
Karlsruhe Brainstormers - A Reinfor
ementLearning approa
h to roboti
 so

erA. Merke and M. RiedmillerInstitut f�ur Logik, Komplexit�at und DeduktionssytemeUniversity of Karlsruhe, 76131 Karlsruhe, GermanyAbstra
t. Our long-term goal is to build teams of agents where thede
ision making is based 
ompletely on Reinfor
ement Learning (RL)methods. It requires an appropriate modelling of the learning task andthe paper des
ribes how roboti
 so

er 
an be seen as a multi-agentMarkov De
ision Pro
ess (MMDP). It dis
usses how optimality of be-haviours of agents 
an be de�ned and what diÆ
ulties one en
ounters indeveloping 
on
rete algorithms whi
h are supposed to rea
h su
h optimalagent/team poli
ies. We also give an overview of already in
orporatedalgorithms in our 'Karlsruhe Brainstormers' simulator league team andreport some results on learning of o�ensive team behaviour.1 Introdu
tionThe roboti
 so

er domain be
ame very popular during the last few years. Sin
e1997 there are annual world 
hampionships to measure the progress of playingquality between the di�erent approa
hes pursued around the world. Our grouptakes the approa
h of viewing the roboti
 so

er as MMDP while using te
h-niques from Reinfor
ement Learning. Se
tion 2 introdu
es basi
 de�nitions ofoptimality. In se
tion 3 we show what diÆ
ulties have to be mastered to use thetheoreti
al optimality 
riteria de�ned in se
tion 2. Finally in se
tion 4 we dis-
uss some pra
ti
al work in the development of our Robo
up 
ompetition team'Karlsruhe Brainstormers'.2 Roboti
 so

er as a Reinfor
ement Learning problemA MMDP is de�ned as a tuple (
f. [3℄)Mn := [S;A; r; p℄;where S is the spa
e of all states, A is a 
artesian produ
t of a
tion sets A =A1 � : : : � An and p denotes the state transfer probabilities, i.e. p( � js; a) is aprobability measure on S depending on the 
urrent state s and the joint a
tiona = (a1; : : : ; an). In this paper we will 
on
entrate on two spe
ial MMDPs 
ases:
ooperative and zero sum MMDPs. We will 
ombine them to 
hara
terise the



roboti
 so

er environment1. In the 
ooperative MMDP 
ase all agents get thesame reinfor
ement i.e. r1 = : : : = rn. In the zero sum MMDP we have twoagents with reversed reinfor
ements, r1 = �r2.To de�ne optimality we need the notion of a (total) poli
y. A total determin-isti
 poli
y � is a mapping� : S ! A = A1 � : : :�AnIt is important to see that this de�nition 
on
erns the behaviour of all agentssimultaneously and that the poli
y of a single agent i 
an be seen as a proje
tion�i : S ! Ai in � = (�1; : : : ; �n). Every agent 
on
erns the value vi[�℄ of a totalpoli
y, whi
h is a expe
tation of the sum of its future reinfor
ement signalsvi[�℄(s) = vi[�1; : : : ; �n℄(s) = E "Xk ri(sk; �(sk)) j s0 = s# :In the 
ooperative MMDP 
ase we have v1[�℄ = : : : = vn[�℄ for all �. All weneed is an optimal total poli
y �? whi
h has the maximal value�? = argmax� vi(�):The existen
e of �? is guaranteed ([6℄), but this existen
e doesn't say anythinghow su
h a �? 
an be 
omputed. We will dis
uss this pe
uliarity further inse
tion 3. In the two agent zero sum MMDP we have a total poli
y � = (�1; �2).Borrowing from game theory we 
an de�ne a minimax poli
y for ea
h agent. Welook for a total poli
y (�?1 ; �?2) whi
h ful�lsv1[�?1 ; �?2 ℄ = max�1 min�2 v1[�1; �2℄ = min�1 max�2 v1[�1; �2℄ = �v2[�?1 ; �?2 ℄Existen
e of su
h a pair (�?1 ; �?2) 
an be always assured (see [3℄). Su
h poli
iesare in general no longer deterministi
, i.e. they map from S to a probabilitydistribution over A.Let us now turn our attention to roboti
 so

