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t. Our long-term goal is to build a robot so

er team wherethe de
ision making part is based 
ompletely on Reinfor
ement Learn-ing (RL) methods. The paper des
ribes the overall approa
h pursued bythe Karlsruhe Brainstormers simulator league team. Main parts of ba-si
 de
ision making are meanwhile solved using RL te
hniques. On theta
ti
al level, �rst empiri
al results are presented for 2 against 2 atta
ksituations.1 Introdu
tionThe main motivation behind the Karlsruhe Brainstormer's e�ort in the robo
upso

er domain of the simulator league is to develop and to apply Reinfor
ementLearning (RL) te
hniques in 
omplex domains. Our long term goal is a learningsystem, where we only plug in 'Win the mat
h' - and our agents learn to gener-ate the appropriate behaviour. The so

er domain allows more than (108�50)23di�erent positionings of the 22 players and the ball - the 
omplete state spa
e
onsidering obje
t velo
ities and player's stamina is magnitudes larger. In every
y
le, even a non-ball-holding agent 
an 
hoose between more than 300 basi

ommands (parametrized turns and dashes), whi
h makes a 
hoi
e of 30011 jointa
tions for the team per 
y
le. This 
omplexity is a big 
hallenge for today's RLmethods; in the Brainstormer's proje
t we are investigating methods to pra
ti-
ally handle learning problems of su
h size.2 Roboti
 So

er as a Reinfor
ement Learning ProblemThe problem that we fa
e in a roboti
 so

er game 
an be formulated as �ndingan optimal poli
y �� in a Markov De
ision ProblemM = fS;A; p(�j�); 
(�)g. Astate s of the state spa
e S 
onsists of position and velo
ity of the 22 playersand the ball, an a
tion a 2 A is a 22-dimensional ve
tor of basi
 
ommandski
k/ turn/ dash (one for ea
h player), the world model p(st+1jst; at) gives thetransition probability that the su

essor state st+1 is rea
hed when a
tion ve
torat is applied in state st. Finally, ea
h transition 
auses 
osts that o

ur, whena
tion a is applied in situation s. Sin
e we are generally interested in 
ontrollingone team, we will assume that we 
an only 
hoose the eleven entries in the a
tion



ve
tor that 
orrespond to our team. For the rest of the paper, we 
onsider theremaining eleven 
omponents of the opponent team to be 
hosen by an arbitraryand unknown, but �xed poli
y. The task in an MDP is to �nd an optimal poli
y�� : S ! A, that minimizes the expe
ted 
osts, a

umulated during a traje
tory:J�(s) = min� EfPt=0 
(st; �(st))js0 = sg. A 
entral team poli
y � would haveto assign ea
h state an eleven-dimensional 
ommand ve
tor.Reinfor
ement Learning in prin
iple is designed to �nd optimal or approx-imately optimal poli
ies in MDPs where the state spa
e is too large to beta
kled by 
onventional methods. The basi
 idea is to approximate the optimalvalue fun
tion by iteratively re�ning estimates for J�: Jk+1(st)  f
(st; at) +Jk(st+1)g. However, the roboti
 so

er domain is su
h 
omplex, that 
urrentlyknown RL algorithms would have no 
han
e to �nd a solution in a

eptable time.Therefore, in the following we try to give an analysis of the o

uring problemsand dis
uss both solved and open questions of the solution approa
h pursued bythe (human) Karlsruhe Brainstormers. Two main aspe
ts have to be solved: oneis the redu
tion of the 
omplexity, the other is the question of Reinfor
ementLearning in distributed systems.2.1 Redu
tion of the 
omplexityIn prin
iple, there are three sour
es of 
omplexity: the number of states, thenumber of a
tions and the number of de
isions that have to be taken until a tra-je
tory is (su

esfully) �nished. One idea behind RL is to handle 
omplex statespa
es by learning on experien
es o

