapid progress is sometimes achieved within
very little time. Accordingly, for a solution based on arti-
ficial/computational intelligence to prevail in such an envi-
ronment, continuous further-developments and performance
monitoring are required. Thus, as far as game competitions
are considered, a CI-based approach leading to a drop-out in a
preliminary round may be interesting from a scientific point of
view, but not likely to reside further in a competition team. So,
our depictions in the following also point into that direction.

The investigation of machine learning, and Reinforcement
Learning methods in the context of robotic soccer depicts an
active research area. For example, in the simulation league
Stone & Veloso [3] proposed a hierarchical learning paradigm,
layered learning. More recently, keepaway soccer, as a special
task within soccer simulation, has been established as a
benchmark for machine learning [4]. Focusing on agent role
assignments, Kok et al. [5] investigate context-specific decom-
positions of certain learning tasks into smaller sub-problems
using coordination graphs that enable an agent to predict the
actions of other agents. Also in other RoboCup leagues, such
as the MidSize league, the usefulness of Reinforcement Learn-
ing methods for acquiring competitive behavior is explored
(see, for example [6] and [7]).

17

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

II. REINFORCEMENT LEARNING IN SIMULATED SOCCER

Soccer simulation [8] represents the league of the RoboCup
robotic soccer initiative where the investigation and application
of computational intelligence approaches is most prevalent.
The robotic Soccer Simulation (2D) environment of RoboCup
features the challenges of a fully distributed multi-agent do-
main and includes partial observability as well as noisy percep-
tion and action execution: Here, the Soccer Server [9], a real-
time soccer simulation system, allows autonomous software
agents written in an arbitrary programming language to play
soccer in a client/server-based style: The server simulates
the playing field, communication, the environment and its
dynamics, while the clients – eleven agents per team – are
permitted to send their intended actions (e.g. a parameterized
kick or dash command) once per simulation cycle to the
server via UDP. Then, the server takes all agents’ actions into
account, computes the subsequent world state and provides all
agents with (partial) information about their environment via
appropriate messages over UDP. The course of action during
a match can be visualized using an additional program, the
Soccer Monitor (Figure 1).

Fig. 1. Screenshot of a match in RoboCup’s Soccer Simulation 2D, visualized
by the Soccer Monitor. The partial view of player 6 is highlighted.

With our team, Brainstormers, we have been participating
in the annual RoboCup tournaments since 1999, focusing
our main research effort on realizing a substantial part of
the soccer-playing agents’ capabilities by applying machine
learning and Reinforcement Learning methods. A thorough
description of our agents’ architecture is beyond the scope
of this paper and can be found elsewhere [10]. We note,
however, that it is inspired by behavior-based robot archi-
tectures: Behaviors of low abstraction level are responsible
for basic player capabilities (also termed skills) like kicking
or ball interception, whereas high-level behaviors are relevant
for team-play and strategic decision making. We succeeded
in successfully applying Reinforcement Learning approaches
to the less as well as to the more abstract behaviors. By also
deploying the results of learning during competitions we could
prove the case for the scalability of Reinforcement Learning

toward RoboCup soccer competitions.
As follows, we exemplarily consider two representatives of

learned player behaviors: First, we focus on the difficulties
when using Reinforcement Learning to learn the soccer skills
(ball interception and ball kicking), second, we examine the
use of Reinforcement Learning for team cooperation. Further
details on the learning techniques we pursued can be found in
related papers describing our team, e.g. [11], [12], [10].

A. Neural Individual Soccer Skills

The Brainstormers’ approach to skill learning—no matter
if learning to go to a specified position, to kick the ball, to
intercept a ball, to do dribble, or another skill—is to model
the environment as a Markov decision process (MDP, [13]).
An MDP is a 4-tuple M = [S,A, r, p] where S denotes the
set of environmental states, A the set of actions the agent
can perform, and r : S × A → R the function of immediate
rewards r(s, a) (sometimes the notion of costs is used which
correspond to negative rewards) that arise when taking action
a in state s. The function p : S × A × S → [0; 1] depicts a
probability distribution p(s, a, s′) that tells how likely it is to
end up in state s′, when performing action a in state s.