er. Here we have two teamswhi
h perform a zero sum game. Ea
h agent in the same team has the sameobje
tive: to s
ore more goals then the agents from the opposite team. This 
anbe expressed as zero sum MMDP of 2 
ooperative teamsM = (S;A = B1 � : : :�Bm � C1 � : : :� Cn; r; p)where r = (rb; : : : ; rb; r
; : : : ; r
) and rb = �r
 express the team respe
tively zerosum 
hara
ter. Using our previous optimality de�nitions it is now a straightforward task to de�ne a total optimal poli
y in the 
ase of two 
ompetitiveteams (with 
ooperation within every team). We speak of an optimal total poli
y(�?1 ; : : : ; �?m; �?1; : : : ; �?n) ifvb[�?1 ; : : : ; �?m; �?1; : : : ; �?n℄ = max(�1;:::;�m) min(�1;:::;�n) vb[�1; : : : ; �m; �1; : : : ; �n℄1 A more extensive presentation 
an be found in [5℄.



3 Learning in independent distributed systemsIn se
tion 2 we dis
ussed how an optimal poli
y 
ould be de�ned. What we didnot dis
uss were the diÆ
ulties to �nd su
h a poli
y in a distributed way. We willdemonstrate this in the 
ooperative MMDP 
ase 
onsidering a possible solutionin the zero sum MMDP with two teams as even harder to rea
h.To illustrate the problem of a
tion 
hoi
e 
oordination imagine a small 1state (deterministi
) system with 2 
ooperative agents, ea
h having two a
tions:M2 = [fsg; fa1; a2g � fb1; b2g; r = (r1; r2); p℄The reward fun
tion is for both agents equal r1 = r2 and given by r1(s; (a1; b1)) =r1(s; (a2; b2)) = 2 and equal 0 in 
onne
tion with the remaining a
tions. It is easyto see that we have two optimal poli
ies �?(s) = (a1; b1) and �̂?(s) = (a2; b2).But if agent 1 de
ides to take the proje
tion �?1(s) = a1 with respe
t to �?and agent 2 takes the proje
tion �̂?2(s) = b2 with respe
t to �̂? we get a totalpoli
y � = (�?1 ; �̂?2) whi
h isn't optimal anymore. The problem lies in the la
k of
oordination. In the rest of this se
tion we will use three di�erenf agent types todemonstrate problems of multi-agent learning and 
oordination{ White Box Agents (WBA) also 
alled Joint A
tion Learners (see [2℄) areagents whi
h have knowledge of all the joint a
tions a = (a1; : : : ; an) per-formed in every step.{ Bla
k Box Agents (BBA) also 
alled Independent Learners are agents whi
hjust know about their own a
tions. They aren't really aware of the otheragents, all the in
uen
e through a
tions of other agents 
ould also be inter-preted as environmental noise.{ Gray Box Agents (GBA) are Bla
k Box Agents whi
h 
an 
ommuni
atewith other agents. It is no further spe
i�ed how mu
h information 
an beex
hanged. If no 
ommuni
ation takes pla
e we remain having BBAs, but ifevery agent 
ommuni
ates his a
tion we get the spe
ial 
ase of WBAs. But we
an do even more with 
ommuni
ating agents, we 
an ex
hange informationabout their future intentions.In �gure 1 we 
an see the 
onne
tions between the agents models. The WBA
ase 
an be identi�ed with the single agent MDP situation. We will demonstratethis using the terminology of Q-learning ([11, 1℄). To this end we de�neq?(s; a) := r(s; a) +Xj2S p(j j s; a)v[�?℄(j)in whi
h �? in an optimal total poli
y. The value of q?(s; a) represents theexpe
ted reward2 for using a
tion a in state s and pursuing an optimal totalpoli
y afterwards. The knowledge of q? amounts to knowing all optimal poli
iesas we have �?(s) 2 argmaxa2A q?(s; a)2 We don't distinguish di�erent ri here be
ause all agents get the same rewards.
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knowledge at time   tFig. 1. Illustration of potential knowledge during learning in the di�erent models.for an arbitrary optimal poli
y �?. Using Q-learning we are able to 
ompute theq? fun
tion provided we get a

