
Karlsruhe Brainstormers - A ReinforementLearning approah to roboti soerM. Riedmiller, A. Merke, D. Meier,A. Ho�mann, A. Sinner, O. Thate, and R. EhrmannInstitut f�ur Logkik, Komplexit�at und DeduktionssytemeUniversity of Karlsruhe, D-76128 Karlsruhe, FRGAbstrat. Our long-term goal is to build a robot soer team wherethe deision making part is based ompletely on Reinforement Learn-ing (RL) methods. The paper desribes the overall approah pursued bythe Karlsruhe Brainstormers simulator league team. Main parts of ba-si deision making are meanwhile solved using RL tehniques. On thetatial level, �rst empirial results are presented for 2 against 2 attaksituations.1 IntrodutionThe main motivation behind the Karlsruhe Brainstormer's e�ort in the roboupsoer domain of the simulator league is to develop and to apply ReinforementLearning (RL) tehniques in omplex domains. Our long term goal is a learningsystem, where we only plug in 'Win the math' - and our agents learn to gener-ate the appropriate behaviour. The soer domain allows more than (108�50)23di�erent positionings of the 22 players and the ball - the omplete state spaeonsidering objet veloities and player's stamina is magnitudes larger. In everyyle, even a non-ball-holding agent an hoose between more than 300 basiommands (parametrized turns and dashes), whih makes a hoie of 30011 jointations for the team per yle. This omplexity is a big hallenge for today's RLmethods; in the Brainstormer's projet we are investigating methods to prati-ally handle learning problems of suh size.2 Roboti Soer as a Reinforement Learning ProblemThe problem that we fae in a roboti soer game an be formulated as �ndingan optimal poliy �� in a Markov Deision ProblemM = fS;A; p(�j�); (�)g. Astate s of the state spae S onsists of position and veloity of the 22 playersand the ball, an ation a 2 A is a 22-dimensional vetor of basi ommandskik/ turn/ dash (one for eah player), the world model p(st+1jst; at) gives thetransition probability that the suessor state st+1 is reahed when ation vetorat is applied in state st. Finally, eah transition auses osts that our, whenation a is applied in situation s. Sine we are generally interested in ontrollingone team, we will assume that we an only hoose the eleven entries in the ation



vetor that orrespond to our team. For the rest of the paper, we onsider theremaining eleven omponents of the opponent team to be hosen by an arbitraryand unknown, but �xed poliy. The task in an MDP is to �nd an optimal poliy�� : S ! A, that minimizes the expeted osts, aumulated during a trajetory:J�(s) = min� EfPt=0 (st; �(st))js0 = sg. A entral team poliy � would haveto assign eah state an eleven-dimensional ommand vetor.Reinforement Learning in priniple is designed to �nd optimal or approx-imately optimal poliies in MDPs where the state spae is too large to betakled by onventional methods. The basi idea is to approximate the optimalvalue funtion by iteratively re�ning estimates for J�: Jk+1(st)  f(st; at) +Jk(st+1)g. However, the roboti soer domain is suh omplex, that urrentlyknown RL algorithms would have no hane to �nd a solution in aeptable time.Therefore, in the following we try to give an analysis of the ouring problemsand disuss both solved and open questions of the solution approah pursued bythe (human) Karlsruhe Brainstormers. Two main aspets have to be solved: oneis the redution of the omplexity, the other is the question of ReinforementLearning in distributed systems.2.1 Redution of the omplexityIn priniple, there are three soures of omplexity: the number of states, thenumber of ations and the number of deisions that have to be taken until a tra-jetory is (suesfully) �nished. One idea behind RL is to handle omplex statespaes by learning on experienes ouring during interation with the world,thereby onsidering only the relevant parts of state spae. A further redutionmight be obtained by learning on features rather than on the state represen-tation diretly. This might turn the MDP into a POMDP (partially observableMDP) and is a urrent researh topi. The number of ations an be redued byarbitrarily onstraining the number of ommands that the agent an hoose. Onone extreme, we might allow only a single ation, and deision making beomestrivial, but we obviously pay for it by loosing quality of the solution. The triktherefore is to provide as many ations as might be useful for a good poliy, butnot more. On the level of basi ommands it is very diÆult to deide, whihations are atually required in a ertain situation. However, if we allow wholesequenes of ations, the job beomes easier: A player needs a sequene to inter-ept the ball, to dribble the ball and so on. Suh a sequene is alled a 'move'here. Eah move has a de�ned subgoal. The onept of moves has the followingtwo important aspets: It onsiderably redues the number of ations availableto the agent, and being itself a sequene of basi ommands, it redues the num-ber of deisions made by the agent. As we will see below, a move itself an belearned by RL methods.2.2 Reinforement Learning in distributed systemsApplying the move-onept, the poliy of an agent has to selet between a ou-ple of moves instead of basi ommands - this an be interpreted as a 'tatial'



