
Learning to Drive a Real Car in 20 Minutes

Martin Riedmiller
Neuroinformatics Group, Univ. of Osnabrueck

Email: martin.riedmiller@uos.de

Mike Montemerlo, Hendrik Dahlkamp
AI Lab, Stanford University

Email: {montemerlo, dahlkamp}@stanford.edu

Abstract

The paper describes our first experiments on Reinforce-
ment Learning to steer a real robot car. The applied method,
Neural Fitted Q Iteration (NFQ) is purely data-driven based
on data directly collected from real-life experiments, i.e.
no transition model and no simulation is used. The RL
approach is based on learning a neural Q value function,
which means that no prior selection of the structure of the
control law is required. We demonstrate, that the controller
is able to learn a steering task in less than 20 minutes di-
rectly on the real car. We consider this as an important step
towards the competitive application of neural Q function
based RL methods in real-life environments.

1 Introduction

The interest in applying Reinforcement Learning (RL)
methods to real life control applications is growing rapidly
e.g. [7], [14], [9], [5]. In this paper we focus on situations,
where the controller should learn by interacting with the real
system only. In particular, for the design of the controller
we will not assume, that a system model is available; nei-
ther in form of system equations nor in form of a simulator
(the latter approach was successfully applied in a number
of applications, see e.g. [4], [7]). In contrast to that, here,
we only assume that the controller is able to collect state
action transitions by observing the real system behaviour
while controlling it.

Learning by interacting with the real system directly has
an important advantage: the controller is tailored exactlyto
the behaviour of the real system at hand instead of a more
or less exact model of it. The big challenge in learning with
real systems lies in the fact that learning must occur in a rea-
sonable amount of time with a reasonable effort: in a real
application, one typically can not wait for hundered thou-
sands of episodes, until a controller is learned.

Another important aspect of this paper, is, that we do not
need prior knowledge about the policy to be learned. This
has the advantage, that we do not constrain the control law

Figure 1. The car used is a VW Passat,
equipped with additional sensors.

a priori to a certain class of controllers. Additionally, the
proposed approach is applicable even in situations, where a
priori no idea about a working control law is available.

In principle, value function based methods offer the ad-
vantage of a very flexible representation of the control pol-
icy to be learned. However, in their original on-line learning
form, this advantage comes at the cost of very long training
times, which makes them unrealistic for real-life applica-
tions. Recently, memory based RL approaches have been
proposed, that make approximate model-free value itera-
tion algorithms much more efficient by explicilty memo-
rizing and reusing transition information. One of them is
Neural Fitted Q Iteration (NFQ) [11]. NFQ stores all tran-
sition tuples (state, action, successor state) seen so far and
reuses them in every update step of the Q-function. This
compensates an essential problem of ’non-local’ function
approximators: output values at points in input space, that
are currently not updated can be deteroriated or ’forgot-
ten’. Combining this explicit memorization of data points
with the otherwise good generalisation abilities of multi-
layer perceptrons leads to a model-free, Q-value function
based RL approach, that is highly efficient with respect to
the amount of training data needed. NFQ can be seen as an
instantiation of the familiy of Fitted Q Iteration algorithms
[1], which themselves are a special kind of Fitted Value It-
eration algorithms [3], [8].

FBIT 2007

In this paper, NFQ is used as the core learning algo-
rithm for a learning controller that learns to steer a real car
from scratch. The state space for this problem is 6 dimen-
sional and continuous. We demonstrate, that our approach
is able to learn a successful steering in less than 20 minutes
of driving the real car. The approach is fully data-driven,
which means that no simulation model of the car and no
pre-defined control law is used for learning.

2 Steering a Robot Car

2.1 Task Description

The task considered is to follow a given track by control-
ling the steering angle of the steering wheel. The deviation
of the track is measured in terms of the cross-track-error
(cte), which should be kept small. A side goal of the con-
troller is to show a ’smooth’ steering behavior, that gently
controls the car.

Steering is an intermediate step to a fully autonomous
car. In its full version, the robot car shall also activate brakes
and throttle. In the current state of the project, throttle and
brake are activated by a human driver.