ess to enough tupleshst; at; rt; st+1iwhere st+1 is the su

essor state after using the joint a
tion at in state st whilegetting reward rt = r(st; at). Using Q-learning every WBA 
an build up his ownq? fun
tion. The problem of 
hoosing an unique optimal total poli
y �? remains,so that ea
h agent 
an use the proje
tion �?i of the same optimal total poli
y.We will not dis
uss the possibilities of attaining this goal but we just mentionthat theoreti
ally sorting all optimal total poli
ies and taking the �rst will dothe job.The major drawba
k using WBA and joint a
tions a = (a1; : : : ; an) 
omesfrom the fa
t that the number of su
h a
tions grows exponentially with the num-ber of agents. Furthermore su
h learning is in
exible with respe
t to 
hangingthe number of parti
ipating agents. These reasons are the main motivation forusing the 
onsiderably weaker model of BBAs. But in this model all that we 
anhope for is to be able to 
omputeq?i (s; b) = maxa2A;ai=b q?(s; a)for ea
h agent i. This is the maximal possible expe
ted reward if agent i isusing a
tion b in state s. Computing the q?i (s; b) 
onstitutes the �rst problemwhi
h has to be solved. The se
ond problem has to do with a 
oordinated 
hoi
eof a
tions from argmax q?i . If for example fb; b0g = argmax q?i , then we havesomehow to de
ide whi
h of these two a
tions we'll a
tually take. Both problems
an be solved if the underlying MMDP is deterministi
 (see [4℄). In the 
ase ofprobabilisti
 state transitions and the pure BBA s
enario, it 
an be shown, thatthe 
omputation of the q?i (s; b) values is in general impossible (
f. [5℄).There remains the question of how to deploy 
ommuni
ation or some other
oordination s
heme to solve both problems using BBA agents (i.e. to use some



in
arnation of GBAs). As far as we know no su
h algorithm has been publishedyet. In the next se
tion we will present some empiri
al work, whi
h uses a sortof impli
it 
oordination while working with Bla
k Box Agents.4 Our RL approa
hes to roboti
 so

erIn [8℄ we already published some of our work related to single agent reinfor
ementlearning. This in
ludes su

essful deployment of moves to learn several basi
agent behaviors. All these moves were learned using reinfor
ement learning withneural nets as fun
tion approximators.On the ta
ti
al or team behaviour level we didn't use reinfor
ement learninguntil very re
ently. In parti
ular our last year team used planning for playerswith the ball and a priority list of moves for players without the ball (see [8℄ formore details). As we already mentioned we work with higher level moves on theta
ti
al level. As the �rst step of developing a whole team poli
y with RL westarted with the atta
k behaviour.We use 7 atta
kers against 7 defenders and one goalie. At the moment weput all positions of the players as input to an neural network (34 dimensions).Simultanously we also work on a feature extra
tion s
heme, whi
h will enableus to ignore the exa
t number of defenders and to lower the dimension of theen
oding input ve
tor.Ea
h of our atta
kers without ball has 10 a
tions to 
hoose from. He 
an justgo to one of 8 dire
tion, go to his home position or try to inter
ept the ball. To goon we must say a little bit more about the home positions 
on
ept, as this is themain 
oordinating s
heme for our agents. Our team 
an use di�erent formations(for example 4-3-3) whi
h are stret
hed over the so

er �eld with respe
t to theball position and the o�side lines. As ea
h of our atta
kers has the 
hoi
e to gotowards his home position we have impli
itly a me
hanism whi
h makes it easierto avoid two atta
kers going to the same position. If one atta
ker gains the ballhe uses our planning algorithms whi
h tries to �nd the shortest pass 
hain tos
ore a goal.Our algorithm learns along traje
tories whi
h lead to a goal or to the lossof the ball. In the �rst 
ase we get a positive reward in the se
ond a negative
ost. To update the value for every state along a traje
tory we use TD[1℄ (see[10℄) to propagate the reward/
ost along the whole traje
tory. The update of theneural networks are performed with a variant of the ba
kpropagation algorithm
alled RPROP (see [7℄). The results of this learning s
heme are very promising.We used our last year team atta
k and the atta
k of the FCPortugal team3 for
omparison and our last year defen
e as a ben
hmark. The results are presentedin the following table Brainstormers2000 TD[1℄ atta
ksu

ess rate 13% 20%3 Our team was runner up and the FCPortugal team was winner of the SimulationLeague Robo
up World Championship in Melbourne 2000.



5 SummaryThe so

er domain 
an be modelled as a multi-agent Markov De
ision Pro-
ess (MMDP). To deal with the multi-agent aspe
ts, we pursue both the in-vestigation of theoreti
ally founded distributed RL algorithms plus the empiri-
al/heuristi
ally motivated way of modi�ed single-agent Q-learning. We reportvery promising results in using learning of a 
oordinated o�ensive behaviour.Still a lot of resear
h questions are open, for example the dealing with partialobservability of state information, the de�nition of theoreti
ally founded andeÆ
ient distributed learning algorithms (in
luding opponent modelling) and thesear
h for appropriate features.5.1 A
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