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Abstract. The main interest behind the Brainstormers’ effort in the
robocup soccer domain is to develop and to apply machine learning tech-
niques in complex domains. Especially, we are interested in reinforcement
learning methods, where the training signal is only given in terms of suc-
cess or failure. Our final goal is a learning system, where we only plug in
’win the match’ - and our agents learn to generate the appropriate be-
haviour. Unfortunately, even from very optimistic complexity estimations
it becomes obvious, that in the soccer domain, both conventional solution
techniques and also advanced today’s reinforcement learning techniques
come to their limit - there are more than (108×50)23 different states and
more than (1000)300 different policies per agent per half time. This paper
describes the new architecture of the Brainstormers team, the improved
self-localization using particle filters and the extensions of the learning
algorithm to simultaniously learn with and without ball behaviors.

1 New Architecture
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Fig. 1. The old layer architecture

Until last year, the architecture of our team was a strictly hierarchical one, di-
vided into strategies, policies and moves. The strategy is responsible for the
high-level behavior of the team, e.g. play defensely or play agressivly. The policy
acts as an intermediate level between strategy and moves. Typical instances in-
clude with- and without-ball-policies as well as standard-situations like goal- and



cornerkick or kickoff. The low-level skills are realised using moves like intercept-
ball, goto-position and so on.

The idea behind that architecture was to repeatedly divide the team tactic
into subtasks. To realise the expected behavior a strategy calls one or more
policies, which in turn use moves to implement their tasks. But this was also one
of the major drawbacks. Every new feature had to be integrated into one of the
3 layers, and it wasn’t always clear which layer to chose for a new feature. And
the control flow was strictly top-down, e.g. it was impossible for a policy to call
a strategy (see figure 1).

This architecture was succesful, but after several years of changes and amend-
ments it was difficult to see clear differences between the 3 layers of that archi-
tecture. There were some new features like dribbling, that didn’t fit into the
hierarchical concept.

Therefore we decided to alter the decision-making process, using behaviors
inspired by behavior-based robot architectures. Our new architecture is still up to
a certain degree a hierarchical one, but there are no restrictions like subdivisions
into layers and strictly top-down control flow (see figure 2).
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Fig. 2. The new behavior architecture

2 Improved Self-Localization Using Particle Filters

A player in simulation league receives visual information every cycle. Among
these are the distances to landmarks with fixed positions around the field. Bear-
ings to these landmarks can also be computed. A simple approach to localize the
player is to intersect circles around the landmarks. The radius of these circles is
determined by the sensed distance to the landmarks.

As the distances are quantized, there isn’t a unique solution to that problem.
By intersecting all pairs of 2 circles and then taking the mean value one can get
a estimation of the players position. This method was used in our team until
last year. One of the drawbacks was that the position estimation fluctuated very
much.



Another interesting approach that only uses the bearings between the dif-
ferent landmarks has been introduced in [1]. If the bearings of the player to
three landmarks are known, the position of the player can be determined. But
this is only true if the measurements are noiseless. In a noisy environment as
Robocup soccer server one has to integrate as many measurements as possible.
In order to solve this overdetermined problem in a geometric way, a large sys-
tem of non-linear equations has to be solved, which is not appropriate for players
in Robocup, because it would be too time-consuming. Another possibility is to
represent the landmarks as complex numbers, which leads to an overdetermined
system of linear equations that can also be solved in linear time.

But as stated in [1], this approach yields poor results if the landmarks and the
robot approximately lie on a circle. Unfortunately, this is true in the simulation
league environments, where the players only have a small view cone.

To tackle that problem, we decided to use particle filters. This localization
method has been used succesfully used with mobile robots ([2],[3]). Particle Fil-
ters try to represent the probability distribution p(l) (the probability that the
robot is at position l) by S = {< li, wi > |i = 1...n}, a set of positions with
appropriate weights, called particles. The particles consitute a discrete approxi-
mation of a probability distribution, therefore the weights should sum to one.

Let l be positions, a odometry readings and s sensor readings of the player.
One has to know the movement model p(l′|a, l) and the sensor model p(s|l) to
use the following algorithm. If the initial position the player is known, all parti-
cles positions are set accordingly and all weights are set to 1/n. If the position is
known, one uses n equally distributed random samples of positions on the pitch.

The algorithm works as follows:

1. Generate new particles: create N samples by drawing randomly from the
particle set S, selecting each particle with probability wi

2. Integrate motion: according to the position li of the particles a new postion l′

is generated by drawing one sample from the odometry distribution p(l′|at, li)
3. Integrate sensor readings: the particle weights are set to p(st|li)
4. Normalization: normalize particle weights to guarantee

∑
n

i=1 wi = 1

In our simualation league team, we used a normal distribution around the
sensed movement as p(l′|a, l) . To compute p(s|l), one can make use of the way
the quantized distance measurements to the landmarks are generated from the
real values. Using the formula from the soccer server manual, one can easily
compute an interval that contains the true distance value. By doing this for all
sensed landmarks, we get an area that contains the true position of the player.
For all positions l that lie outside of this area p(s|l) is set to a value close to
zero, for all other positions p(s|l) is set to 1.0.