Given an MDP we apply model-based temporal differ-
ence Reinforcement Learning using function approximation
based on multi-layer perceptron neural networks. In the in-
tercept task example, the formalization as an MDP com-
prises a continuous, 6-dimensional state space S = {s =
(vbx, vby, vpx, vpy, dbp, αbp)} where �vb is the ball’s and �vp

the player’s velocity, dbp the distance and αbp the relative
angle between ball and player. Actions for the player are,
as determined by the Soccer Server, parameterized turns and
dashs. After successful interception, the player gets a positive
reward, to create time-optimal behavior each action incurs a
little negative reward. To name another learned example skill,
the learning of optimal kicking involves a 5-dimensional state
space S = {s = (vbx, vby, dbp, αbp, αpt)} where �vb, dbp, and
αbp are as before and where αpt describes the relative angle
between ball and target kick direction from the agent’s point of
view. Here, the range of possible actions is particularly large
since the player may not just take turns (parametrized with one
parameter), but also perform kicks which are parameterized
by two parameters (kick intensity and kick direction). To
handle real-valued action parameters we apply straightforward
discretizations (see Table II for the number of discretized
actions considered). If the resulting kick fulfills certain quality
criteria (ball leaves the area around the player where the ball
is kickable, the so-called “kickable area”, with the specified
velocity and going into the specified target direction), the
corresponding episode is considered successful. Otherwise, or
if the ball collides with the player, the episode is a failure
resulting in a large negative reward.

In search of an optimal behavior in an unknown environ-
ment, the agent must differentiate between the desirability of
possible successor states, in order to decide for a good action.

18

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Since the transition model in the soccer domain is known1

we can compute a state value function V π : S → R that
estimates the future rewards that can be expected when starting
in a specific state s and taking actions determined by policy
π :S→A from then on. Thus, it holds

V π(s) = E[
∞∑

t=0

r(st, π(st)|s0 = s)]

where E[·] denotes the expected value. If we are in possession
of an ‘optimal’ state value function V �, it is easy to infer the
corresponding optimal behavior policy by exploiting that value
function greedily according to

π�(s) := arg max
a∈A

{r(s, a) +
∑

s∈S

p(s, a, s′) · V �(s′)}

Temporal difference (TD) methods comprise a set of Rein-
forcement Learning algorithms that incrementally update state
value functions V (s) after each transition (from state s to
s′) the agent has gone through. This is particularly useful
when learning along trajectories (s0, s1, . . . , sN) starting in
some state s0 and ending up in some terminal state sN ∈ G.
Here, learning can be performed online, i.e. the processes
of collecting (simulated) experience and learning the value
function run in parallel. For learning to intercept the ball we
made use of the TD(1) algorithm where the new estimate for
V (sk) is calculated as

V (sk) :=(1−α)·V (sk)+α·ret(sk)

with ret(sk) =
∑N

j=k r(sk, π(sk)) indicating the summed
rewards following state sk and α as a decaying learning rate
[14]. In order to be able to capture the potentially highly
non-linear and partially non-continuous state value function
for the respective skill learning problem, we (mainly) employ
feed-forward neural networks to approximate V , since those
are known to be capable of approximating arbitrarily closely
any function f : S → R that is continuous on a bounded
set S [15]. For more details on neuro-dynamic programming
and approximate RL we refer to [16] and for the actual
implementation of the learning algorithm and detailed learning
results using different mechanisms to approximate the value
function we refer to Gabel & Riedmiller [17].

Learned Ball Interception: Learning to intercept a rolling
ball is less straightforward than it may intuitively seem.
Smallest deviations in the turn angle of a player’s turn action
(usually, a ball interception sequence has to be started by an
initial turn action) may cause drastic changes in the number of
steps required to intercept the ball. Accordingly, the optimal
state value function V � to be learned is characterized by
infinitely many points of discontinuity which are inherently
difficult to capture by any function approximation mechanism.