2.2 Hardware and Sortware

The robot car is equipped with several sensors that allow
to determine its position both with respect to global coordi-
nates (GPS), and to relative coordinates with respect to the
current shape of the road (e.g. visual lane detection). This
information delivers the pose estimation of the car. From
this pose estimation, essential inputs to the controller are
determined, like e.g. the deviation of the car from the given
track.

On the output side, the car allows to set the steering angle
of the wheel by activating a motor coupled to the steering
wheel. Currently, the steering controller outputs the wheel
angle, which is then transformed into control signals to the
motor controller.

2.3 Classical Controller Design

A good controller must not only reduce the error as
quickly as possible, but must also consider the dynamic be-
havior of the vehicle - e.g. in order to avoid break-outs by
too harsh steerings. Also, some kind of pro-activeness is
expected: a good steering controller should also consider to
some extent the future curvature of the road [2]. An anlyt-
ical controller design based on these considerations can be
found in [6]. This controller was developped based on care-
ful analytical considerations, numerical parameter search
methods and handtuning. In contrast, the learning controller

proposed in the following, shall learn the control law from
interaction with the real car only.

3 Reinforcement Learning and NFQ

3.1 RL Basics

The control problems considered can be described as
Markovian Decision Processes (MDPs). An MDP is de-
scribed by a setS of states, a setA of actions, a stochas-
tic transition functionp(s, a, s′) describing the (stochastic)
system behavior and an immediate reward or cost function
c : S × A → R. The goal is to find an optimal policy
π∗ : S → A, that minimizes the expected cumulated costs

Jπ(s) = E

∞
∑

t=0

c(st, π(st)), s0 = s (1)

for each state. In particular, we allowS to be continu-
ous and assumeA to be finite for our learning system. The
transition modelp is assumed to be unknown to our learn-
ing system (model-free approach). Decisions are taken in
regular time steps with a constant cycle time.

3.2 Q-Learning and Neural Networks

The idea of classical Q-learning is to allow model-free
Reinforcement Learning by iteratively learning an optimal
value function over state-action pairs [15]. Typically, itis
applied on-line, which means, that after each observation of
a transition of the system, the corresponding value of the
Q-function is updated by the following rule:

Qk+1(s, a) := (1−α)Q(s, a)+α(c(s, a)+γ min
b

Qk(s′, b))

wheres denotes the state where the transition starts,a
is the action that is applied, ands′ is the resulting state.
α is a learning rate that has to be decreased in the course
of learning in order to fulfill the conditions of stochastic
approximation andγ is a discounting factor (see e.g. [13]).
It can be shown, that under mild assumptions Q-learning
converges for finite state and action spaces, where a table-
based representation of the Q-function can be used. If every
state action pair is updated infinitely often, in the limit, the
optimal Q-function is reached. The greedy exploitation of
this optimal Q-function finally yields the optimal policy.

To deal with continuous state spaces, the above Q-
learning rule can be adapted to be realized in a function
approximator. In the following, we will use a neural net-
work of type multi-layer perceptron to store the Q-value
function. Although the theoretical convergence guarantees
from above do not hold any more in this case, empirically
a lot of successful applications of neural Q functions have

NFQ main() {
input: a set of transition samplesD;
output: neural Q-value functionQN

k=0
init MLP() → Q0;
DO {

generatepatternset
P = {(inputl, targetl), l = 1, . . . , #D} where:

inputl = sl, al,
targetl = c(sl, al, s′l) + γ minbQk(s′l, b)

generateextrapatterns()
Rprop training(P) → Qk+1

k:= k+1
} WHILE (k < N)

Figure 2. Main loop of NFQ.

been reported. One particular problem when directly im-
plementing the Q-learning rule in a multi-layer perceptron,
is that each update for one state-action pair might induce
unforeseeable changes at the Q-values for other state-action
pairs - disturbing or even destroying the effort done so far.
In practice, this might lead to very long training times, of-
ten requiring several hundred thousands of trials until a suc-
cessful policy is learned. The following will report about an
idea to better deal with that problem and as a consequence
to reduce training effort drastically.

3.3 Neural Fitted Q Iteration (NFQ)

The crucial idea underlying NFQ is the following: In-
stead of updating the neural value function on-line after
each sample (which leads to the above problems), the up-
date is performed off-line considering the entire set of tran-
sition experiences done so far [11]. Experiences therefore
are collected in triples of the form(s, a, s′) by interacting
with the (real) system. Here,s is the original state,a is
the action applied ands′ is the resulting state. The set of
experiences is called the sample setD.

