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ABSTRACT

In this work we investigate the applicability of unsuper-
vised feature learning methods to the task of automatic
genre prediction of music pieces. More specifically we
evaluate a framework that recently has been successfully
used to recognize objects in images. We first extract local
patches from the time-frequency transformed audio signal,
which are then pre-processed and used for unsupervised
learning of an overcomplete dictionary of local features.
For learning we either use a bootstrapped k-means cluster-
ing approach or select features randomly. We further ex-
tract feature responses in a convolutional manner and train
a linear SVM for classification. We extensively evaluate
the approach on the GTZAN dataset, emphasizing the in-
fluence of important design choices such as dimensionality
reduction, pooling and patch dimension on the classifica-
tion accuracy. We show that convolutional extraction of lo-
cal feature responses is crucial to reach high performance.
Furthermore we find that using this approach, simple and
fast learning techniques such as k-means or randomly se-
lected features are competitive with previously published
results which also learn features from audio signals.

1. INTRODUCTION

Automatic categorization of music pieces into categories
such as mood, artist or genre is a widely studied topic
in music information retrieval. Those categorization tasks
basically consist of two steps: feature selection/extraction
and classification. Designing and selecting good features
for a certain task is demanding and requires expert knowl-
edge about the domain at hand. Nonetheless, a wide range
of those hand designed features have been proposed in the
past. More recently there has been a growing interest in
methods that automatically learn features from data in an
unsupervised fashion. Those methods have been very suc-
cessful on a range of recognition benchmarks for images
as well as audio data (see Section 2).

In this work, we investigate the applicability of a k-
means based unsupervised feature learning framework that
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has been used successfully for object recognition in RGB-
D images [1] to the problem of genre classification of mu-
sic pieces.

This framework allows us to fast and flexibly learn local
features of different sizes and shapes and to show whether
features that span the whole frequency range, only parts of
it or even features that cover several consecutive points in
time perform best for the task of genre prediction.

To do so, we need to transform the raw audio signal
into the time-frequency domain, for which researches have
used varying transformations in the past. We determine the
influence of this choice by evaluating the feature learning
on two different transformations.

After learning an overcomplete dictionary of local fea-
tures, we extract feature responses in a convolutional man-
ner. Although computationally more expensive, we show
that convolutional extraction, together with the right pool-
ing scheme, improves recognition performance significantly.

The paper is structured as follows: In Section 2 we give
a short review of approaches that also learn features from
audio data, followed by a description of the learning frame-
work in Section 3 and 4. We extensively evaluate the pa-
rameters of the learning framework and show its potential
on the GTZAN dataset [14] by reporting competitive re-
sults in Section 5.

2. RELATED WORK

There is a range of feature learning methods that have been
used to tackle music information retrieval tasks e.g. sparse
coding [6], principal component analysis [5], deep belief
networks [4,8], or a mean-covariance restricted Boltzmann
machine [11].

All those feature learning frameworks rely on a transfor-
mation of the raw audio signal to the spectral domain. Fre-
quently used is the short time Fourier transformation (with
varying window lengths), which can be mel-frequency scaled
[5, 11]. Henaff et al. [6] apply the constant-Q transform
[12].

Features learned by those approaches differ in size and
shape, e.g. some approaches rely on features that cover
single time frames [4–6], only parts of the frequency range
[6] or even learn time-frequency features that span several
consecutive points in time [11].

Learning feature codebooks using simple k-means has
a long tradition and has also been applied to audio tasks
in [11, 13].



However, Coates et al. [3] just recently found that good
image features can be learned using k-means if state-of-
the-art image pre-processing and feature encoding is used.
This finding could be confirmed and extended for RGB-D
images by Blum et al. [1] who used a convolutional boot-
strapped k-means procedure to successfully learn RGB-D
features for object recognition in “3D” images.

3. LEARNING FEATURE RESPONSES

Our goal is to learn a set of feature responses D ∈ RN×k

given a set of input vectors X = {x(1), . . . , x(m)} with
x(i) ∈ RN . The input vectors are patches of size v × w
extracted from a training set represented as column vec-
tors. Each value is represented using d channels (e.g. with
RGB images d = 3, with spectrograms d = 1) and hence
N = v ·w · d. Random patches of size v×w are extracted
to build the training set X . Once X is known we apply a
pre-processing step followed by the unsupervised learning
algorithm.

