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Abstract—We propose a learning architecture, that is able to
do reinforcement learning based on raw visual input data. In
contrast to previous approaches, not only the control policy
is learned. In order to be successful, the system must also
autonomously learn, how to extract relevant information out of
a high-dimensional stream of input information, for which the
semantics are not provided to the learning system. We give a
first proof-of-concept of this novel learning architecture on a
challenging benchmark, namely visual control of a racing slot
car. The resulting policy, learned only by success or failure, is
hardly beaten by an experienced human player.

I. INTRODUCTION

Making learning systems increasingly autonomous in the
sense that they can not only autonomously learn to improve
from their own experiences [1], [2], but furthermore achieve
this by requiring less and less prior knowledge for their setup,
is one of the promising future research directions in machine
learning. In this paper, we target at a learning system, that
gets a potentially broad stream of sensor information from its
environment - here in form of visual data - and reacts with a
sequence of control decisions to finally reach a desired goal. In
the following, we present a first prototypical implementation
of such a learning system, that learns to control a real world
environment - a slot car racer in this case - by learning to react
appropriately to visual input information provided by a digital
camera. The crucial point here is, that no knowledge is pro-
vided to the learning system about the semantics of the visual
input information (e.g. no classical computer vision methods
are applied to extract position of the car etc.), but instead, only
a stream of raw pixel information is provided. Also, no prior
information about the dynamics of the controlled system is
provided. Thus, the task of the learning system is two-fold:
first to autonomously learn to extract out of the stream of raw
pixel data the state information that is needed to control the
car, and secondly, to learn a control policy depending on that
representation that achieves the learning goal of driving the
car as fast as possible without crashing.

We describe a learning control architecture, that learns by
experience of success or failure based on raw visual input data.
As a proof-of-concept it is applied to a challenging real-world
task, namely camera based control of a slot car [3]. Extracting
state information out of raw images is done by a deep encoder
neural network, whereas the reinforcement learning task is
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solved within a fitted Q-learning framework (see e.g. [4], [5],

(6D.

Fig. 1. The visual slot car racer task. The controller has to autonomously
learn to steer the racing car by raw visual input of camera images.

II. RELATED WORK

Deep neural networks have been quite successful in
unsupervised learning of sparse representations of high-
dimensional image data. This includes training with restricted
boltzmann machines [7] as well as pre-training deep networks
by stacking flat multi-layer perceptrons layer-by-layer on each
other [8], [9]. Applications of these deep learning techniques
so far include learning interpretable visualizations of high-
dimensional data [7], letter recognition [10], face recognition,
[11] and object recognition [12] as well as natural language
processing [13]. In several of these tasks deep architectures
have been found to yield results superior to flat networks or
directly trained random initialized deep networks [14], [15],
PCA and to more traditional non-linear techniques for learning
manifolds [7], [16]. Actually, at present, the most successful
techniques in the well-known MNIST letter recognition task
are based on deep architectures [17], [18]. All the mentioned
papers have in common that they concentrate on learning either
representations (e.g. for visualization purposes) or classifica-
tions (using supervised learning). One thing that so far hasn’t
been investigated thoroughly is whether deep learning can also
be a basis for learning visual control policies in reinforcement
learning—that is solving sequential decision problems with a
high-dimensional state space without any supervision, just by
means of trial and error. Although the described approaches
mainly used small image patches or rather structured environ-
ments, there is the reasonable belief that this technique will



scale towards bigger real-world problems [17], [19], [20], [21]
and may form a sound basis for automatically learning useful
state representations in reinforcement learning.

So far, there have been mainly two different proposals
for how to learn policies from high-dimensional image data.
Gordon [22] and Ernst [23] applied their “fitted” methods
directly to approximating value functions in high-dimensional
image space. Having been applied only to small, simulated
toy problems and having never been tested for generalizing
among similar images, there remain strong doubts this “di-
rect” approach scales to anything beyond simple toy prob-
lems. Jodogne and Piater proposed to apply an extra tree
algorithm[24] to feature descriptors extracted from images and
to then approximate a value function in the constructed feature
space [25], [26]. Featuring a two-stages approach build on
well-studied image feature descriptors (SIFT), there is reason-
able expectation this approach will be able to exhibit some
generalization among similar images. This approach has been
tested on more realistic simulations than the first approach
[27], [25] but still misses a successful demonstration on a real-
world problem. By relying on handcrafted feature descriptors
and extraction algorithms, this approach only solves half of the
feature-learning problem, only learning the selection of useful
features, not their autonomous extraction. This ambitious goal
is pursued in the following work.