The NFQ algorithm is displayed in figure 2. It consists
of two major steps: The generation of the training setP
and the training of these patterns within a multi-layer per-
ceptron. The input part of each training pattern consists
of the statesl and actional of training experiencel. The
target value is computed by the sum of the transition costs
c(sl, al, sl+1) and the expected minimal path costs for the
successor states′l, computed on the basis of the current es-
timate of theQ−function,Qk.

The consideration of the entire training information in-
stead of updating on-line after each sample, has an impor-
tant further consequence: It allows the application of ad-

vanced supervised learning methods, that converge faster
and more reliably than online gradient descent methods. In
our implementation of NFQ, we use the Rprop algorithm for
fast supervised learning [12]. The training of the pattern set
is repeated for several epochs (=complete sweeps through
the pattern set), until the pattern set is learned successfully.

3.4 Applied Extensions to NFQ

To make NFQ work in practice, some further details of
the algorithm must be clarfied.

Additional training patterns The immediate cost func-
tion that will be used for the steering task (see section 4.2.1)
is kind of a ’canonical’ choice, that serves us as a standard
for a broad range of set-point regulation problems. It re-
flects the desire to quickly bring a system output close to
its target value and keep it there. The control task at hand
is non-episodic, meaning that there is no predefined termi-
nal goal state where the value function takes a certain fixed
value. However, it can be shown, that states, that can be per-
manently kept within the target region by any policy, have
optimal expected costs of 0. Therefore, for those states we
can set the target value to 0 without negatively disturbing
the learning process. This is called the ’hint-to-goal’ heuris-
tic [11]. It can addionally be enhanced by a dynamic pro-
cedure: states, which in course of learning are found that
they can be kept in the target region, can also be assigned
a target value of 0. Empirically, it can be shown, that in
the absence of this heuristic, the output of the neural value
function gradually approaches 1 for all states (since the tar-
get value for each state action pair is at least as large as the
value for its successor state).

Automatic scaling of inputs Since at the beginning of the
NFQ loop all input patterns are available, it is possible to
scale every input to be in the same range, e.g. from -1 to 1.

Sampling of transitions In principle, the transitions used
in NFQ can be sampled arbitrarily. However, when learn-
ing with a real system, collecting transitions that lie on ac-
tual trajectories will be probably the most practical imple-
mentation. A straight-forward way to do this is to greedily
exploit the current neural Q-function to determine the cur-
rent policy. We call this procedure ’greedy-sampling’. It is
implemented by sampling transitions following the current
greedy policy until an episode is terminated. Then the data
collected on the trajectory is added to the transition set and
one or more NFQ iterations are performed. The new pol-
icy is determined by greedily exploiting the resulting new Q
function. In principle, exploration can be added; however in
the following experiments, the policy was determined with-
out exploration.

4 An RL Controller for Steering

4.1 Task specification

The control task is to autonomously steer a robot car
close to a given track by controlling the angle of the steering
wheel. Sensory inputs are the pose of the car (provided by
a GPS system), and the speed of the car. The controller out-
put is the desired angle of the steering wheel, in the range of
±520 degrees. The controller acts with 20 Hz, correspond-
ing to a control interval of50ms. The deviation of the car
from the given track is measured by the ’cross-track-error
(cte)’. As a strict constraint, we request the cte to be always
less than 0.5m.

The learning controller shall learn by directly interacting
with the real car itself. Observations of sensory values of car
behavior recorded during driving are the only source of in-
formation, meaning that the approach is purely data-driven.
No model, neither analytical nor in terms of a simulator, are
considered for learning.

4.2 Setup of the learning task

4.2.1 Immediate costs

The RL task is formulated as the minimisation of expected
cumulated costs over time. The cost functionc(s, u) : S ×
U → ℜ is chosen to be:

c(s, u) =







0 , if |cte| < 0.05m (success)
+1 , if |cte| > 0.5m (failure)

0.01 , else

The cost function reflects the desire for a fast reduction
to a low error with some tolerance (± 0.05m) in accuracy.
A cte-value of more than± 0.5m is considered a failure and
must be avoided under all circumstances. This is reflected
by punishing failure states with a final cost of +1, which
is the upper bound of the sigmoidal output neuron of the
neural Q function.