3.1 Pre-processing

As a pre-processing step we first normalize all patches con-
tained in X by subtracting their mean and dividing by the
standard deviation. Afterwards a whitening transformation
[7] is applied to the patches. The purpose of the whiten-
ing transformation is to ensure that values are decorrelated
and have unit variance. This step is crucial to ensure a
good quality of the learned feature responses as shown
in [3]. We use PCA whitening, which allows us to drop
insignificant dimensions from the input data. This results
in increased feature extraction speed and can improve fea-
ture quality as shown in [1]. If dimensionality reduction
is used, we chose to keep the first n components thereby
projecting each extracted patch x ∈ RN to a lower dimen-
sional vector x′ ∈ Rn.

3.2 Unsupervised learning

We use a k-means approach to learn k centroids build-
ing the feature response dictionary D by clustering the ex-
tracted patches X . Although k-means is a very simple un-
supervised learning algorithm that is easy to implement, it
has recently been shown that it is competitive to other un-
supervised learning algorithms when learning local, low-
level features from pre-processed image data [3]. Apart
from its simplicity the main advantage of using k-means
over other algorithms is that it is very fast and scales well
to a large amount of centroids. It can therefore be trivially
parallelized on current computer hardware in a map-reduce
manner and allows us to learn large, over-complete feature
dictionaries that can be expensive to learn using other un-
supervised learning approaches.

3.2.1 Bootstrapping

To further improve upon the feature quality that can be
achieved using standard k-means, as well as the required
run time until convergence, we use a bootstrapping learn-
ing scheme as proposed in [1] to train the k centroids.

(a) without bootstrapping (b) with bootstrapping

Figure 1: Comparison of 16 × 16 features learned on the
GTZAN dataset using the CQT transform without and with
bootstrapping. (a) Without bootstrapping several cluster
centers, marked in white, do not represent good feature
responses due to the high dimensional space in which k-
means clustering is performed. (b) When bootstrapping is
enabled all learned centroids correspond to nicely localized
features.

We first cluster in the subspace spanned by the first p
principal components and fill the learned centroids with
zeros for all other n − p dimensions. These centroids are
then used to warm start the clustering procedure in the n
dimensional PCA whitened space.

Without bootstrapping some features are badly local-
ized, which is an artifact of clustering in a high dimen-
sional space (e.g. 256 dimensions if patches of size 16×16
are used). This effect is visible in Fig. 1 where affected
features are marked white. When the bootstrapping pro-
cedure is used the features are well distributed over the
whole feature space by pre-training the centroids on the
major principal components. The consecutive clustering
procedure in the complete feature space is thus simplified
and the badly localized features disappear.

4. FEATURE EXTRACTION

s
w

v

fr
e
q
u
e
n
cy

time

Figure 2: Schematic of the convolutional extraction
scheme. Note that with a stride s smaller than v or w,
extracted patches overlap.

After learning the dictionary, feature responses are ex-
tracted from the input data. Employing a convolutional
extraction scheme (see Fig. 2), we traverse the input data
with stride s and extract patches at all possible positions.
Instead of using standard hard k-means where the feature
response f(x) is a sparse vector indicating the closest cen-



troid

fi(x) =

{
1 if ci = argminci∈D ‖ci − x‖
0 else

, (1)

we compute the triangular response to maximize the in-
formation content of each feature response. It keeps the
information about the distance of the current patch to all
centroids ci ∈ D that are closer than the average distance
µ(z) = 1

k

∑k
i=1 zi where z ∈ Rk with zi = ‖ci − x‖. In

this case f(x) can be defined as

fi(x) = max(0, µ(z)− zi). (2)

4.1 Pooling
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Figure 3: Illustration of the pooling scheme. In the first
step, the time-frequency transformed audio signal is split
up into overlapping windows. For each window features
are extracted and pooled.