III. THE DEEP-FITTED-Q FRAMEWORK

The task of the autonomous learning controller is to take raw
visual data as input and compute an appropriate control action.
Here, this is handled in a reinforcement learning setting,
where one seeks an optimal control policy, that maximizes
the cumulated reward over an infinite number of time steps,
ie. m(s) = max, Y, r:. Here ry denotes the immediate
reward, given in each decision step and vy is a discount
parameter, that decays the influence of future rewards over
current ones. For a concrete selection of these parameters see
below.

One of the crucial points when plugging visual data directly
into a learning control system, is that a high-dimensional
stream of pixel-data must be reduced to its essential infor-
mation. A classical approach would typically analyse each
image pixelwise and extract relevant information by means
of machine vision methods. In this work, the challenge is
to design a learning system, that is able to extract relevant
information out of the input data completely autonomously.

The deep-fitted-Q (DFQ) framework [28], [29] assumes the
following situation: input to the control system is a continuous
series of images taken by a digital camera, observing the
system to be controlled. Image information thus is given as a
vector of pixel-data recorded at discrete time steps, denoted
by s:. Since s; contains the whole image information, it is
typically high-dimensional (typically d >> 1000 dimensions).

The next step is to learn a mapping of the raw input
information s; to a condensed information vector z; = ¢(s;).
In contrast to s;, 2; is of low dimension (e.g. 2 or 3). This

mapping ¢ : R? — R? is learned autonomously via a deep-
autoencoder approach [7], [8], [28], [30].

The actual control signal a; is then computed on the
basis of the condensed information, i.e. a; = 7*(z:). The
optimal control policy 7* is given by optimizing the cumulated
expected sum of rewards, i.e. J™ = max, Z:io ~try. To
find 7%, fitted Q iteration (FQI) is used as the basic learning
scheme [4], [31]. The controller, that maps the condensed
information vector z; to a concrete action, is called FQI-
controller accordingly. See section V-D for a description of
the FQI approach used here.

In dynamical systems, sensor information usually does not
contain complete access to state information. A common
approach is then to also provide previous sensor and action
information as input to the FQI controller. This method is
also used in the presented system and described in detail in
section V-C.

From the viewpoint of the overall controller, learning in-
formation is provided in terms of tuples of camera image,
action, reward and next camera image (s¢,as, ¢, S¢+1). The
immediate reward signals reflect the user’s notion about what
the learning system should achieve. The definition of the r}s
for the visual slot car task is given in section VI.

To summarize, three main steps can be distinguished:

¢ learn to encode the raw visual information by a deep

encoder neural network

« compute state information by using the encoded input in-

formation and - if necessary - information from previous
time steps

¢ learn to compute the action based on current (condensed)

state information by a Fitted-Q scheme.

Learning can be done in an interwoven mode, where both
the deep neural encoder and the inner FQI-controller are
learned incrementally while interacting with the real system.

Note, however, that it is also possible to train both parts,
neural encoder and inner FQI-controller completely seperately
[29]. This has the advantage, that one can check correct
functioning of both parts individually. Since training of each
individual module takes quite long, this approach is applied
here.

IV. THE VISUAL NEURO-RACER
A. The task

The goal is to learn a control policy for a slot-car, that moves
the car as fast as possible along a given track without crashing.
The learning system shall learn this behaviour in a typical
reinforcement learning setting by the only training information
of success or failure. As a novelty, input information to the
learning system is given by unprocessed, i.e. raw camera
sensor information. The learning control system therefore has
to learn to filter out the relevant information out of the image
data and upon this information learn a control policy. Only
if both steps are successful, it can achieve to optimize the
cumulated reward and fulfill its learning goal (see figure 1).

Besides its large input dimension, which is far beyond
that of typical reinforcement learning tasks, the visual slot



1) Initialization Set episode counter k£ <— 0. Set sample counter
p < 0. Create an initial (random) exploration strategy 7° :
Z +— A and an initial encoder ¢ : S+>y0 2 with (random)
© of

weight vector WP°. Start with an empty set Fs =
transitions (S, at, e+1, St+1)

2) Episodic Exploration In each time step ¢ calculate the feature
vector z; from the observed image s; by using the present
encoder z; = ¢(s;; WF). Select an action a: +— 7" (z)
and store the completed transition in image space S: Fs <
Fs U (Sp,ap, Tp+1, Sp+1) incrementing p with each observed
transition.

