
Karlsruhe Brainstormers - A ReinforementLearning approah to roboti soerA. Merke and M. RiedmillerInstitut f�ur Logik, Komplexit�at und DeduktionssytemeUniversity of Karlsruhe, 76131 Karlsruhe, GermanyAbstrat. Our long-term goal is to build teams of agents where thedeision making is based ompletely on Reinforement Learning (RL)methods. It requires an appropriate modelling of the learning task andthe paper desribes how roboti soer an be seen as a multi-agentMarkov Deision Proess (MMDP). It disusses how optimality of be-haviours of agents an be de�ned and what diÆulties one enounters indeveloping onrete algorithms whih are supposed to reah suh optimalagent/team poliies. We also give an overview of already inorporatedalgorithms in our 'Karlsruhe Brainstormers' simulator league team andreport some results on learning of o�ensive team behaviour.1 IntrodutionThe roboti soer domain beame very popular during the last few years. Sine1997 there are annual world hampionships to measure the progress of playingquality between the di�erent approahes pursued around the world. Our grouptakes the approah of viewing the roboti soer as MMDP while using teh-niques from Reinforement Learning. Setion 2 introdues basi de�nitions ofoptimality. In setion 3 we show what diÆulties have to be mastered to use thetheoretial optimality riteria de�ned in setion 2. Finally in setion 4 we dis-uss some pratial work in the development of our Roboup ompetition team'Karlsruhe Brainstormers'.2 Roboti soer as a Reinforement Learning problemA MMDP is de�ned as a tuple (f. [3℄)Mn := [S;A; r; p℄;where S is the spae of all states, A is a artesian produt of ation sets A =A1 � : : : � An and p denotes the state transfer probabilities, i.e. p( � js; a) is aprobability measure on S depending on the urrent state s and the joint ationa = (a1; : : : ; an). In this paper we will onentrate on two speial MMDPs ases:ooperative and zero sum MMDPs. We will ombine them to haraterise the



roboti soer environment1. In the ooperative MMDP ase all agents get thesame reinforement i.e. r1 = : : : = rn. In the zero sum MMDP we have twoagents with reversed reinforements, r1 = �r2.To de�ne optimality we need the notion of a (total) poliy. A total determin-isti poliy � is a mapping� : S ! A = A1 � : : :�AnIt is important to see that this de�nition onerns the behaviour of all agentssimultaneously and that the poliy of a single agent i an be seen as a projetion�i : S ! Ai in � = (�1; : : : ; �n). Every agent onerns the value vi[�℄ of a totalpoliy, whih is a expetation of the sum of its future reinforement signalsvi[�℄(s) = vi[�1; : : : ; �n℄(s) = E "Xk ri(sk; �(sk)) j s0 = s# :In the ooperative MMDP ase we have v1[�℄ = : : : = vn[�℄ for all �. All weneed is an optimal total poliy �? whih has the maximal value�? = argmax� vi(�):The existene of �? is guaranteed ([6℄), but this existene doesn't say anythinghow suh a �? an be omputed. We will disuss this peuliarity further insetion 3. In the two agent zero sum MMDP we have a total poliy � = (�1; �2).Borrowing from game theory we an de�ne a minimax poliy for eah agent. Welook for a total poliy (�?1 ; �?2) whih ful�lsv1[�?1 ; �?2 ℄ = max�1 min�2 v1[�1; �2℄ = min�1 max�2 v1[�1; �2℄ = �v2[�?1 ; �?2 ℄Existene of suh a pair (�?1 ; �?2) an be always assured (see [3℄). Suh poliiesare in general no longer deterministi, i.e. they map from S to a probabilitydistribution over A.Let us now turn our attention to roboti soer. Here we have two teamswhih perform a zero sum game. Eah agent in the same team has the sameobjetive: to sore more goals then the agents from the opposite team. This anbe expressed as zero sum MMDP of 2 ooperative teamsM = (S;A = B1 � : : :�Bm � C1 � : : :� Cn; r; p)where r = (rb; : : : ; rb; r; : : : ; r) and rb = �r express the team respetively zerosum harater. Using our previous optimality de�nitions it is now a straightforward task to de�ne a total optimal poliy in the ase of two ompetitiveteams (with ooperation within every team). We speak of an optimal total poliy(�?1 ; : : : ; �?m; �?1; : : : ; �?n) ifvb[�?1 ; : : : ; �?m; �?1; : : : ; �?n℄ = max(�1;:::;�m) min(�1;:::;�n) vb[�1; : : : ; �m; �1; : : : ; �n℄1 A more extensive presentation an be found in [5℄.