Since using all feature responses for classification is
computationally expensive - we get a response of size k for
each patch that we extract convolutionally - it is common
practice to use a pooling scheme to reduce the dimension-
ality of the feature vector. The term pooling here refers
to placing a grid with c cells on the input data and com-
puting a function (e.g. maximum or average) over all fea-
ture responses that fall into a grid cell. The dimension of
the resulting feature vector is reduced to c × k. For ob-
ject recognition in images a frequently used grid structure
is 2 × 2. This is a reasonable choice for object recogni-
tion tasks where objects are positioned at the center of the
image. Here the grid helps to roughly encode the spatial
properties of the presented objects in the resulting feature
vector. Analogously for audio data, using more than one
pool on the time axis results in an encoding of the tempo-
ral properties of the feature response. This however is not
desired for the task of genre prediction, since characteristic
patterns for a certain genre might not always occur at ex-
actly the same time. Additionally we might have to predict
the genre based only on a fragment of the song (as it is the
case for the GTZAN dataset), underlining the problem that
encoding timing may not help, but in fact impair the qual-
ity of our prediction. Invariance to timing can be achieved
by pooling only once on the time axis (e.g. 2 × 1). This
however may reduce the information content of the feature
vector too drastically. To overcome this problem, we split
the input data into overlapping time windows of a certain
length (similar to [6] and [5]), compute feature responses

and pool on each window separately. Each window then
serves as input to the classifier and the final result is deter-
mined by voting over the classification results of all win-
dows. An illustration of this scheme is depicted in Fig. 3.

5. EVALUATION

We evaluate the performance of the learned features on the
GTZAN dataset [14].

5.1 Experimental Setup

5.1.1 Dataset

The GTZAN dataset is organized into 10 distinct genres:
Blues, Classical, Country, Disco, Hip hop, Jazz, Metal,
Pop, Reggae and Rock. Each genre is represented by 100
song fragments of 30 seconds length.

5.1.2 Pre-processing of audio data

There are several transformations used in the literature to
transform the raw audio signal into the time-frequency do-
main (see Section 2). To determine the influence of this
pre-processing choice, we evaluate the feature learning for
two different transformations. We apply a short time Fourier
transform, calculated on 1024 samples with 512 samples
overlap (STFT) and, in a second setting, use the Constant
Q-Transform (CQT) [12] spanning 8 octaves, using 64 bins
per octave, to create spectrograms of the audio signal. Both
spectrograms have exactly the same number of values on
the frequency axis (512 values). We also sub sample the
CQT to have exactly the same time resolution as the STFT
(1292 time frames). This way any possible advantage due
to a larger representation can be ruled out.

5.1.3 Classification

For classification we use a linear SVM in a 10-fold cross
validation setting.

5.2 Patch dimension and learning techniques

In a first experiment, we show the influence of varying
patch sizes and learning techniques on classification accu-
racy. We learned features using k-means with bootstrapped
and randomly initialized cluster centers (chosen at random
from the input data). We ran k-means until convergence.

Table 1: Influence of varying patch dimensions and learn-
ing methods on classification accuracy. Results are aver-
aged over ten runs of 10-fold cross validation to minimize
the influence of random partitioning. The standard devia-
tions are all well below 1%.

Patch size k-means (random) k-means (boot.)
(freq. × time ) STFT CQT STFT CQT

64× 1 64.81 70.91 64.72 70.57
128× 1 59.59 67.14 68.48 72.19
256× 1 65.79 62.12 67.86 70.8
512× 1 62.37 66.54 67.69 67.26
16× 16 75.2 74.2 75.11 77.7



Features span parts of the frequency axis (64× 1, 128× 1,
256 × 1), the whole frequency range (512 × 1) or fre-
quency and time (16 × 16). Note that features are ex-
tracted convolutionally (with stride 1) if possible which ex-
cludes features of size 512 × 1. In contrast to the smaller
patches those features cannot benefit from introducing sev-
eral pools on the frequency axis, they already span the
whole frequency range. That is why we only use one pool
in this experimental condition. If not mentioned otherwise,
we learn dictionaries of size 800 using PCA whitening and
keeping as many components necessary to explain 95% of
the variance. Table 1 shows the results of this experiment.