uring during intera
tion with the world,thereby 
onsidering only the relevant parts of state spa
e. A further redu
tionmight be obtained by learning on features rather than on the state represen-tation dire
tly. This might turn the MDP into a POMDP (partially observableMDP) and is a 
urrent resear
h topi
. The number of a
tions 
an be redu
ed byarbitrarily 
onstraining the number of 
ommands that the agent 
an 
hoose. Onone extreme, we might allow only a single a
tion, and de
ision making be
omestrivial, but we obviously pay for it by loosing quality of the solution. The tri
ktherefore is to provide as many a
tions as might be useful for a good poli
y, butnot more. On the level of basi
 
ommands it is very diÆ
ult to de
ide, whi
ha
tions are a
tually required in a 
ertain situation. However, if we allow wholesequen
es of a
tions, the job be
omes easier: A player needs a sequen
e to inter-
ept the ball, to dribble the ball and so on. Su
h a sequen
e is 
alled a 'move'here. Ea
h move has a de�ned subgoal. The 
on
ept of moves has the followingtwo important aspe
ts: It 
onsiderably redu
es the number of a
tions availableto the agent, and being itself a sequen
e of basi
 
ommands, it redu
es the num-ber of de
isions made by the agent. As we will see below, a move itself 
an belearned by RL methods.2.2 Reinfor
ement Learning in distributed systemsApplying the move-
on
ept, the poli
y of an agent has to sele
t between a 
ou-ple of moves instead of basi
 
ommands - this 
an be interpreted as a 'ta
ti
al'



de
ision. In the so

er domain, the ta
ti
al de
isions have to be done by ea
hagent individually. This raises the problem of learning in distributed s
enarios.Sin
e all the players have a 
ommon goal, this is a 
ooperative multi-agent sys-tem. In the MDP-framework, the 
ooperation aspe
t 
an be modelled by givingea
h agent the same transition 
osts 
(). The restri
ted 
ommuni
ation ability
auses a further diÆ
ulty: No agent knows what a
tion is taken by its team-mate. It 
an only observe the resulting state of the joint a
tion. This s
enario issometimes 
alled an 'independent learners' (IL) -s
enario. In 
ase of a determin-isti
 environment, we re
ently proposed a distributed learning algorithm for ateam of IL-agents [2℄. An extension to sto
hasti
 domains is 
urrently under de-velopment. This will provide the theoreti
al foundations for learning in a teamof individually a
ting so

er agents. Some empri
al results based on heuristi
modi�
ations of single-agent Q-learning have already been 
arried out (se
tion4.1).3 MovesA move is a sequen
e of basi
 a
tions, that transforms a 
urrent situation s(0)into a new situation s(t) some time steps later. The resulting situation is one ofa set of terminal states Sf , whi
h might be either positive/ desired situationsS+ or negative/ undesired situations S�. The move ends, if either a terminalstate is rea
hed s(t) 2 Sf , or the time ex
eeds a 
ertain limit t > tmax.For example, the move inter
ept-ball terminates if either the ball is withinthe player's ki
k range (S+) or if the agent en
ounters a situation, where it isno more possible for the player to rea
h the ball (S�).3.1 Reinfor
ement Learning of MovesSin
e ea
h move has a 
learly de�ned goal, the task is now to �nd a sequen
esof basi
 
ommands that does the job. This 
an be done either by 
onventionalprogramming, or, as it is the 
ase in our approa
h, by reinfor
ement learningmethods. The general idea of RL is that the agent is only told, what the eventualgoal of its a
ting is and whi
h a
tions it might use (here: turn/ ki
k/ dash). Pertime step, one 
ommand is sele
ted depending on the situation. Learning heremeans to in
rementally improve its de
ision poli
y su
h that the learning goalis ful�lled better and better. Here we apply Real-Time Dynami
 Programmingmethods [1℄, that solve the learning problem by in
rementally approximating anoptimal value fun
tion by repeated 
ontrol trials. Sin
e the state spa
e is 
on-tinuos, a feedforward neural network is used to approximate the value fun
tion.For a detailed des
ription of RL using neural networks, the reader is referred to[3℄.Example: Learning to ki
k Finding a good ki
k routine is a very tedious job.In the RL framework, this job is done by the agent itself. It is provided with500 parametrized instan
es of the ki
k 
ommand (dire
tion is dis
retized in 100