4.2.2 Controller inputs

The controller input consists of 5 continuous variables.
The aim is to represent kinematic and dynamic information
about the state of the car, that is relevant for the steering
task. The most important information is the cross-track-
error (cte) and its first-order time derivative (̇cte). Since the
dynamic behavior of the car crucially depends on its speed,
the speed of the rear wheels,vrear is the third input. The
fourth input is the ’heading-error’, which measures the dif-
ference between the heading angle of the car and the cur-
vature of the track. The fifth input variable is the so called
’yaw-rate-matching’, which measures the difference of the

speed of change of the yaw angle with respect to the speed
of change of the track curvature. The latter two variables
shall provide the controller with the possibility of a ’pro-
active’ steering, by taking the development of the track into
account.

The considerations that lead to the selection of the above
variables where based on the discussions of relevant inputs
for an analytical controller design [6]. We found this to be
a reasonable starting point; testing other combinations of
input variables is an area of future research.

4.2.3 Q function and policy

To represent the Q-function, a neural network of type multi-
layer perceptron is used. The control action is determined
by selecting the action that minimizes the Q-value of the
current state, i.e.

π(s) = arg min
u

Q(s, u).

To do this, for each action respective input vectors have
to be propagated through the net and the minimum output
value has to be determined. Since the action set typically
consists of only few actions, and the neural net computa-
tions are fast, this operation is not time-critical.

4.2.4 Actions

The output of the controller delivers the angle of the steering
wheel. In a first experiment, we provided only two actions
to the controller: steering wheel left or steering wheel right,
i.e. U = {−360o,+360o}. When testing this approach
on a simulation of the car, the controller actually learned a
successful control policy, even when only these two coarse
actions are available. The cross-track-error can be success-
fully held within [−0.25m, 0.1m] and in particular never
exceeds±0.5m (see figure 3). However, on a real car, this
behavior would not be accetable: the harsh steering leads to
lateral accelerations of the car up to 8m/s2, which would
very likely push the car over. One obvious solution is to
extend the action set to have a finer granularity of actions.
However, the controller would then still have the principle
possibility to go from one extreme to the other. Our solution
to the above problem is described in the next section.

4.3 The I-DOE architecture

The idea of ’dynamic output elements’ (DOEs) [10] is
to enhance the core RL controller by an additional dynamic
operator, that takes the RL action as input and computes
the final control signal as its output. The crucial point of
this arrangement is, that rather than determining the control
signal directly, now thesequenceof RL actions determines
the magnitude of the control signal. In prinicple, a DOE can

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ro

ss
 T

ra
ck

 E
rr

or
 (

m
)

time

Learned Controller Error

Cross Track Error (m)

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

er
in

g
A

ct
io

n
(d

eg
)

time

Learned Controller Steering

Steering Action (deg)

Figure 3. Preliminary experiments on a simu-
lated car: behavior of basic ’bang-bang’ RL
controller using two actions ±360o. Upper
figure: The cross-track-error (cte) can suc-
cessfully be kept between the critical values.
Lower figure: The steering angle of the steer-
ing wheel switches between the extreme val-
ues ±360o in a ’bang-bang’ control fashion.
On a real car, this would cause unacceptable
lateral accelerations.

realize arbitrary dynamics - integration, low-pass filtering,
etc. A crucial point is to extend the input state of the RL
controller by the state of the DOE, in order not to violate
the Markov property of the modified system, that is now
controlled by RL.