When we started to learn basic soccer skill using Reinforce-
ment Learning, we soon realized a neural behavior for ball

1During training our agents, we usually turn off the noise generated by the
Soccer Server environment. Hence, we know the successor state s′∈S, given
some state s∈S and action a∈A, with p(s, a, s′)=1.0.

interception (NIntercept), that clearly outperformed our former
hand-coded interception routine and which was used success-
fully in RoboCup tournaments until 2003. In that year we also
started working on a new analytic, model-based interception
technique (MBIntercept). MBIntercept extensively simulates
the environment many time steps ahead, therefor it is rather
computationally expensive, but is able to find the optimal
interception point when the Soccer Server adds no noise to ball
and player movements. For an intercept benchmark set that we
designed, MBIntercept needs on average 9.73 steps for a ball
interception, as opposed to 11.02 steps that NIntercept requires
on average (noise-free environment). Since the difference in
performance of both methods is quite the same when the
Soccer Server’s noise is present (as it is during competitions),
we switched to using MBIntercept during competitions in
2004.

bv

5m

player
ball

Start Situations:

 0

 1

 2

 3

 4

 5

-1.5 -1 -0.5 0 0.5 1 1.5

ball x-velocity

-1

-0.5

 0

 0.5

 1

ba
ll

y-
ve

lo
ci

ty

Fig. 2. Quantitative difference in interception capability between the
learned and the model-based reference algorithm MBIntercept for a set
S = {(�vb, �vp, dbp, αbp)||�vb| ∈ [0, vmax], �vp = 0, dbp = 5, αbp = 0}
of intercept start situations (initially stationary player and varying initial
ball velocities, constant distance between ball and player). Bright colors
correspond to additional steps required for a ball interception using the learned
policy when compared to the optimal solution provided by MBIntercept.

Despite that, in 2005 we started working on the neural ball
interception again. Recently, we have proposed a data-efficient
neural learning algorithm (Neural Fitted Q Iteration, NFQ,
see Riedmiller [18]) that performs off-line (also termed batch-
mode) Reinforcement Learning. By employing a modification
of NFQ to the intercept task we finally achieved average
ball interceptions taking 10.57 steps—that result is visualized
in Figure 2. Apparently, the learning agent has particular
difficulties to quickly intercept the ball in situations, where
the ball is approaching and eventually passing by the player
at high speed.

Therefore, to come even closer to the optimum, a further
optimization of the learning process was necessary: With a
specialized form of adaptive reward shaping [19] and applying
an active learning approach [20], we finally arrived at average

19

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

ball interception times of steps 10.23 per episode (for the test
benchmark mentioned above). Although the remaining gap in
performance of the learned and hand-coded skill is extremely
small, for the competition since 2005 we decided to rely on
the latter.

Learned Ball Kicking: The particularities of the Soccer
Server environment make it necessary that harder kicks must
be composed of a number of elementary kick commands.
Thus, to really kick hard, as required for long passes or for
scoring, usually an elaborated sequence of n kick commands
must be applied, where during the first n − 1 kicks the ball
is moved and accelerated within the player’s kickable area
and where the nth kick is used to bring the ball to its final
desired velocity. Of course, time matters: The shorter the kick
sequence, the better, as otherwise opponent players may more
easily interfere. The Soccer Server adds a substantial amount
of noise to ball movements (up to 5% per time step) and to
kicks (up to 10% per kick). Therefore, in what follows, a
kick sequence is considered successful, if the resulting kick
velocity differs less than 0.2m

s from the desired velocity and
if the angle of the resulting ball movement differs less than
π
12 from the specified kick target direction.

Our learned kick routine (developed in 2000/2001) out-
performed existing heuristic kicking approaches clearly and
was not replaced by a classical or analytical solution method
during the subsequent years. Despite its reliability and good
performance during tournaments we uncovered a weakness of
our neural-net based kicking behavior NKick at the end of
2004: When executing kick sequences to reach a final kick
velocity of approximately 75% of the maximal kick velocity2,
NKick featured slightly reduced performance. To counteract
we re-implemented the kicking learning algorithm making use
of TD(1) Reinforcement Learning and applying the same
learning methodology as in the case of learning to intercept
a ball (see above). The resulting kick behavior relies on five
neural networks that are specialized to different target kick
velocities. Testing our learning results we confirmed that the
performance gap mentioned could be closed while at the same
time the kick accuracy could be increased by up to 6% (see
Figure 3).

B. Reinforcement Learning for Team Cooperation

Applying Reinforcement Learning to multi-agent systems
is problematic due to several nasty properties of multi-agent
domains: exponential growth of the decision problem with
increasing number of acting agents, the increasing number
of state dimensions, the requirement for distributed and in-
dividual acting without communication (fortunately, at least
during the learning phase, we have the possibility of agent
communication here, making the learning problem easier at
least in that respect).