steps, power is dis
retized in 5 steps) plus 36 instan
es of the turn 
ommand.This makes an overall of 536 a
tions, from whi
h the agent 
an 
hoose one per
y
le. The learning goal is to �nd a sequen
e of this ki
ks and turns, su
h thateventually the ball leaves the player in a 
ertain target dire
tion with a 
ertaintarget velo
ity. This target de�nes the 'positive' States, S+. If su
h a state isrea
hed 0 
osts o

ur and the sequen
e terminates. A negative situation S� o
-
urs, if the player looses the ball during a sequen
e. This results in maximum
osts of 1. Sin
e a reasonable optimization goal is to use as few 
ommands as pos-sible for a su

essful sequen
e, ea
h intermediate transition 
auses low 
onstant
osts 
(s; u) = 0:002 [3℄. After about 2 hours of learning, the resulting poli
ies
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Fig. 1. An example of the performan
e during learning to ki
k the ball with maximalvelo
ity 2.5 m/s. Ea
h learning 
y
le 
omprises 2000 start states with di�erent ballpositions and velo
ities and the 
orresponding traversed traje
tories. The net stabilizesafter approximately 150000 individual updates and rea
hes a performan
e of approx.95%.were quite sophisti
ated - mu
h more eÆ
iently than in hand
oded heuristi
 ki
kroutines, the agent learned to pull the ball ba
k, turn itself (if ne
essary) and toa

elerate the ball several times in order to yield high speeds (see also �gure 1).It was able to learn to a

elerate the ball to speeds up to 2.5 m/s. Alltogether,three di�erent neural nets were trained, one for target velo
ities up to 1.0 m/s,one for target velo
ities up to 2.0 and one for target velo
ities up to 2.5 m/s(ea
h of them using 4 inputs, 20 hidden and 1 output neuron).4 The ta
ti
al levelOn the ta
ti
al level, ea
h agent must de
ide among the following moves inter
ept-ball, go in one of 8 dire
tions, wait at position, pass ball to teammate (10 
hoi
es),shoot to goal in three variants, dribble in one of 8 dire
tions. This makes an over-all of 10 a
tions in situations, where the agent has no ball and 22 a
tions in situ-ations where the agent possesses the ball. No agent 
an win the game on its own;therefore, the agents must learn to 
ooperate and 
oordinate their behaviour. A



team strategy 
an only work, if every agent a
ts reliably and 
ontributes to the
ommon goal.4.1 Reinfor
ement Learning of team strategiesOur initial experiments are 
arried out with 2 atta
kers against 1 or 2 defenders.The defenders have a �xed poli
y: they run to the ball and if they get it, theyare dire
tly moved to the atta
kers goal, where they s
ore. The task for theatta
kers is to s
ore as fast as possible. If they do so, they are 'rewarded' by�nal 
osts of 0; if they loose the ball, they are punished by 
osts of 1. Everytime step the atta
kers need until they s
ore, they get a small 
onstant 
ost of0.002 (meaning that they 
an need up to 500 steps until their 
urrent poli
ylooks as bad as a poli
y that looses the ball). At every time a new de
ision isrequired, the agent 
an 
hoose between 13 moves if he has the ball (he has onlyone teammate for passing) and 10 moves if he is without the ball. In 
ontrast tothe approa
h proposed in [4℄, we used the 
omplete 
ontinuous state informationas input. Sin
e this state information is 
ontinuous, we use neural networks torepresent the value fun
tion. In the implementation �nally used, ea
h move usesan individual net to represent the 
osts that would o

ur if this move was a
tuallyapplied in the respe
tive situation. This allows to use individual features forevery move, hen
e supporting generalization abilities. The following table showsthe improvement a
hieved by a learned poli
y over an alternative greedy poli
y,whi
h gets the ball and try to s
ore then.greedy RL trained2 against 1 35 % 85 %2 against 2 10 % 55 %The greedy poli
y s
ores against 1 defender in 35% of the situations andagainst 2 defenders in only 10% of the situations. The 2 learning agents su