For the task at hand, we use a DOE with a simple inte-
grator property (I-DOE), i.e. the DOE sums the RL actions
over time. The state of the I-DOE accordingly evolves by
sDOE(t) = sDOE(t − 1) + u′(t), whereu′(t) is the ac-
tion selected by the RL core controller. The output of the
DOE in this case is equal to the current state of the DOE,
i.e. u(t) = sDOE(t). This DOE outputu(t) is the control
signal (i.e. the steering wheel angle) applied to the car. To
describe the complete state of the original plant and DOE,
the input of the RL core controller is extended by the DOE

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ro

ss
 T

ra
ck

 E
rr

or
 (

m
)

time

Learned Controller Error

Cross Track Error (m)

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

er
in

g
A

ct
io

n
(d

eg
)

time

Learned Controller Steering

Steering Action (deg)

Figure 4. Preliminary experiments on a sim-
ulated car: behavior of an RL controller en-
hanced with an I-DOE. Upper figure: The
cross-track-error (cte) is much lower than in
the bang-bang RL controller version. Lower
figure: The steering angle of the steering is
much smoother than in the bang-bang case.
The improved behavior is due to the en-
hanced control capabilities, of which the con-
troller has learned to make use of.

state informationsDOE().
The action set for the RL DOE-controller is selected to

beU ′ = {±60o,±10o, 0}. For example, to reach a steering
wheel angle of−360o, the RL core controller therefore has
to select the action−60o six times in a row.

Within this framework, the desire for a smooth steering
can be expressed easily by rewarding zero actions (i.e. no
changes of the steering angle) with low costs. In our case,
we realized this by changing the first row in equation 4.2.1
to

c(s, u) = 0, if |cte| < 0.05m andu == 0

The resulting I-DOE controller shows much smoother
behavior than the bang-bang controller previously, both
with respect to a low error and a smooth control signal (see

figure 4).

4.4 The final controller structure

4.4.1 Principle considerations

Driving the robot car with people sitting inside requires that
the car is controlled safely even when learning. Since at the
beginning of learning, the RL controller will not be able to
stay on the track, precautions have to be taken in order to
assure safety. There are several possibilities to deal with
that issue:

A. Stop the car automatically, whenever the RL con-
troller failed. Ask the human driver to bring the car back
to a non-failure state and start a new RL training episode (a
refinement of this without a human driver would be to virtu-
ally reduce the cross-track-error to a valid state by virtually
moving the target track).

B. Use an automatic ’recovery’ control policy, that takes
over, whenever the RL controller fails. This has the ad-
vantage, that driving can be continued without stopping and
with only limited human interaction. Of course, this so-
lution requires a recovery policy that brings the car back
closer to the track, but as we argue in the sequel, this recov-
ery policy can be arbitrary simple.

Note that in both cases, recovery policies are only used
to re-establish a valid state for the RL controller andnot
to produce examples of good steering. No data collection
is done during the regime of the recovery control policy;
it therefore can be arbitrary simple without influencing the
behavior of the RL learning process. For our experiments,
we pursued the second approach, since it allows for a fully-
automated and convenient operation of the learning process
during driving. For the recovery policy, we used an analyti-
cally derived steering controller developped in [6].

4.4.2 Implementation details

Whenever the RL controller reports a failure (cte > 0.5m),
the recovery controller immediately takes over. It controls
the car, until the state is back within the valid region of the
RL controller. Then the RL controller takes over again. To
avoid the system to permanently switch between the two
controllers, a hystereses mechanism was applied: After fail-
ure, the RL controller is allowed to take over again, only if
the error is below a certain threshold, i.e.cte < 0.1m.

During RL control, the controller continously stores
the observed transitions triples(s, u, s′) to its transition
database. When a failure occured, the following things hap-
pen: 1. the episode is terminated, 2. the controller triggers
a background process to do one iteration of NFQ to pro-
duce a new Q-net based on the complete transition database
collected so far, 3. the recovery controller takes over (for
safety reasons). In the cycles following a failure, the RL

controller actively tests, if the cte fulfills the re-entry crite-
rion (cte < 0.1m) and if the background learning process
has produced a new neural Q-net. If both pre-conditions
are fulfilled, the RL controller takes over again and starts its
next episode.

This procedure allows the human driver to only acti-
vate throttle and brake - steering is done completely au-
tonomously and continuously either by the RL controller
or by the recovery controller. The learning process is con-
trolled completely autonomously. In a successful experi-
ment, we expect the RL controller to incrementally increase
its active time in course of learning.

5 Learning on the Real Car

5.1 NFQ parameter settings

The control architecture applied was the I-DOE RL con-
troller enhanced with a recovery controller that takes over
in case of failure as described in section 4. Control in-
terval is 50ms, control signal is the steering wheel angle
of the car. The action set for the RL controller isU ′ =
{±60o,±10o, 0}. The controller is running on a laptop, that
communicates with the car steering software via inter pro-
cess communication.