3) Encoder Training Train an auto-encoder (see [7]) on the p
observations in Fs using RProp during layer-wise pretraining
and finetuning. Derive the encoder ¢(-; W**1) (first half of
the auto-encoder). Set k < k + 1.

4) Encoding Apply the encoder ¢(s;W") to all transitions
(st,at, 41, St+1) € Fs, transfering them into the feature
space Z, constructing a set Fz = {(2¢, at,Te4+1,2e41)| t =
1,...,p} with z; = ¢(se; W5).

5) Imner Loop: FQI Call FQI with Fz. Starting with an initial
approximation Q°(z,a) =0 V(z,a) € Z x A FQI (details in
[4]) iterates over a dynamic programming (DP) step creating
a training set P = {(zt, as; @™t = 1,..,p} with
cji“ = 7141 +ymaxeea Qi(zt+1, a') [4] and a supervised
learning step training a function approximator on PiT!, obtain-
ing the approximated Q-function Q*™*. After convergence, the
algorithm returns the unique fix-point Q.

6) Outer loop If satisfied return approximation Q*, greedy policy
7 and encoder ¢( - ; W¥). Otherwise derive an e-greedy policy
7% from QF and continue with step 2.

Fig. 2. General algorithmic scheme of Deep Fitted Q with the two basic
building blocks encoder training and fitting the Q values (FQI).

car problem offers another interesting challenge to learning
controllers: the optimal (e.g. fastest) control policy is always
close to failure.

B. System setup

Control decisions are made in discrete time steps. In the
following, we set this value to be four decisions per second
(the exact value is A; = 0.267s, resulting from the image
frequency of the camera). This choice is a compromise be-
tween a small time step that allows fine granularity control
and a large time step that allows all relevant information to be
captured without information being delayed between different
time steps. At each time step, the controller is provided with
the current image of the digital camera, s;, and is expected
to respond with a control action a;, which corresponds to a
voltage, applied to the car on the track.

V. A VISUAL-INPUT BASED CONTROLLER FOR THE VISUAL
SLOT-CAR RACER

A. Overview
The control system proceeds in three basic steps, which are
described in more detail in the following subsections:
e process input data by an autonomously learned deep
neural encoder network

« build state information based on encoded image informa-
tion and temporal information

target: reconstruction
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Fig. 3. Overview of the system.

« learn a control policy by a cluster-based Fitted Q learning
method called cluster-RL

B. The neural deep encoder
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Fig. 4. Encoder part of the deep neural autoencoder.

1) Structure: The neural encoder net is a multilayer per-
ceptron with a special “sparse” wiring structure in the first
layers, that is inspired by principles found in the structure of
the vertebrate retina and has been widely adapted in the neural
networks community [32], [33].

The size of the input layer is 52x80 = 4160 neurons, one for
each pixel provided by the digital camera. The input layer is
followed by two hidden layers with 7x7 convolutional kernels
each. The first convolutional layer has the same size as the
input layer, whereas the second reduces each dimension by a
factor of two, resulting in 1 fourth of the original size.

The convolutional layers are followed by seven fully con-
nected layers, each reducing the number of its predecessor by
a factor of 2. In its basic version the coding layer consists of
2 neurons.

Then the symmetric structure expands the coding layer
towards the output layer, which shall reproduce the input and
accordingly consists of 4160 neurons.

Althogether, the network consists of about 18000 neurons
and more than one million connections. The actual number of
free parameters is less, since connections in the convolutional
layers are shared weight connections.
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Fig. 5.

Error plot of the neural decoder during fine training, i.e. after completion of pretraining. The brightness of each pixel is proportional to the error

made at the corresponding output neuron. Upper left corner shows the situation after pretraining is finished: An error is made along bascially all positions
of the car along the track, i.e. the network is not able to reproduce the position of the car reliably. Outside the track, no error is observed any more; the
reproduction of these pixel values is already correctly learned in the pretraining phase. The lower row shows the activation of the two hidden neurons in the

coding layer (neuron 1: x-axis, neuro 2: y-axis). With reduction of the reproduction error, the mapping of the image to the x-y plane nicely "unfolds’,

finally

yielding a condensed coding, that allows a good distinction between different input situations.