Our first approach was a model-free one, where we used a
variant of Q-learning [21]. Though this was quite successful

2Given current standard parameter settings of the Soccer Server, the
maximal ball velocity, and hence the maximal velocity a kicked ball may
reach, is 2.7m

s
.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

30% 40% 50% 60% 70% 80% 90% 100%

A
ve

ra
ge

 L
en

gt
h

of
 K

ic
k

S
eq

ue
nc

e NKick (original)
NeuroKick 2005

86%

88%

90%

92%

94%

96%

98%

100%

30% 40% 50% 60% 70% 80% 90% 100%

S
ha

re
 o

f S
uc

ce
ss

fu
l K

ic
ks

Relative Target Velocity of Kick (relative to max kick vel = 2.7m/s)

NKick (original)
NeuroKick 2005

Fig. 3. The charts oppose the kicking capabilities of our learned NKick
behavior (used 2000-04) and the re-learned neural kicking routine (used 2005-
06) for a test suite of 5000 situations starting from which the agent had to
perform kicks with different target velocities.

for a limited number of agents (they even learned double
passes), it did not scale to more than 2 teammates vs. 2
opponents.

We felt that for scaling to situations relevant for competition,
we should necessarily provide any knowledge that we possibly
have. So one of our ideas was to make use of an (approximate)
model that predicts the outcome of a certain action. Of course,
in the multi-agent domain faced here, we do not have proper
knowledge of such a model because:

• we do not have the probabilities with which the actions
result in a certain outcome,

• we do not know, what our teammates do (no communi-
cation allowed), and

• we do not know, what our opponents do (this differs from
team to team).

To deal with the second and third point, we either worked with
computing worst-case/best-case scenarios (comparable to max-
min search) or—for efficiency reasons—simply assume that
other agents do not act at all. To deal with the unknown tran-
sition probabilities we employed the following simplification:
First, for every possible action, we compute an estimation of
its safety. If it is above some (very high) threshold, we consider
this action as successful. The resulting state is the one, that
will result from a successful application of the action. For
example, if we consider a pass to a certain teammate, we first
verify that the teammate is the first player to the ball (pass is
safe) and then we compute, where he will get the ball. Actions
not considered successful are not regarded for selection at all.
Note, that the model we use is now quasi-deterministic—but
at the same time only a (rough) guess to the actual resulting
situation.

20

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Decision-making works as follows. For every situation:
1) compute all potentially successful actions
2) compute all (approximate) resulting states
3) evaluate all resulting states
4) select action with best resulting state
To estimate the value of a state, a neural multi-layer

perceptron is used. The number of inputs corresponds to two
times the number of teammates + the number of opponents
(x and y coordinate) plus 4 inputs for ball position/velocity.
It has a certain number of hidden neurons (we mostly used
10 neurons, but the number was not particularly important)
and one output neuron—which is the evaluation of the state
at input.

0102030

10−

20−

30−

40−

50−

−10 −20 −30 0102030

10−

20−

30−

40−

50−

−10 −20 −30

0102030

10−

20−

30−

40−

50−

−10 −20 −30

T1

T3

T2

Fig. 4. Initial position of 3 vs 4 attack. Dotted player owns the ball.

Learning is done by making the agents act greedily with
respect to their current neural value function. All episodes are
recorded (player positions and ball position and velocities).
All experiences are added to an ‘experience set’ E with one
exception: episodes that result in a ball loss are not recorded
(since this is not the fault of the learning module, as we
assume, that only successful actions are provided). After some
time of experience collection (e.g. until a certain number
of successful episodes was performed), the experience set
is evaluated and respective target values are computed. This
corresponds to a policy evaluation step. The optimization goal
for the dynamic programming part is the minimization of
expected time until success, therefore every decision implies
small constant transition costs (ctrans = 0.01), whereas a goal
is ‘rewarded’ with costs 0 and an undesired ‘stuck’ situation
is punished with costs of 1.