ess-fully learned to 
ooperate to s
ore in most of the situations. In 
ase of 1 defender,they s
ore in 85% of the situations, and against 2 defenders they s
ore in 55%of the situations. This is a fairly high rate of su

ess, sin
e in a real so

er gamenot to s
ore does not mean to get a goal on your own, but just that your teamhas to regain the ball. We even observed su
h 
omplex 
ooperation patterns as'double passes' !5 SummaryThe so

er domain 
an be modelled as a 
omplex MDP. Its main properties arethe high dimensional, 
ontinuous state spa
e, the huge number of basi
 
om-mands, huge number of poli
ies the requirement for 
ooperative independentReinfor
ement Learning and the problem of the partial observability of the stateinformation.The 
urrent Karlsruhe Brainstormers approa
h tries to ta
kle the 
omplexityby using moves, whi
h themselves are learned by RLmethods and de�ne the skillsof an agent. Feedforward neural networks are used for fun
tion approximation



in 
ontinuous state spa
es. To deal with the Multi-agent aspe
ts, we pursueboth the investigation of theoreti
ally founded distributed RL algorithms plusthe empiri
al/ heurisi
ally motivated way of modi�ed single-agent Q-learning.Still a lot of resear
h questions are open, for example the dealing with partialobservability of state information, the de�nition of theoreti
ally founded andeÆ
ient distributed learning algorithms, the ideal representation of the valuefun
tion, the sear
h for appropriate features and the theoreti
al justi�
ation touse them, the automati
 �nding of appropriate moves. However, RL methodshave already proven to be very useful in our 
ompetition agent.5.1 Reinfor
ement Learning in the 
ompetition teamIn the 
urrent 
ompetition version of our Brainstormer's agent all basi
 movesare learned by Reinfor
ement Learning, i.e. 1. a ki
k move whi
h 
an a

eleratethe ball to put it with arbitrary velo
ity (0 to 2.5 m/s) in a desired dire
tion2. an inter
ept-ball move that e�e
tively inter
epts a rolling ball, taking thesto
hasti
 nature of the domain into a

ount 3. an dribble move that allows torun without losing 
ontrol over the ball, 4. a positioning move whi
h rea
hesa parti
ular position while avoiding 
ollisions with other players, 5. a stop-ballmove spe
ialised in stopping high speed balls, 6. a hold-ball move whi
h keeps theball away from an atta
ker. Nearly all of the fundamental 
ommand de
isionsare therefore done by neural network based de
ision making.On the ta
ti
s level, the very promising results for the 2 against 2 atta
k playare 
urrently not dire
tly appli
able in the 
ompetition agent. For the ta
ti
level, 
urrently a method is used that we 
onsider to be an intermediate stepto Reinfor
ement Learning: Ea
h possible move is judged by both its usefulness(quality) and probability of su

ess. The quality of a move is given by a simplepriority ranking (PPQ-approa
h).5.2 A
knowledgementsWe would like to thank the CMU-Team for providing parts of the sour
e 
ode oftheir 
ompetition team. In our 
urrent agent, we make use of their world model.Referen
es1. A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to a
t using real-time dynami
programming. Arti�
ial Intelligen
e, (72):81{138, 1995.2. M. Lauer and M. Riedmiller. An algorithm for distributed reinfor
ement learningin 
ooperative multi-agent systems. In Pro
eedings of International Conferen
e onMa
hine Learning, ICML '00, pages 535{542, Stanford, CA, 2000.3. M. Riedmiller. Con
epts and fa
ilities of a neural reinfor
ement learning 
ontrolar
hite
ture for te
hni
al pro
ess 
ontrol. Journal of Neural Computing and Appli-
ation, 8:323{338, 2000.4. Peter Stone and Manuela Veloso. Team-partitioned, opaque-transition reinfor
e-ment learning. In M. Asada and H. Kitano, editors, RoboCup-98: Robot So

erWorld Cup II. Springer Bu
h Verlag, 1998.