2) Training: Training of deep networks per se is a chal-
lenge: the size of the network implies high computational
effort; the deep layered architecture causes problems with
vanishing gradient information. We use a special two-stage
training procedure, layer-wise pretraining [8], [29] followed by
a fine-tuning phase of the complete network. As the learning
rule for both phases, we use Rprop [34], which has the
advantage to be very fast and robust against parameter choice
at the same time. This is particularly important since one
cannot afford to do a vast search for parameters, since training
times of those large networks are pretty long.

The training set of the deep encoder network consists
of 7000 images, generated while moving the slot-car by a
constant speed. For the layer-wise pretraining, in each stage
200 epochs of Rprop training were performed. The result of
reconstruction after the pre-training phase can be seen in the
image in the upper left corner of figure 5. The network has
learned to reconstruct the still parts of the image (near-zero
error outside the track) and encodes some useful information
in the code layer (partially unfolded feature space displayed
in the lower row of the figure), but has problems with the
pixel positions, where the image information varies due to the
movement of the car. To reduce this error is the goal of the
fine-tuning phase. The error-diagrams in figure 5 show the
reduction of the error in the fine-tuning phase. After 10,000
epochs, the error has been significantly reduced and nearly
perfect reconstruction of all images is achieved (nearly no
bright spots in the error diagram in the upper right corner
of figure 5). The remaining white fragment in the lower left
corner of the last error image is caused by a sun beam lighting
the floor in only part of the images. The lower row of figure 5
shows the activation of the two hidden neurons in the coding
layer (neuron 1: x-axis, neuron 2: y-axis). With reduction of
the reproduction error, the mapping of the image to the x-

y plane plane nicely ’unfolds’, finally yielding a condensed
coding, that allows a good distinction between different input
situations.

Let us emphasis the fundamental importance of having the
feature space already partially unfolded after pretraining. A
partially unfolded feature space indicates at least some infor-
mation getting past this bottle-neck layer, although errors in
corresponding reconstructions are still large. Only because the
autoencoder is able to distinguish at least a few images in its
code layer it is possible to calculate meaningful derivatives in
the finetuning phase that allow to further “pull” the activations
in the right directions to further unfold the feature space.

To reduce training times as much as possible and to
allow the application of the trained encoder in a real-time
setting, efficient coding of the neural network implementation
is required, that additionally exploits parallelism as much
as possible. We therefore re-implemented our C/C++ neural
network library from scratch and made it publicly available
at GitHub' as the open-source package n++2. N++2 exploits
SIMD? architectures by using cBLAS? functions for propagat-
ing activations and partial derivatives. Furthermore, it makes
use of the associative property of the calculated error term
as sum of errors of all individual patterns by splitting the &
training patterns p into n batches and calculating n parts of
the sum on as many parallel threads using identical copies of
the neural network’s structure:

k k/n 2k/n k
E Ep: § Ep1+ g Epz‘i"i’ E En.
p=1 p1=0k/n+1  pa=1k/n+1 prn=(n—1)k/n+1
~—_——
on Ist copy on 2nd copy on n-th copy

Uhttps://github.com/salange/NPP2
2Single Instruction Mutliple Data
3C version of Basic Linear Algebra Subroutines



The same splitting is used for calculating partial derivatives.
Altogether, training the deep encoder network takes about 12
hours on an 8-core CPU with 16 parallel threads.

C. Building state information

The output-layer of the deep encoder network delivers an
encoding of the high-dimensional, static input image to a
condensed low-dimensional representation of the current scene
as captured by the camera. For most dynamical systems,
however, complete state representation also requires temporal
elements. A common way to go is, to add information about
past values of sensor and action information to the state
description. Two ways to realize this are discussed in the
following.

1) The tapped-delay-line approach: In the simplest case,
state information is approximated by providing present and
previous input information to the control system. Here, this
can be done by using encoded information from previous and
current images. This is called the 'DFQ-base’-approach in the
following. State information for the slot car task consists of
the encoding of the current and the previous image, z; and
z¢—1 respectively, and the previous action a;_1.