deision. In the soer domain, the tatial deisions have to be done by eahagent individually. This raises the problem of learning in distributed senarios.Sine all the players have a ommon goal, this is a ooperative multi-agent sys-tem. In the MDP-framework, the ooperation aspet an be modelled by givingeah agent the same transition osts (). The restrited ommuniation abilityauses a further diÆulty: No agent knows what ation is taken by its team-mate. It an only observe the resulting state of the joint ation. This senario issometimes alled an 'independent learners' (IL) -senario. In ase of a determin-isti environment, we reently proposed a distributed learning algorithm for ateam of IL-agents [2℄. An extension to stohasti domains is urrently under de-velopment. This will provide the theoretial foundations for learning in a teamof individually ating soer agents. Some emprial results based on heuristimodi�ations of single-agent Q-learning have already been arried out (setion4.1).3 MovesA move is a sequene of basi ations, that transforms a urrent situation s(0)into a new situation s(t) some time steps later. The resulting situation is one ofa set of terminal states Sf , whih might be either positive/ desired situationsS+ or negative/ undesired situations S�. The move ends, if either a terminalstate is reahed s(t) 2 Sf , or the time exeeds a ertain limit t > tmax.For example, the move interept-ball terminates if either the ball is withinthe player's kik range (S+) or if the agent enounters a situation, where it isno more possible for the player to reah the ball (S�).3.1 Reinforement Learning of MovesSine eah move has a learly de�ned goal, the task is now to �nd a sequenesof basi ommands that does the job. This an be done either by onventionalprogramming, or, as it is the ase in our approah, by reinforement learningmethods. The general idea of RL is that the agent is only told, what the eventualgoal of its ating is and whih ations it might use (here: turn/ kik/ dash). Pertime step, one ommand is seleted depending on the situation. Learning heremeans to inrementally improve its deision poliy suh that the learning goalis ful�lled better and better. Here we apply Real-Time Dynami Programmingmethods [1℄, that solve the learning problem by inrementally approximating anoptimal value funtion by repeated ontrol trials. Sine the state spae is on-tinuos, a feedforward neural network is used to approximate the value funtion.For a detailed desription of RL using neural networks, the reader is referred to[3℄.Example: Learning to kik Finding a good kik routine is a very tedious job.In the RL framework, this job is done by the agent itself. It is provided with500 parametrized instanes of the kik ommand (diretion is disretized in 100



steps, power is disretized in 5 steps) plus 36 instanes of the turn ommand.This makes an overall of 536 ations, from whih the agent an hoose one peryle. The learning goal is to �nd a sequene of this kiks and turns, suh thateventually the ball leaves the player in a ertain target diretion with a ertaintarget veloity. This target de�nes the 'positive' States, S+. If suh a state isreahed 0 osts our and the sequene terminates. A negative situation S� o-urs, if the player looses the ball during a sequene. This results in maximumosts of 1. Sine a reasonable optimization goal is to use as few ommands as pos-sible for a suessful sequene, eah intermediate transition auses low onstantosts (s; u) = 0:002 [3℄. After about 2 hours of learning, the resulting poliies
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Fig. 1. An example of the performane during learning to kik the ball with maximalveloity 2.5 m/s. Eah learning yle omprises 2000 start states with di�erent ballpositions and veloities and the orresponding traversed trajetories. The net stabilizesafter approximately 150000 individual updates and reahes a performane of approx.95%.were quite sophistiated - muh more eÆiently than in handoded heuristi kikroutines, the agent learned to pull the ball bak, turn itself (if neessary) and toaelerate the ball several times in order to yield high speeds (see also �gure 1).It was able to learn to aelerate the ball to speeds up to 2.5 m/s. Alltogether,three di�erent neural nets were trained, one for target veloities up to 1.0 m/s,one for target veloities up to 2.0 and one for target veloities up to 2.5 m/s(eah of them using 4 inputs, 20 hidden and 1 output neuron).4 The tatial levelOn the tatial level, eah agent must deide among the following moves interept-ball, go in one of 8 diretions, wait at position, pass ball to teammate (10 hoies),shoot to goal in three variants, dribble in one of 8 diretions. This makes an over-all of 10 ations in situations, where the agent has no ball and 22 ations in situ-ations where the agent possesses the ball. No agent an win the game on its own;therefore, the agents must learn to ooperate and oordinate their behaviour. A