For a small patch size of 64 × 1 the performance of
k-means and bootstrapped k-means is almost equal. Here
bootstrapping k-means is unnecessary, since in low dimen-
sions random initialization of the cluster centers suffices.
With growing feature size however (e.g. 256× 1), random
k-means suffers from the effect depicted in Fig. 1, where
parts of the dictionary are wasted on ill localized features.
Bootstrapping k-means reduces the impact of this prob-
lem and affects classification accuracy significantly (e.g.
5.05% improvement with a feature size of 128× 1).

Comparing the performance of varying feature sizes, we
find that learning features on the whole frequency range
(without convolution) has the lowest accuracy, compared
to smaller frequency patches. The 16× 16 time-frequency
features outperform any other setting.

In all settings the STFT accuracies are worse than the
results on the CQT transformed audio signal. In addition
to the advantages of the Constant-Q transform over the dis-
crete Fourier transform described in [12], we suspect that
this is due to the fact that the Constant-Q transform is much
sparser and less noisy than the STFT and thereby facilitates
learning of good features.

5.3 Pooling and time windows

In this experiment we evaluate the parameters of the pool-
ing scheme described in Section 4.1 used for feature ex-
traction. We employ average pooling in all experiments
and vary the number of pools on the frequency axis. We
perform experiments on the CQT transformed data. The
results for features of size 256 × 1 and 16 × 16 (note
that both settings share the same number of components)
learned with bootstrapped k-means are are shown in Fig.
4a). In all tested settings, increasing the number of fre-
quency pools helps to improve the classification accuracy.
Best results are achieved using two to four pools.

In Fig. 4b) the results of varying the length of the time
windows are depicted. Accuracy increases with shorter
time windows. Depending on the patch size, the optimum
is reached with a window length of 1 second (16 × 16) or
2 seconds (256× 1). This finding is in agreement with [5].

5.4 PCA dimensionality reduction and dictionary size

We show the effect of varying the number of principal
components kept in Fig. 4c). In the previous experiments,
we used exactly as many principal components needed to
explain 95 % of the variance, which translates to keeping

Classifier Features Accuracy (%)

Linear SVM Convolutional K-means
(16× 16) (our) 85.25± 3.5

RBF SVM DBN [4] 84.3
Linear SVM PSD on octaves [6] 83.4± 3.1

Linear SVM Convolutional K-means
(128× 1) (our) 83.37± 2.54

Linear SVM PSD on frames [6] 79.4± 2.8

Table 2: Our results (in bold) compared to previously pub-
lished results that learn features on the GTZAN dataset.
We report the averaged accuracy and standard deviation
after one run of 10-fold cross validation.

88 principal components in case of the 16×16 features and
133 for the 256× 1 features. We find that for both feature
sizes the highest accuracy can be achieved by setting the
number of principal components to 100.

Finally, we evaluate the effect of varying the size of the
dictionary learned. In Fig. 4d) the results of varying this
number are depicted. Increasing the size of the dictionary
steadily improves recognition performance.

5.5 Overall performance

To compare our results with previously published results
on the GTZAN dataset we learned 1600 features, used 4
frequency pools, time windows of 2 seconds length and
kept the first 100 (16×16) and 72 (128×1) principal com-
ponents. Results are shown in Table 2. With features that
span time and frequency, we reach the best result on the
GTZAN dataset compared with other approaches that learn
features from audio data. There are however approaches
that do not learn features in an unsupervised fashion, but
focus on sophisticated classifiers and significantly outper-
form our results (92.7% [2] , 92.4% [9]).

5.6 Additional experiment using random features

Recently randomly selected features were found to per-
form well on object recognition benchmarks. Saxe et al.
[10] attribute the success of random features to the convo-
lutional pooling architecture they are used in. To investi-
gate the role of convolutional feature extraction for audio
data, we performed a similar, additional experiment. We
chose the same parameters as described in Section 5.5, but
instead of learning features, we randomly selected PCA
whitened patches without any further clustering and used
these as features. Indeed, we found that classification ac-
curacy did not suffer significantly (85.09%±3.56), but the
interpretability of the features is lost. This result underlines
the importance of convolutional feature extraction.