2) The Kohonen-Map trick: As the spatial resolution is non-
uniform in the feature space spanned by the deep encoder, a
difference in the feature space is not necessarily a consistent
measure for the dynamics of the system. Hence, another trans-
formation, a Kohonen map (KX : R* — R), is introduced to
linearize that space and to capture the a priori known topology,
in this case a ring. A sequence of several thousand images of
the system is recorded while the slot-car is moving at a fixed
speed. The data is mapped into the feature space and the result-
ing feature vectors z; = ¢(s;) are fed into the SOM by using
the first round around the track as the starting prototypes for
the ring. These points are augmented by introducing additional
points in the center between two consecutive points. After
this initialization, regular SOM training is performed using
the transformed data of all images as input. The neighborhood
function is defined as D (i, j) = min(|i—j|,n—1—|i—j|) and
while learning the influence on neighboring points is cropped
at a distance of 5. The resulting SOM in the experiments was
trained for 50 iterations (n = 0.5) and had 269 prototypes.
In the application phase, feature points are projected onto
the embedded topology by applying an orthogonal projection
(see figure 7) using the algorithm shown in figure 8. The
algorithm determines the prototype closest to the feature point
and projects it onto the line segment to a neighboring proto-
type. After the projection, the result is normalized. The one-
dimensional space spanned by this projection is continuous
and temporally uniform as the slot-car was travelling at a
fixed speed during image acquisition, roughly producing a
uniform distribution of the training images along the track.
Therefore this space is better suited to derive dynamics of
the system state than the non-uniform feature space. The
state representation, called 'DFQ-SOM’-approach, uses the
mapped encoding of the current and a difference with the

previous image* as well as the previous action, resulting in
(st = K(zt), 8; = || K (2) — K(2¢-1) ||, at—1)-
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Fig. 6. Speed estimate based on feature point difference (left) as well as
SOM index space difference (right) given two fixed action policies (resulting
in two different constant real-world speeds). The feature point distance is not
able to separate the two velocities reliable as the distributions of estimates of
both constant-action policies overlap. The estimates based on differences in
the SOM index space are more reliable as distributions do not overlap.

In fig. 6 we can see the benefit for using the SOM-positions
for calculating the state differences for estimating velocities.
The graph displays the velocity estimates for two different
actions at a problematic position in the state space (a jump).
Whereas the feature space difference does not allow for a
good separation of the slower and faster actions (displayed: N
measurements of the velocity-difference of a passing-by car),
the difference on the embedded SOM is much more expressive
and allows for a good separation. That is possible because the
prototypes do the same jump (one prototype before the jump,
one after) as the data, but the ‘normalized’ inter-prototype
distances do not have such a high variance and are a much
more reliable encoding of the position.

Wijo+1

Wio—1

Fig. 7. Orthogonal projection of feature point ¢(d) onto the SOM structure:
Depending on which side of the closest prototype wjg the projection will
intersect, the algorithm separates three cases: C2 which intersects the line
segment to the previous prototype, C3 intersects the line segment to the
following prototype and the special case C1 where the feature point is mapped
onto the prototype itself.

D. The FQI Controller - approximating the Q-function with
ClusterRL

An important decision is what approximator to use for
approximating the value function inside the FQI - algorithm

4The difference || K (2¢) — K (2¢—1)|| approximates the derivative §’ of the
mapped states s’ and could be interpreted as a ‘feature-space velocity’.



Input: new feature point ¢(d)

Output: projection on SOM index space: p*
Jo < min; [[o(di) —wjl| (Vwj € W)

V< ¢(d) — Wiy, VL <= Wji—1 — Wj, VR < Wj11 — Wj,

/* determine winner */

BLH%J&H% /* determine cosines */
if(BLSO/\BRSO)then
P wj, /* case C1 */

end
else if B; < 3, then

* . <V<,VL>
P =W~y

/* case Cy */

end
else
p* < wj, + <v":‘“> /* case C3 */
end
Fig. 8.  Orthogonal projection algorithm used to map feature points of

arbitrary dimensionality onto the SOM structure defined by the list of
prototypes wj € W (see fig. 7 for details on the cases)

(step 5 of DFQ as shown in figure 2). Stable convergence is
guaranteed for approximators known as averagers [35], [29].
This includes a specific type of non-parametric kernel-based
approximators [35] as well as a whole class of ‘standard’ but
non-expanding (parametric) function approximators [22], [4],
[29]. We have decided to use a parametric grid approxima-
tor ("ClusterRL’ approach, see [29]) in this experiment for
two reasons: first, the parametric representation allows us to
throw the training data away after training, and second, we
expected the sharp cell borders of this approximator to be
better suited than a ‘smoothing’ kernel-based approach for the
approximation of the sharp discontinuities (’crash-boundary’)
in the problem’s state space.