3 Learning in independent distributed systemsIn setion 2 we disussed how an optimal poliy ould be de�ned. What we didnot disuss were the diÆulties to �nd suh a poliy in a distributed way. We willdemonstrate this in the ooperative MMDP ase onsidering a possible solutionin the zero sum MMDP with two teams as even harder to reah.To illustrate the problem of ation hoie oordination imagine a small 1state (deterministi) system with 2 ooperative agents, eah having two ations:M2 = [fsg; fa1; a2g � fb1; b2g; r = (r1; r2); p℄The reward funtion is for both agents equal r1 = r2 and given by r1(s; (a1; b1)) =r1(s; (a2; b2)) = 2 and equal 0 in onnetion with the remaining ations. It is easyto see that we have two optimal poliies �?(s) = (a1; b1) and �̂?(s) = (a2; b2).But if agent 1 deides to take the projetion �?1(s) = a1 with respet to �?and agent 2 takes the projetion �̂?2(s) = b2 with respet to �̂? we get a totalpoliy � = (�?1 ; �̂?2) whih isn't optimal anymore. The problem lies in the lak ofoordination. In the rest of this setion we will use three di�erenf agent types todemonstrate problems of multi-agent learning and oordination{ White Box Agents (WBA) also alled Joint Ation Learners (see [2℄) areagents whih have knowledge of all the joint ations a = (a1; : : : ; an) per-formed in every step.{ Blak Box Agents (BBA) also alled Independent Learners are agents whihjust know about their own ations. They aren't really aware of the otheragents, all the inuene through ations of other agents ould also be inter-preted as environmental noise.{ Gray Box Agents (GBA) are Blak Box Agents whih an ommuniatewith other agents. It is no further spei�ed how muh information an beexhanged. If no ommuniation takes plae we remain having BBAs, but ifevery agent ommuniates his ation we get the speial ase of WBAs. But wean do even more with ommuniating agents, we an exhange informationabout their future intentions.In �gure 1 we an see the onnetions between the agents models. The WBAase an be identi�ed with the single agent MDP situation. We will demonstratethis using the terminology of Q-learning ([11, 1℄). To this end we de�neq?(s; a) := r(s; a) +Xj2S p(j j s; a)v[�?℄(j)in whih �? in an optimal total poliy. The value of q?(s; a) represents theexpeted reward2 for using ation a in state s and pursuing an optimal totalpoliy afterwards. The knowledge of q? amounts to knowing all optimal poliiesas we have �?(s) 2 argmaxa2A q?(s; a)2 We don't distinguish di�erent ri here beause all agents get the same rewards.
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knowledge at time   tFig. 1. Illustration of potential knowledge during learning in the di�erent models.for an arbitrary optimal poliy �?. Using Q-learning we are able to ompute theq? funtion provided we get aess to enough tupleshst; at; rt; st+1iwhere st+1 is the suessor state after using the joint ation at in state st whilegetting reward rt = r(st; at). Using Q-learning every WBA an build up his ownq? funtion. The problem of hoosing an unique optimal total poliy �? remains,so that eah agent an use the projetion �?i of the same optimal total poliy.We will not disuss the possibilities of attaining this goal but we just mentionthat theoretially sorting all optimal total poliies and taking the �rst will dothe job.The major drawbak using WBA and joint ations a = (a1; : : : ; an) omesfrom the fat that the number of suh ations grows exponentially with the num-ber of agents. Furthermore suh learning is inexible with respet to hangingthe number of partiipating agents. These reasons are the main motivation forusing the onsiderably weaker model of BBAs. But in this model all that we anhope for is to be able to omputeq?i (s; b) = maxa2A;ai=b q?(s; a)for eah agent i. This is the maximal possible expeted reward if agent i isusing ation b in state s. Computing the q?i (s; b) onstitutes the �rst problemwhih has to be solved. The seond problem has to do with a oordinated hoieof ations from argmax q?i . If for example fb; b0g = argmax q?i , then we havesomehow to deide whih of these two ations we'll atually take. Both problemsan be solved if the underlying MMDP is deterministi (see [4℄). In the ase ofprobabilisti state transitions and the pure BBA senario, it an be shown, thatthe omputation of the q?i (s; b) values is in general impossible (f. [5℄).There remains the question of how to deploy ommuniation or some otheroordination sheme to solve both problems using BBA agents (i.e. to use some



inarnation of GBAs). As far as we know no suh algorithm has been publishedyet. In the next setion we will present some empirial work, whih uses a sortof impliit oordination while working with Blak Box Agents.4 Our RL approahes to roboti soerIn [8℄ we already published some of our work related to single agent reinforementlearning. This inludes suessful deployment of moves to learn several basiagent behaviors. All these moves were learned using reinforement learning withneural nets as funtion approximators.On the tatial or team behaviour level we didn't use reinforement learninguntil very reently. In partiular our last year team used planning for playerswith the ball and a priority list of moves for players without the ball (see [8℄ formore details). As we already mentioned we work with higher level moves on thetatial level. As the �rst step of developing a whole team poliy with RL westarted with the attak behaviour.We use 7 attakers against 7 defenders and one goalie. At the moment weput all positions of the players as input to an neural network (34 dimensions).Simultanously we also work on a feature extration sheme, whih will enableus to ignore the exat number of defenders and to lower the dimension of theenoding input vetor.Eah of our attakers without ball has 10 ations to hoose from. He an justgo to one of 8 diretion, go to his home position or try to interept the ball. To goon we must say a little bit more about the home positions onept, as this is themain oordinating sheme for our agents. Our team an use di�erent formations(for example 4-3-3) whih are strethed over the soer �eld with respet to theball position and the o�side lines. As eah of our attakers has the hoie to gotowards his home position we have impliitly a mehanism whih makes it easierto avoid two attakers going to the same position. If one attaker gains the ballhe uses our planning algorithms whih tries to �nd the shortest pass hain tosore a goal.Our algorithm learns along trajetories whih lead to a goal or to the lossof the ball. In the �rst ase we get a positive reward in the seond a negativeost. To update the value for every state along a trajetory we use TD[1℄ (see[10℄) to propagate the reward/ost along the whole trajetory. The update of theneural networks are performed with a variant of the bakpropagation algorithmalled RPROP (see [7℄). The results of this learning sheme are very promising.We used our last year team attak and the attak of the FCPortugal team3 foromparison and our last year defene as a benhmark. The results are presentedin the following table Brainstormers2000 TD[1℄ attaksuess rate 13% 20%3 Our team was runner up and the FCPortugal team was winner of the SimulationLeague Roboup World Championship in Melbourne 2000.
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