
Karlsruhe Brainstormers - Design Prin
iplesM. Riedmiller, S. Bu
k, A. Merke, R. Ehrmann, O. Thate, S. Dilger, A. Sinner,A. Hofmann, and L. FrommbergerInstitut f�ur Logkik, Komplexit�at und DeduktionssytemeUniversity of KarlsruheD-76128 Karlsruhe, FRGAbstra
t. The following paper des
ribes the design prin
iples of de
i-sion making in the Karlruhe Brainstormers team that parti
ipated inthe RoboCup Simulator League in Sto
kholm 1999. It is based on twobasi
 ingredigents: the priority - probability - quality (PPQ) 
on
ept is ahybrid rule-based/ learning approa
h for ta
ti
al de
isons, whereas thede�nition of goal-orientented moves allows to apply neural network basedreinfor
ement learning te
hniques on the lower level.1 Introdu
tionThe main interest behind the Karlsruhe Brainstormer's e�ort in the robo
upso

er domain is to develop and to apply ma
hine learning te
hniques in 
om-plex domains. Espe
ially, we are interested in Reinfor
ement Learning methods,where the training signal is only given in terms of su

ess or failure. So our �nalgoal is a learning system, where we only plug in 'Win the mat
h' - and our agentslearn to generate the appropriate behaviour. Unfortunately, even from very op-timisti
 
omplexity estimations it be
omes obvious, that in the so

er domain,both 
onventional solution te
hniques and also advan
ed today's reinfor
ementlearning te
hniques 
ome to their limit - there are more than (108�50)23 di�er-ent states and more than (1000)300 di�erent poli
ies per agent per half time. Thefollowing des
ribes the modular approa
h of the Brainstormer's team to ta
klethis 
omplex de
ision problem.2 The De
ision ModuleThe task of the de
ision module is to 
ompute in ea
h time step a new basi

ommand (i.e. ki
k, turn, dash) that is sent to the server. This 
ommand de-pends on the 
urrent situation st, whi
h is provided by the world model module(not dis
ussed here). As already dis
ussed in the introdu
tion, it is a very hardproblem to do de
isions at the level of basi
 
ommands.An obvious approa
h - whi
h is used in most of the known approa
hes invarious variations (e.g. [3℄) - is to introdu
e two levels of the de
ision makingpro
ess. The lower level implements some useful basi
 skills of an individualplayer (for example, inter
ept a rolling ball). In our framework, su
h basi
 skills



are 
alled moves (in analogy to other strategi
 games as 
hess or ba
kgammon).The se
ond level is realized by the ta
ti
s module. Its task is to sele
t one ofthe moves, depending on the situation. An appropriate 
hoi
e of moves should�nally lead to su

ess in terms of s
oring a goal. Also, aspe
ts of team play arerealized here.2.1 The MovesA move is a sequen
e of basi
 a
tions, that transforms a 
urrent situation s(0)into a new situation s(t) some time steps later. The resulting situation is oneof a set of terminal states Sf , whi
h might be either positive/ desired out
omes(S+) or negative/ undesired situations (S�). The move ends, if either a terminalstate is rea
hed (s(t) 2 Sf ), or the time ex
eeds a 
ertain limit (t > tmax).For example, the move inter
ept-ball terminates if either the ball is withinthe player's ki
krange (S+) or if it en
ounters a situation, where it is no morepossible for the player to rea
h the ball (S�).Sin
e ea
h move has a 
learly de�ned goal, it is now possible to �nd sequen
esof basi
 
ommands, that �nally rea
h the de�ned goal. This 
an be done either by
onventional programming, or, as it is the 
ase in our approa
h, by reinfor
ementlearning methods. In both 
ases, it is important that the goal of a move isreasonably 
hosen, that means that the solution poli
y is not too 
omplex (e.g.a move 'win that game' would be desirable but its implementation will be as
omplex as the original problem).Clearly, the quality and the number of di�erent moves eventually determinesthe power of the individual player and therefore the whole team respe
tively.2.2 Reinfor
ement Learning of MovesThe question now is how to implement a 
losed-loop poli
y that, after emitting asequen
e of basi
 
ommands �nally rea
hes the spe
i�ed goal of the move? Theabove move de�nition dire
tly allows to formulate the problem of 'programming'a move as a (sequential) Reinfor
ement Learning (RL) problem. The generalidea of reinfor
ement learning is that the agent is only told, what the eventualgoal of its a
ting is. The agent is only provided with a number of a
tions, thatit 
an apply arbitrarily. In 
ourse of learning, it should in
rementally learn a(
losed-loop) poli
y, that rea
hes the �nal goal in
reasingly better in terms of ade�ned optimization 
riterion. Here we apply Real-Time Dynami
 Programmingmethods [1℄, that solve the problem by in
rementally approximating the optimalvalue fun
tion by repeated 
ontrol trials. A feedforward neural network is usedto approximate the value fun
tion [2℄.In the 
urrent version whi
h was used in Sto
kholm, the ki
k-move waslearned by reinfor
ement learning. Several other teams have reported tri
ks howto implement a ki
k-routine by 
onventional programming using various heuris-ti
s. The problem with this approa
h is that it 
an be very time-
onsuming to�nd the right heuristi
s and to tune several parameters by hand. Instead, ourreinfor
ement learning approa
h is mu
h more 
onvenient to handle - the work



of looking for an appropriate poli
y is done by the agent/ 
omputer itself. Theagent is provided with a (�nite) number of basi
 ki
k 
ommands. The goal isde�ned in terms of a target ball dire
tion and a target ball velo
ity. The agentre
eives 
osts for every ki
k 
ommand it uses until the ball has left its ki
krange.If the ball is lost during the sequen
e, maximum 
osts o