The motivation for the ClusterRL approach is the following:
the continuous state space is partitioned into a number of
distinct cells that are than each assigned a single g-value
for each action, locally approximating the Q-function. Thus,
all states in the same cell share the same Q-values. This is
similar to the extra-trees approach used in [4]. However, the
grid approximator used in our ClusterRL approach, needs only
a single parameter (number of cluster centers), is completely
data-driven and allows for irregular shapes of its cells. This
is achieved by doing a cluster analysis of the observed states
(here: using k-means, but other methods like SOM [36], [37]
and neural gas [38] are also possible) and then constructing
a Voronoi-diagram from the cluster centers found (in 2D
this looks like an irregular grid). Each cell in the Voronoi-
diagram—defining the ‘area of influence’ or ‘receptive field’
of the cluster center (prototype neuron)—becomes one cell of
the state space’s partition.

The details of ClusterRL are shown in the pseudo code
below. The algorithm is started with the number %k of cluster
centers to use, an initial g-value g° (typically but not nec-
essarily ¢° = 0), and the observed state transitions F. Using
only the starting states in the state transitions, k cluster centers
are initialized by placing them on the positions of k£ randomly
selected states. Afterwards, this initial distribution Cy of cluster

centers is improved applying the the k-means algorithm.

Input : k,¢°, F

Result : Appoximation Q of the optimal g-function Q*
14 0;

X < extract observed states (F);

Cop < initialize prototypes (X,k);

C; + k—means (C;_1,X);

QO < construct grid approximator (C;, (jo);
Q + Fitted Q-Iteration(Q° F);

The resulting distribution of cluster centers is then used
to approximate the value function. Basically, this is done by
storing one q-value for each of the actions at each of the cluster
centers (prototypes for their region of influence). Initially,
these are set to g°. When accessing one particular state in
the state space, we look up the cell it is in (this is done by
simply finding the closest cluster center) and then using the
values stored for this particular cell at the cell’s cluster center
(or prototype).

During training, the FQI-algorithm alternates between cal-
culating training patterns P = {s¢,a;; @] t = 1,...,p} in
a DP step and training a function approximator on these
patterns. In the case of using the grid approximator, ‘training’
the function approximator simply means setting the g-values
at the cluster centers to the average of the training pattern
that fall into the center’s cell. Technically, for updating the
g-value ¢, of action a at a prototype c;, we use the subset
Po = {(st,a¢;q;) € P| ay = a} of training pattern (sq, at; Gt)
that used action a and calculate from it the new Q-value g,
as the weighted average

> Gilse) (1)

> adise) |/
(5¢,a¢;qt)EPa

(8¢,a¢;4t)E€Pq

Ga =

with §;(s;) being the indicator function

1, iff s; is within cell of ¢;
di(s) = . (2
0, otherwise

The value g, remains unchanged, if there’s no training pattern
in the cluster center’s area of influence.

This supervised training procedure can be done with a single
sweep through the pattern and, therefore, is by orders of
magnitude faster than training a neural network for several
epochs. The most expensive operation is assigning the training
pattern to the correct cells in the partition (finding the closest
prototype). But, since during the FQI procedure the structure
of the grid remains unchanged, the assignement of training
pattern to cells in our implementation is calculated only once,
and then ‘cached” with a linked-list data structure.

VI. RESULTS

To test our approach, the learning controller was applied
to the track shown in figure 1. The controller has 4 actions
(0,90,120,200) available, corresponding to the voltage that is



TABLE I

RESULTS.
CONTROLLER AVG. TIME PER ROUND CRASH-FREE
RANDOM - NO
CONSTANT SAFE 6.408s YES
DFQ-BASE 2.937s YES
DFQ-SOM 1.869s YES

fed to the car. When a voltage of 0 is applied, the car is actively
decelerated. The higher the voltage, the faster the car goes, but
the relationship is nonlinear. The reward given corresponds to
the magnitude of the action applied, i.e. the reward is r, = 90
if action a; = 90 is applied. When the car crashes, i.e. falls
off the track, a negative reward (punishment) of -1,000,000 is
given. By this specification, the controller is forced to learn
a control law, that maximizes the cumulated speed of the
car, under the constraint of always avoiding crashes. For all
experiments a discount rate of v = 0.1 was used.