team strategy an only work, if every agent ats reliably and ontributes to theommon goal.4.1 Reinforement Learning of team strategiesOur initial experiments are arried out with 2 attakers against 1 or 2 defenders.The defenders have a �xed poliy: they run to the ball and if they get it, theyare diretly moved to the attakers goal, where they sore. The task for theattakers is to sore as fast as possible. If they do so, they are 'rewarded' by�nal osts of 0; if they loose the ball, they are punished by osts of 1. Everytime step the attakers need until they sore, they get a small onstant ost of0.002 (meaning that they an need up to 500 steps until their urrent poliylooks as bad as a poliy that looses the ball). At every time a new deision isrequired, the agent an hoose between 13 moves if he has the ball (he has onlyone teammate for passing) and 10 moves if he is without the ball. In ontrast tothe approah proposed in [4℄, we used the omplete ontinuous state informationas input. Sine this state information is ontinuous, we use neural networks torepresent the value funtion. In the implementation �nally used, eah move usesan individual net to represent the osts that would our if this move was atuallyapplied in the respetive situation. This allows to use individual features forevery move, hene supporting generalization abilities. The following table showsthe improvement ahieved by a learned poliy over an alternative greedy poliy,whih gets the ball and try to sore then.greedy RL trained2 against 1 35 % 85 %2 against 2 10 % 55 %The greedy poliy sores against 1 defender in 35% of the situations andagainst 2 defenders in only 10% of the situations. The 2 learning agents suess-fully learned to ooperate to sore in most of the situations. In ase of 1 defender,they sore in 85% of the situations, and against 2 defenders they sore in 55%of the situations. This is a fairly high rate of suess, sine in a real soer gamenot to sore does not mean to get a goal on your own, but just that your teamhas to regain the ball. We even observed suh omplex ooperation patterns as'double passes' !5 SummaryThe soer domain an be modelled as a omplex MDP. Its main properties arethe high dimensional, ontinuous state spae, the huge number of basi om-mands, huge number of poliies the requirement for ooperative independentReinforement Learning and the problem of the partial observability of the stateinformation.The urrent Karlsruhe Brainstormers approah tries to takle the omplexityby using moves, whih themselves are learned by RLmethods and de�ne the skillsof an agent. Feedforward neural networks are used for funtion approximation



in ontinuous state spaes. To deal with the Multi-agent aspets, we pursueboth the investigation of theoretially founded distributed RL algorithms plusthe empirial/ heurisially motivated way of modi�ed single-agent Q-learning.Still a lot of researh questions are open, for example the dealing with partialobservability of state information, the de�nition of theoretially founded andeÆient distributed learning algorithms, the ideal representation of the valuefuntion, the searh for appropriate features and the theoretial justi�ation touse them, the automati �nding of appropriate moves. However, RL methodshave already proven to be very useful in our ompetition agent.5.1 Reinforement Learning in the ompetition teamIn the urrent ompetition version of our Brainstormer's agent all basi movesare learned by Reinforement Learning, i.e. 1. a kik move whih an aeleratethe ball to put it with arbitrary veloity (0 to 2.5 m/s) in a desired diretion2. an interept-ball move that e�etively interepts a rolling ball, taking thestohasti nature of the domain into aount 3. an dribble move that allows torun without losing ontrol over the ball, 4. a positioning move whih reahesa partiular position while avoiding ollisions with other players, 5. a stop-ballmove speialised in stopping high speed balls, 6. a hold-ball move whih keeps theball away from an attaker. Nearly all of the fundamental ommand deisionsare therefore done by neural network based deision making.On the tatis level, the very promising results for the 2 against 2 attak playare urrently not diretly appliable in the ompetition agent. For the tatilevel, urrently a method is used that we onsider to be an intermediate stepto Reinforement Learning: Eah possible move is judged by both its usefulness(quality) and probability of suess. The quality of a move is given by a simplepriority ranking (PPQ-approah).5.2 AknowledgementsWe would like to thank the CMU-Team for providing parts of the soure ode oftheir ompetition team. In our urrent agent, we make use of their world model.Referenes1. A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to at using real-time dynamiprogramming. Arti�ial Intelligene, (72):81{138, 1995.2. M. Lauer and M. Riedmiller. An algorithm for distributed reinforement learningin ooperative multi-agent systems. In Proeedings of International Conferene onMahine Learning, ICML '00, pages 535{542, Stanford, CA, 2000.3. M. Riedmiller. Conepts and failities of a neural reinforement learning ontrolarhiteture for tehnial proess ontrol. Journal of Neural Computing and Appli-ation, 8:323{338, 2000.4. Peter Stone and Manuela Veloso. Team-partitioned, opaque-transition reinfore-ment learning. In M. Asada and H. Kitano, editors, RoboCup-98: Robot SoerWorld Cup II. Springer Buh Verlag, 1998.