6. DISCUSSION

Our experiments indicate that convolutional extraction of
local feature responses is a viable approach to increase
recognition accuracy for the task of genre prediction.

With convolutional extraction there is a trade off be-
tween computational complexity and accuracy. Extracting
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Figure 4: Classification accuracies averaged over ten runs of 10-fold cross validation with (a) varying number of frequency
pools, (b) varying time window lengths, (c) varying dictionary size and (d) varying number of components kept.

features convolutionally with a stride of 1 is computation-
ally more expensive than extracting non-overlapping fea-
ture responses. To speed up the feature extraction we tried
to reduce the size of the spectrograms to a quarter of their
original size (128 × 323), which helps twofold. For one,
the number of patches that need to be extracted decreases
and we are able to learn smaller patch dimensions, which
speeds up finding the closest centroids. We found that ac-
curacy did only decrease marginally to 84.77%±2.6, when
learning patches of size 8×8 on the smaller input. Another
way of speeding up the extraction is to increase the stride s.

Figure 5: Example features learned on frequency patches
32× 1 (enlarged for better visualization).

This however has a stronger effect on accuracy, which re-
duces to 83.45%±3.3 (16×16, same setting as in Section
5.5) with a stride of 4.

Another important finding is that time-frequency fea-
tures perform better in terms of accuracy than frame level
features. Nonetheless, features that span the whole fre-
quency range have the advantage of being easily interpretable
in musical terms (see Fig. 5 for exemplary features learned
only on the frequency axis). This is not the case for lo-
cal time-frequency patches since the exact frequency is not
encoded in those patches. They do however represent pat-
terns of energy distribution over time that can occur at any
frequency, e.g. energy remaining constant at one frequency

(a) (b) (c) (d)

Figure 6: Examples of learned time-frequency features
(enlarged for better visualization).



(Fig. 6b), energy spreading across frequencies (Fig. 6c)
and note onsets (Fig. 6a and d).

Finally, we show the confusion matrix of the result that
was achieved with our best performing features in Fig. 3.
Genres that have a low confusion rate include classic, jazz
and metal, problematic are rock and pop songs. We be-
lieve that the confusion patterns that occur are plausible,
e.g. confusing metal with rock songs is a reasonable mis-
take, since both genres are closely related.

Bl Ro Di Hi Ja Re Po Co Cl Me
Bl 827 61 1 9 0 20 12 48 0 4
Ro 12 650 55 25 7 25 51 49 0 32
Di 31 36 853 11 2 36 45 12 0 9
Hi 8 5 21 866 0 32 33 0 0 0
Ja 19 6 0 4 961 10 0 12 9 0
Re 48 16 10 22 0 824 15 20 0 0
Po 0 36 33 41 0 18 775 24 0 0
Co 45 110 18 1 0 35 16 830 0 7
Cl 0 5 9 0 30 0 10 1 991 0
Me 10 75 0 21 0 0 43 4 0 948

Table 3: The confusion matrix for ten runs of 10-fold cross
validation using features of size 16× 16. Genres that have
a low confusion rate include classic, jazz and metal, prob-
lematic are rock and pop songs.

7. CONCLUSION

In this work, we have presented an approach that predicts
the genre of a music piece. We have shown that learn-
ing local features using simple and fast techniques like
k-means or even randomly selected features is competi-
tive with other more complex learning approaches, if fea-
tures are extracted convolutionally. We found that time-
frequency patches perform better than one dimensional fre-
quency patches and that they reach the highest accuracy to
date compared with other learned features on the GTZAN
dataset. Furthermore, we have shown that features learned
on the CQT transformed audio signal perform better than
those learned on the STFT spectrogram. We consider as
interesting future work to apply the feature learning to dif-
ferent tasks in the domain of music information retrieval,
e.g. auto tagging and also to investigate the possibility of
learning a deeper representation on top of the low level
features learned so far.
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