The neural RL controller starts completely from scratch,
with the weights of the neural Q function randomly initial-
ized within the range±0.5. As the neural Q function, a
multi-layer perceptron was applied consisting of one input
layer, two hidden layers with 10 neurons each and an output
layer with one output neuron. For all neurons, sigmoidal ac-
tivation functions with range(0, 1) were used. The inputs
consist of 5 continuous variables describing the state of the
car, one additional input for the state of the I-DOE, and an-
other input for the candidate action. Transition data was
collected in a greedy-sampling manner, i.e. in each episode,
the current Q function was greedily exploited to determine
the new control (and sampling) policy. After each episode,
one iteration of NFQ is performed. The neural network
training method applied is Rprop, running for 300 epochs.
Rprop was applied with its standard parametrisation [12].
For the training pattern set, 100 extra-patterns accordingto
the ’hint-to-goal’ heuristic were generated. The immediate
cost function used was the one described in section 4.2.1.

Activating throttle and brake was done by a human
driver. Speeds of the car therefore vary with the mood of the
driver. For learning, speeds were typically between 4m/s to
7.5m/s. The learned controller was also tested for speeds up
to 9m/s.

-0.4

-0.2

 0

 0.2

 0.4

 0 50 100 150 200 250 300

ct
e

(m
)

driving time (s)

Figure 5. Behavior of the cross-track-error for
the RL controller in the first 350 seconds of
driving. In the first couple of trials, the con-
troller always quickly fails. After only 90s
driving, RL successfully drives for about 30s,
after about 250s, RL drives for more than 80s.

5.2 Learning results

As described in section 4 learning is triggered com-
pletely autonomously. The only thing the human driver has
to do is to operate throttle and brake of the real car. When-
ever the pre-condidtions for the RL controller are fulfilled
(cte < 0.1 and new Q-net available), RL takes over and
steers the car. Figure 5 shows the behavior of the of the
cross-track-error of RL steering the real car in the first 350
seconds of driving and learning. In the (short) pause be-
tween two RL episodes, the recovery controller has con-
trol while the RL controller is doing NFQ learning. In the
first 90s, whenever the RL controller is in charge, it nearly
immediately fails by provoking a cte of more than 0.5m.
However, after only 90s of gross driving time, the RL con-
troller shows its first successes by driving about 30s until
failure. After 250s gross driving time, RL managed 80s of
autonomous steering.

The first controller, that manages a complete round
(which was a round trip of about 800m length, correspond-
ing to about 130 seconds driving) was obtained after 56
episodes, after about 11 minutes of driving with the car.
That first successful controller still acted pretty ’shakey’
putting the goal of a small error higher than the desire (of
the passengers!) for a smooth steering.

The next controller that completed the round was ob-
tained after 60 episodes in total, after about 16 minutes of
driving. Figures 6 show the cross-track error which could be
successfully held below 0.5m deviation for the entire round.
The controller has successfully learned to use its integrating
DOE to produce large steering angles if required. At that
time, the database contained about20 000 transition tuples.

-0.4

-0.2

 0

 0.2

 0.4

 960 980 1000 1020 1040 1060 1080 1100

ct
e

(m
)

driving time (s)

-400

-200

 0

 200

 400

 960 980 1000 1020 1040 1060 1080 1100

st
ee

rin
g

w
he

el
 a

ng
le

 (
de

gr
ee

)

driving time (s)

Figure 6. Behavior of RL controller on real car
after 60 episodes (about 16 minutes driving).
Above: The cross-track-error is successfully
kept below 0.5m. Below: Control signal as
produced by the RL-DOE controller. The con-
troller learned to generate steering wheel an-
gles of up to 400 degrees, in order to keep the
car successfully on track.

With that amount of data, one iteration of NFQ learning
took about 30s training time on the laptop used.

Having shown that our approach is able to learn from
scratch based on a very reasonable amount of real data, we
stopped the experiment after 70 episodes in total. Up to
that point, the total driving time was only 25 minutes. We
consider that to be a very reasonable time for learning a
controller completely from scratch.