To train the neural network, the fast learning procedure
Rprop [22] is used. After training (typically for 5000 epochs),
the net is distributed to all agents, which restart to sample
new experience with the new value function. In its pure form,
this corresponds to a policy iteration step which necessarily
leads to an improvement of the policy until the optimal policy
is found. Due to the approximations our approach comprises

TABLE I

PERFORMANCE OF LEARNED ATTACK AND HAND-CODED ATTACK OF OUR

2000 COMPETITION TEAM AGAINST A POWERFUL DEFENSE. THE

DEFENSE POLICY IS DIFFERENT FROM THE ONE USED FOR TRAINING

AGAINST. THE TABLE SHOWS BOTH LEARNED SITUATIONS (L1 - L3) AND

NEW SITUATIONS (T1 - T3).

RL attack BS 2000 attack

goal stuck goal stuck

L1 0.645 0.03 0.0 0.97

L2 0.225 0.145 0.01 0.505

L3 0.45 0.04 0.0 0.965

T1 0.655 0.01 0.31 0.205

T2 0.39 0.035 0.14 0.0

T3 0.445 0.05 0.145 0.415

the theoretically guaranteed improvement of the policy during
each iteration may no longer be effective. However, as shown
in Table I quite effective cooperative policies can be learned
despite all approximations. The results, which were mainly
achieved in 2001 and 2002, show drastic improvements over
our attack in our strong 2000 competition team, which was
the runner-up in the 2000 RoboCup world championship.

Actions considered on this multi-agent level are made up
of individual skills: intercepting, going to one of 8 positions,
dribbling, passing to a teammate, scoring. For the competition
team several further details are incorporated: some decisions
are pre-wired (e.g. the fastest player intercepts the ball) and
constraints are formulated (e.g. to prevent the players from
running away too far or to crash into each other). The final
neural attack module which we applied in our competition
team considered 7 attackers and 8 opponents.

III. OVERVIEW

Over the years a considerable part of decision making within
our Brainstormers agent has been solved by neural Reinforce-
ment Learning methods. One of the earliest successes was the
learning of a powerful neural kicking routine. At that time (in
2000), this was a real breakthrough since good kicking requires
an elaborated sequence of appropriate basic commands. Many
teams developed heuristics to solve the problem, but our neural
kicking (NKick) routine not only kicked more reliably, but also
did this in a minimum number of time steps. Additionally,
NKick was not designed at all, but completely learned its
behavior from scratch—by the experience of success or failure.

Most of the individual skills were developed for our 2000
competition team, and many of them were refined and re-
trained in the following years. E.g. the neural kicking routine
initially used 54 neural nets, which could be reduced to 5
neural nets by exploiting symmetries in subsequent versions.

At the time of their development, all of the learned skills
worked considerably better than the hand-coded routines we
had so far. This was the reason why they made their way into
our competition team. However, during years of tough compe-
tition, many new ideas for solving tasks come up, and although

21

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 5. This time bar shows the milestones in the development of learned behaviors in the Brainstormers’ teams participating in the 2D and 3D simulation
league as well as in the MidSize-League (Brainstormers Tribots).

the learned skills still perform very well, some of them had to
be replaced by improved hand-coded skills (like e.g. the neural
intercept routine [20]). Here, the gap between the learned skill
and the fine-tuned hand-coded skill is considerably small (less
than half of a decision cycle in average), but for competition,
this already can make a difference.

The peak amount of learned skills used in the competition
team was in the years 2001–2004, where we used many
learned individual skills and also had the complete (coopera-
tive multi-agent) attack behavior learned by neural Reinforce-
ment Learning methods. The network guiding our attack play
in 2004/6 for instance had 34 continuous inputs (denoting 7
teammates’ positions, 8 opponents’ positions, and ball position
and velocity). After having been so close to the title so
many times, without ever getting it, we started a redesign
of our agent in 2004 and 2005. Some of the learned skills
were replaced by novel, more effective hand-coded skills,
other capabilities (like e.g. the multi-agent attack play) were
temporarily suspended in our competition team, since they did
not match exactly any more the new design. Still, they work
and perform pretty well (e.g. the Brainstormers NeuroAgent
2005 can clearly beat the Brainstormers Agent 20043), but to
be really competitive, a complete re-learning, adapted to the
new design, was needed. Continuing this re-learning while
achieving further improvements of the competition agent is
currently ongoing work.