The time step was set to Ay = 267ms. Each training
episode has a length of 80 steps (corresponds to about 21s).
To test the performance, the test episode length was set to 400
steps.

First, two non-learning controllers were being applied to
give an idea of the difficulty of the task. Policy ’random’
chooses the actions completely at random. Not surprisingly,
applying this policy, the car often stops, goes slowly, or
accelerates too much and crashes. Policy ’safe’ applies the
highest possible constant action, that does not crash the car.
An average round using the constant policy takes 6.408s. This
can be seen as a baseline performance. Going faster than this
policy will actually require information of the state of the car
and the experience, where one can go faster and where one
has to be more careful.

Learning was done by first collecting a number of "baseline’
tuples, which was done by driving 3 rounds with the constant
safe action. This was followed by an exploration phase using
an e-greedy policy with € = 0.1 for another 50 episodes.
Then the exploration rate was set to O (pure exploitation). This
was done until an overall of 130 episodes was finished. After
each episode, the cluster-based Fitted-Q was performed until
the values did not change any more. Altogether, the overall
interaction time with the real system was a bit less than 30
minutes.

The first learning controller approach, DFQ-base, shows al-
ready very good performance. Input to the inner FQI controller
is a 4 dimensional state representation (z1, 2o, ||Az||, at—1),
where 21, and zp, are the activation values of the neurons
of the encoder layer of the deep encoder net, and ||Az|| is
the distance to the activations of the previous time step in
euclidean norm. Here, 400 clusters were used to represent the
Q-function in the cluster-RL approach.

The average round takes 2.937s which is more than twice
as fast as the baseline. This performance corresponds approx-
imately to what a good human player will achieve.

Using the above described *Kohonen-Map trick’, the perfor-
mance can be boosted even more. The DFQ-SOM appraoch

uses 3-dimensional state information (Z;, |AZ|, a;—1), where
Zy is the real-valued position of the encoded image information
in the SOM and |AZ;]| represents the absolute difference
of current encoded image information and previous encoded
image information within the SOM.

For the DFQ-SOM approach, finally a number of 800 cluster
neurons gave the best overall result. The average time achieved
for a round is 1.869 s, which is 3 times as fast as the ’constant’-
controller and improves upon the already well working DFQ-
base approach by another 50%. To achieve this performance,
the controller not only has to correctly extract knowledge about
position of the car by the deep neural encoder, but also has
to learn, when its possible to accelerate and when it must
decelerate in order to avoid crashes with very high reliability.
The latter is learned by the cluster-RL based FQI-controller.
The times achieved by the "'DFQ-SOM’ approach are hard to
beat by a human. A visualisation of the final control policy is
given in figure 9.
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Fig. 9. Visualisation of the learned policy (car is driving counter-clockwise):
the controller has nicely learned to accelerate on pieces, where it is save (e.g.
straight track or boundaries the car could lean its tail on at the top corner)
and to decelerate at dangerous positions (e.g. at the track crossing or in the
curve without boundaries).

VII. CONCLUSIONS

We described a first prototypcial realisation of an au-
tonomous learning system, that is able to learn control based
on raw visual image data. By 'raw’ we mean, that no semantics
of the image are a priori provided to the learning system.
Instead, the system must learn to extract a relevant represen-
tation of the situation in the image, in order to fulfill its overall
control task. While learning the representation is done with a
neural deep encoder approach, learning the control policy is



based on cluster-RL, a Fitted-Q batch reinforcement learning
scheme.

We have further demonstrated, that with the use of ad-
ditional prior knowledge (in this case that the system is
moving on a two-dimensional manifold) we can use additional
self-organized mappings (the Kohonen-Map trick) to further
improve internal representation, which results in improved
control performance. In this study, this knowledge came from
outside, but future learning systems might be able to extract
such meta-knowledge autonomously from experience and use
it accordingly.

The resulting system was able to autonomously learn to
control a real slot car in a fashion, that is hard to beat by a
human player.

Being able to autonomously handle raw, high-dimensional
input data and acting reasonable on the autonomously ex-
tracted information offers exciting opportunities for the control
of complex technical systems, where an increasing amount of
sensory input information is available.
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