5.3 Discussion

Considering that our learning approach is not based nei-
ther on an initial guess of a parametrized policy nor on a
(simulation) model, NFQ has successfully shown its abil-
ity of being very data-efficient. A good part of this perfor-
mance is due to the good generalisation abilities of multi-
layer perceptrons, which in combination with the explicit

memorisation of transitions seems to be one of the key in-
gredigents of successful value function learning.

The policy learned is successful, but not optimal yet.
Further learning should decrease the cumulated cte further.
Also, the steering is acceptable, but definitely could be
smoother. Further learning means two things: First, more
transitions might be collected to have a better representation
of the car behavior - which means that learning is continued
in the online-greedy manner as described above. In a com-
parable simulator experiment, we observed very good con-
trollers to occur after about 120 episodes of online-greedy
learning.

Another possibility for more learning would be to in-
crease the number of NFQ iterations offline, i.e. without
sampling data on the real car in every iteration. Again, in
a corresponding simulator experiment, this procedure also
produced better controllers when the number of NFQ itera-
tions is increasing.

6 Conclusion

This paper shows the successful application of neural Q
value function learning on a real car directly. Using NFQ
as the core training method, learning to steer from scratch
was possible in less than 20 minutes of driving a real car.
No prior policy and no model are given. We describe an
architecture, where the use of a recovery controller allows
simulateneous learning during driving. However, the use of
such a recovery controller is only optional for convenience;
at no point it is used to collect data or to serve as an example
policy for steering.

References

[1] D. Ernst and a. L. W. P. Geurts. Tree-based batch mode rein-
forcement learning.Journal of Machine Learning Research,
6:503–556, 2005.

[2] T. Gillespie.Fundamentals of Vehicle Dynamics. SAE Pub-
lications, Warrendale, PA, 1992.

[3] G. J. Gordon. Stable function approximation in dynamic
programming. In A. Prieditis and S. Russell, editors,Pro-
ceedings of the Twelfth International Conference on Ma-
chine Learning, pages 261–268, San Francisco, CA, 1995.
Morgan Kaufmann.

[4] R. Hafner and M. Riedmiller. Reinforcement learning on an
omnidirectional mobile robot. InProceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), Las Vegas, 2003.

[5] R. Hafner and M. Riedmiller. Neural Reinforcement Learn-
ing Controllers for a Real Robot Application. InProceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA 07), Rome, Italy, 2007.

[6] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and
S. Thrun. Autonomous automobile trajectory tracking for

off-road driving: Controller design, experimental validation
and racing. InTo appear in the Proceedings of the 26th
American Control Conference, New York, NY, July 2007.

[7] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,
B. Tse, E. Berger, and E. Liang. Inverted autonomous he-
licopter flight via reinforcement learning. InInternational
Symposium on Experimental Robotics, 2004.

[8] D. Ormoneit and . S. Sen. Kernel-based reinforcement learn-
ing. Machine Learning, 49(2-3):161–178, 2002.

[9] J. Peters and S. Schaal. Policy gradient methods for robotics.
In Proceedings of the ieee international conference on intel-
ligent robotics systems (iros 2006), 2006.

[10] M. Riedmiller. Generating continuous control signals for
reinforcement controllers using dynamic output elements.
In European Symposium on Artificial Neural Networks,
ESANN’97, Bruges, 1997.

[11] M. Riedmiller. Neural Fitted Q Iteration - First experiences
with a data efficient neural Reinforcement Learning Method.
In Proc. of the European Conference on Machine Learning,
ECML 2005, Porto, Portugal, October 2005.

[12] M. Riedmiller and H. Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In
H. Ruspini, editor,Proceedings of the IEEE International
Conference on Neural Networks (ICNN), pages 586 – 591,
San Francisco, 1993.

[13] R. S. Sutton and A. G. Barto.Reinforcement Learning. MIT
Press, Cambridge, MA, 1998.

[14] R. Tedrake, T. W. Zhang, and H. S. Seung. Learning to walk
in 20 minutes. InProceedings of the Fourteenth Yale Work-
shop on Adaptive and Learning Systems, 2005.

[15] C. J. Watkins.Learning from Delayed Rewards.Phd thesis,
Cambridge University, 1989.