Table II provides a comprehensive overview on the Brain-
stormers’ behaviors learned by neural Reinforcement Learning
methods. The upper part of the table shows the individual
skills, the lower part shows the multi-agent skills. Filled circles
(‘•’) denote the years, where the learned skill was actually
used in the Brainstormers competition team at the world
championships of RoboCup. Empty circles (‘◦’) denote the
years, where a certain skill was developed or improved, but
not used in the competition team. The state space dimensions
and action space cardinalities of the problems show that the

3A neural net is involved in decision-making of a NeuroAgent
2005 defender / sweeper / midfielder / attacker on average in
56.8%/73.0%/84.4%/82.6% of its total number of actions. The average
score against the BS 2004 agent is 2.58:0.33.

TABLE II

OVERVIEW ON BEHAVIORS LEARNED BY NEURAL REINFORCEMENT

LEARNING METHODS (SEE THE TEXT FOR EXPLANATIONS).

dim(S) card(A) 2000 2001 2002 2003 2004 2005 2006

NKick 5 1204 • • • • • • •
NIntercept 6 76 • • • • ◦ ◦
NGo2Pos 6 76 • • • • •
NDribble 11 282 ◦ ◦

NHoldBall 8 360 • •
NAttack2vs2 14 13 ◦

NPos7vs8 34 10 •
NAttack3vs4 18 14 ◦
NAttack7vs8 34 18 • • • •
NPenalty1vs1 8 11 • • • •

NScore 18 14 •
Rank 2 2 3 3 2 1 2

tasks to be learned are far beyond trivial. The final row shows
the ranking. The Brainstormers were always among the best
three teams of the world during the last 7 years.

Demo videos of the learned behaviors and the
learning process can be found at our website:
www.ni.uos.de/brainstormers. At the end of 2005 we
also released our team’s source code, including numerous
high- and low-level behaviors, numerous learned behaviors
using Reinforcement Learning and the corresponding
value functions represented by neural networks, as well as
accompanying libraries. That source code is made publicly
available under the terms of the GNU General Public License
(GPL) and can be retrieved from our website, too.

IV. CONCLUDING REMARKS

The aim of the Brainstormers project is to show the
usefulness of machine learning techniques, especially neural
Reinforcement Learning methods, in a highly complex, dy-
namic, and competitive domain. Ever since the beginning, we
were eager not only to show that Reinforcement Learning

22

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

methods work in principle, but we were always aiming at their
actual use in our competition team at places very essential
for success. At the time of their introduction into the team,
all the learned skills improved significantly over previously
used hand-coded behaviors. In the course of time, some of
the learned skills are meanwhile again replaced by hand-coded
routines. However, we do not regard this as a step back, but
as a natural development in a competitive environment where
sometimes one approach is superior and sometimes another.

The tasks solved within our competition team are far beyond
the benchmark problems typically regarded in Reinforcement
Learning: Here, we have a considerable amount of input
dimensions (from 5 to 34), the inputs are continuous, the
number of actions is high (10 to more than 1000), the distance
to the rewarding goal (with respect to the number of cycles)
is considerably large, and optimality of the solution really
matters.

In 2002, we started a MidSize team, the Brainstormers
Tribots (see Figure 5), that shall stress the usefulness of
learning techniques in a real robot team. Currently, a lot
of interesting learning tasks have already been solved on
the real robot (see [7] and [23]). It is one of our mid-term
goals to actually employ them in the Brainstormers Tribots’
competition team.

To summarize, successful application of Reinforcement
Learning in competitive domains requires

• to find the points, where Reinforcement Learning can be
fruitfully applied: better, faster, with less effort,

• to find the right level of abstraction: difficulty of learning
vs. loss of optimality, as well as

• to integrate hand-coded and learned modules as suitably
as possible.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Mat-
subara, “RoboCup: A Challenge Problem for AI,” AI Magazine, vol. 18,
no. 1, pp. 73–85, 1997.

[2] R. Sutton and A. Barto, Reinforcement Learning. An Introduction.
Cambridge, USA: MIT Press/A Bradford Book, 1998.

[3] P. Stone and M. Veloso, “Layered Learning,” in Machine Learning:
ECML 2000. Proceedings of the 11th European Conference on Machine
Learning. Barcelona, Spain: Springer, 2000, pp. 369–381.