To enable relocalization if the player is replaced on the field (e.g. in free-kick
situation), the old circle-intersection method is still used as a reference. If this
reference point is too far away from the mean position of all particles, a new
particle with small weight is added at this reference point.
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Fig. 3. Comparison of the two localization methods

A comparison of the old localization method and the new one using particle
filters proved that the latter perform much better. The average position error
decreased more than 60 percent. A plot of the position error over a sequence of
100 cycles is depicted in figure 2. The particle filter is not only most of the time
more accurate than the intersect-circles method, but it also has less outliers,
which is a very useful property.

3 Reinforcement Learning of Team Strategies

Many of the basic skills of our team like intercept-ball,goto-position and kick

have been implemented using Reinforcement Learning approaches. These skills
can be described as single-agent markov decision processes (MDP). For more
information on learning single-agent skills see [4].

Our main research interest currently lies in the field of multi-agent markov
decision processes (MMDP). Learning a team strategy can be described as such a
MMDP with individual learners. As already stressed in [5] there is no guarantee
that an optimal strategy is learned in such a case. In this section we describe
the learning algorithm that was used to learn the positioning of players without
ball and also the actions of the player with ball.

The key idea behind this approach is to learn a central value function V (s)
for all players that describes how desirable a situation is. In other words, V (s)
is a mapping from a state s to a value in [−1, 1]. A value close to 1.0 indicates
that this situation is close to success (goal), a value near −1.0 means that it is
very probable to loose the ball in that situation.

In our approach a situation consists of ball position and velocity plus the
position of all attacking teammates and all defending opponents. The number



of teammates and opponents that are used in the state representation for the
value function has to be fixed beforehand.

The learning is done in epoches. In the beginning the value function is ini-
tialized randomly so the players pursue a random strategy. Now the players play
according to that strategy until 5 succesful trajectories have been collected. If a
trajectory was unsuccessful (e.g. loss of the ball) it is also stored. An example
set E consisting of situations and rewards is generated from these 5 succesful
plus maximal 5 unsuccesful trajectories.

The terminal state sn of a trajectory gets a reward of 1.0 (V (sn) = 1.0) if
it is a succesful terminal state and a reward of −1.0 (V (sn) = −1.0) otherwise.
The reward of the other states in the trajectory depends on the distance from
the terminal state. Let s1, ..., sn be the states encountered on a trajectory. The
value of these states is then computed by:

V (si) = decay(n−i) ∗ V (sn) i = 1...n − 1 (1)

The parameter decay ∈ (0, 1) determines to what extent early states along the
trajectories are responsible for the outcome of the trajectory. This idea is similar
to the eligibility traces used by TD(1).

The states together with the values are then used to train a function ap-
proximator. In our implementation we used a neural net that was trained with
a variant of the backpropagation algorithm called RPROP ([6]).

The resulting net is then used in the next epoch to evaluate the different
actions of a player. The action selection for a single player is done by generating
an appropriate set of possible actions that the player could execute. The state
after applying each of these actions is predicted using a model of the environ-
ment. The succesor states are then evaluated using the value function and the
best action is selected by choosing the corresponding action that leads to the
succesor state with the highest value.

The action set of a player that owns the ball can be arbitrarily put together
by selecting different types of actions like passes, dribblings, kick-and-rushes and
so on. In our current implementation we use the following action types:

– passes directly to a teammate
– passes that a teammate can intercept before the opponent
– dribblings in one of three directions

This approach is very flexible and it is very easy to use new types of actions. The
only thing that has to be done is to implement a model of the environment that
predicts the successor state for these actions. The model for all of these actions
assumes that the opponents don’t move, only the teammates that are involved
in the action are modelled. One could also think of a model that predicts the
opponents behavior, but this would restrict the learned strategy to opponents
that follow that modelled behavior. Therefore it is better to assume nothing
about the opponents, to be able to generalize to unknown opponents.



The action set for a player without the ball is very simple and consists only of
moving to different positions relative to the current player position. To prevent
the players from moving arbitrarily on the field, we use the concept of home
positions and home areas.

A player without ball can choose from the following actions (Actions that
would move the player out of his home area are not allowed):

– go in one of eight directions from current position
– go to one of eight positions around the players home position
– go to home position

One limitation of that concept is that each acting players only considers its
own action set to search for an optimal action. Theoretically a player would
have to consider the joint action set a = (a1, ..., an) of all attacking players. As
already mentioned in [5] this problem can be solved if the underlying MMDP is
deterministic (see also [7]). As the soccer server environment is non-deterministic,
one could change the soccer server to provide a deterministic environment and
then hope that the optimal solution in this environment also works in the non-
deterministic case. But as the action set size increases exponentially with the
number of agents, this solution is intractable in practice.
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