ur; in 
ase of su

ess,the sequen
e is terminated with 0 
osts [2℄. This formulation results in a time-optimal poli
y: the number of ki
ks until su

essful termination is minimized.After about 2 hours of learning, the resulting poli
ies were quite sophisti
ated -similar to the proposed heuristi
s, the agent learned to pull the ball ba
k and toa

elerate it several times in order to produ
e high speeds. It was able to learnto a

elerate the ball to speeds up to 2.5 m/s. Of 
ourse, it is too diÆ
ult fora single poli
y (i.e. a single neural net) to manage to ki
k in all situations toall dire
tions with all imaginable velo
ities. Instead, the problem was dividedinto 54 subproblems; therefore the neural ki
k-move now is based on 54 neuralnetworks (ea
h of them using 4 inputs, 20 hidden and 1 output neuron).2.3 The Ta
ti
s Module and the PPQ approa
hThe task of the ta
ti
s module is to sele
t one out of the set of available moves.The diÆ
ulty with this de
ision is, that in general, a 
omplex sequen
e of moveshas to be sele
ted, until the �nal goal is a
hieved, be
ause normally a single movewill not lead to s
oring a goal. In the so

er framework, this problem be
omeseven worse, sin
e the su

ess also depends on the behaviour of the whole team - asu

essful sequen
e 
an only be played, if all the agents involved make the 
orre
tde
isions. Although we already started some promising experiments applyingreinfor
ement learning to this de
ision level also, we are still some theoreti
aland pra
ti
al steps away from a 
onvin
ing pra
ti
al solution (other teams alsowork on this topi
 [3℄).For our Sto
kholm 
ompetition team, we therefore worked on a di�erentsolution for the ta
ti
s module, whi
h we 
all the priority - probability - quality(PPQ) approa
h. The idea origins in the observation, that some parts of theproblem 
an be elegantly solved by simple rules, whereas other aspe
ts are notso easily judged. The PPQ approa
h tries to 
ombine the worlds of programmedand learned parts.Priority Classes and Qualities The moves are partitioned into a numberof 
lasses, e.g. the 
lass of goal shots, the 
lass of pass plays, the 
lass of dribblings.It is now relatively easy to de�ne a reasonable priority ordering between these
lasses. For example, in our Sto
kholm approa
h, we used the following priorities:1. shoot to goal, 2. pass forward, 3. dribble, 4. pass ba
kward, 5. hold ball.If there are several 
hoi
es of moves within a priority 
lass, a quality fun
tionde
ides whi
h move to 
hose. Con
eptually, this quality fun
tion typi
ally followsa very simple de
ision rule, for example pass to the player that is 
loser to thegoal.Learning of su

ess probabilitiesEa
h move has a 
ertain probability of su

ess, whi
h depends on the 
urrentsituation. The idea now is to learn this probability by a simple trial and error



training pro
edure. The agent is set into various situations, exe
utes a 
ertainmove and notes the su

ess or failure of the move. The learning task now isto asso
iate ea
h situation with its out
ome, for example in terms of a '1' forsu

ess and a '0' for failure. A feedforward neural network is used here to learnthe training patterns. After training, the neural network, gets a 
ertain situationas its input and outputs the expe
ted value for su

ess/ failure.The de
ision algorithmEa
h priority 
lass has a set of available moves, M(i). The algorithm worksthrough all the priority 
lasses, until it �nds one, where there is a move thathas a higher probability of su

ess than a 
ertain threshold. This set is 
alledM+(i) := fmjPNN (m) � �i;m 2 M(i)g. The threshold is sele
ted su
h that areasonable 
han
e of su

ess is given, for example �i = 0:8. If there is more thanone su
h move, one of them is sele
ted by judging its quality. Note that this�nal judgment 
an be treated very relaxed, sin
e it already is a nearly maximaluseful move (determined by the priority of its 
lass) and its also very likely asu

essful move (determined by its high su

ess probability).To guarantee termination of the algorithm, at least one 
lass must exist,whereM+(i) is not empty. This is done by the de�nition of a default move thatis always possible.3 Con
lusionThe Sto
kholm version is an intermediate step within our Brainstormers' 
on-
ept of a learning agent. The �nal goal is to have an agent, whi
h has learnedits fundamental de
ision behaviour by reinfor
ement learning. However, untilthen a lot of work has to be done in the �eld of multi-agent RL, on Semi-Markov De
ision Pro
esses, partially observable domains (POMDPs) and onlarge-s
ale RL problems. Some of very re
ent RL ideas have already been su
-
essfully realized. For example, the moves-
on
ept is 
losely related to Sutton'set.al 'options'-framework [4℄. Therefore our work 
an be regarded as realizing andtesting some 
on
eptual ideas in a pra
ti
al environment. The Brainstormer'sSto
kholm agent used an ensemble of 67 feedforward neural networks, 54 forthe neural ki
king (RL) routine, and 13 as probability networks in the ta
ti
smodule.Referen
es1. A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to a
t using real-time dynami
programming. Arti�
ial Intelligen
e, (72):81{138, 1995.2. M. Riedmiller. Con
epts and fa
ilities of a neural reinfor
ement learning 
ontrolar
hite
ture for te
hni
al pro
ess 
ontrol. Neural Computing and Appli
ation, 1999.3. P. Stone and M. Veloso. Team-partitioned, opaque-transition reinfor
ement learn-ing. In M. Asada and H. Kitano, RoboCup-98: Robot So

er World Cup II.4. R. S. Sutton, D. Pre
up, and S. Singh. Between mdps and semi-mdps: A frameworkfor temporal abstra
tion in reinfor
ement learning. Arti�
ial Intelligen
e, 1999. toappear.