[4] P. Stone, R. Sutton, and G. Kuhlmann, “Reinforcement Learning for
RoboCup-Soccer Keepaway,” Adaptive Behavior, vol. 13, no. 3, pp. 165–
188, 2005.

[5] J. Kok, M. Spaan, and N. Vlassis, “Non-Communicative Multi-Robot
Coordination in Dynamic Environments,” Robotics and Autonomous
Systems, vol. 50, no. 2-3, pp. 99–114, 2005.

[6] Y.Takahashi, K. Edazawa, K. Noma, and M. Asada, “Simultaneous
Learning to Acquire Competitive Behaviors in Multi-Agent System
based on a Modular Learning System,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2005). IEEE Computer Society, 2005, pp. 153–159.

[7] T. Gabel, R. Hafner, S. Lange, M. Lauer, and M. Riedmiller, “Bridging
the Gap: Learning in the RoboCup Simulation and Midsize League,”
in Proceedings of the 7th Portuguese Conference on Automatic Control
(Controlo 2006). Porto, Portugal: Portuguese Society of Automatic
Control, 2006.

[8] M. Veloso, T. Balch, and P. Stone, “RoboCup 2001: The Fifth Robotic
Soccer World Championships,” AI Magazine, vol. 1, no. 23, pp. 55–68,
2002.

[9] I. Noda, H. Matsubara, K. Hiraki, and I. Frank, “Soccer Server: A Tool
for Research on Multi-Agent Systems,” Applied Artificial Intelligence,
vol. 12, no. 2-3, pp. 233–250, 1998.

[10] M. Riedmiller, A. Merke, and W. Nowak, “Brainstormers 2003—Team
Description,” in RoboCup 2003: Robot Soccer World Cup VII, LNCS.
Springer, 2003.

[11] A. Merke and M. Riedmiller, “Karlsruhe Brainstormers—A Reinforce-
ment Learning Way to Robotic Soccer II,” in RoboCup-2001, LNCS.
Springer, 2001.

[12] M. Riedmiller, T. Gabel, J. Knabe, and H. Strasdat, “Brainstormers 2D—
Team Description 2005,” in RoboCup 2005: Robot Soccer World Cup
IX (CD). Springer, 2005.

[13] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. USA: Wiley-Interscience, 2005.

[14] R. S. Sutton, “Learning to Predict by the Methods of Temporal Differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[15] K. Hornick, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks Are Universal Approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[16] D. Bertsekas and J. Tsitsiklis, Neuro Dynamic Programming. Belmont,
USA: Athena Scientific, 1996.

[17] T. Gabel and M. Riedmiller, “CBR for State Value Function Ap-
proximation in Reinforcement Learning,” in Proceedings of the 6th
International Conference on Case-Based Reasoning (ICCBR 2005).
Chicago: Springer, 2005, pp. 206–221.

[18] M. Riedmiller, “Neural Fitted Q Iteration—First Experiences with a
Data Efficient Neural Reinforcement Learning Method,” in Machine
Learning: ECML 2005. Proceedings of the 16th European Conference
on Machine Learning. Porto, Portugal: Springer, 2005.

[19] A. Y. Ng, D. Harada, and S. J. Russell, “Policy Invariance Under Re-
ward Transformations: Theory and Application to Reward Shaping,” in
Proceedings of the 16th International Conference on Machine Learning
(ICML 1999), I. Bratko and S. Dzeroski, Eds. Bled, Slovenia: Morgan
Kaufmann, 1999, pp. 278–287.

[20] T. Gabel and M. Riedmiller, “Learning a Partial Behavior for a Com-
petitive Robotic Soccer Agent,” KI Zeitschrift, vol. 20, no. 2.

[21] C. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, pp.
279–292, 1992.

[22] M. Riedmiller and H. Braun, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” in Proceedings of
the International Conference on Neural Networks (ICNN 1993), San
Francisco, USA, 1993, pp. 586–591.

[23] M. Lauer, “Ego-Motion Estimation and Collision Detection for Omni-
directional Robots,” in In RoboCup 2006: Robot Soccer World Cup X,
LNCS. Bremen, Germany: Springer, 2006.

23

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

